
FKP: a constant-time algorithm to schedule hard real-time sporadic
tasks

CISTER Periodic Seminar

Damien Masson1

Geoffrey Nelissen2

1Université Paris-Est, ESIEE Paris, Laboratoire d’informatique Gaspard-Monge (LIGM) UMR CNRS 8049

2CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

Tuesday, June 30th 2015

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 1 / 42

damien.masson@esiee.fr

Fixed-K Priority Scheduler

1 Why ?

2 How ?

3 Other Limited Preemption Techniques

4 Evaluation

5 Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 2 / 42

damien.masson@esiee.fr

Why ?

Fixed-K Priority Scheduler

1 Why ?

2 How ?

3 Other Limited Preemption Techniques

4 Evaluation

5 Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 3 / 42

damien.masson@esiee.fr

Why ? Hard Real-Time Scheduling Problem

Task Model

A sporadic task τi produces an infinite sequence of jobs and is defined by:

its first release time instant: ri

its worst case execution time (WCET): Ci

the minimal inter arrival time between two jobs: Ti

its relative deadline: Di

Scheduling problem

provide an algorithm to choose amongst the tasks at runtime. The schedule produced
have to be deterministic enough to permits to answer the question: are the deadline
respected in the worst case or not ?

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 4 / 42

damien.masson@esiee.fr

Why ? Fixed Priority

Fixed Priority

Each task is assign a unique priority. The scheduler chooses the highest priority task
amongst the ready ones.

Deadline Monotonic (DM) is an optimal priority assignment for this class of
scheduler, iff ∀i ,Di ≤ Ti

The processor utilization bound is approximately 70% for preemptive scheduler in
the general case

This kind of scheduler is implemented in constant time in all modern operating
systems

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 5 / 42

damien.masson@esiee.fr

Why ? Dynamic Priority (Job-level Fixed Priority)

Dynamic Priority

The priority of each job can change at any instant.

Earliest Deadline First (EDF) is an optimal algorithm for this class of scheduler (in
fact EDF belongs to the subclass of job-level fixed priority)

The processor utilization bound is approximately 100% for preemptive scheduler

EDF can be cleverly implemented (very recent work shows how) but the complexity
is still not constant because one hardware timer is needed for each task, and these
timers need to be sorted.

How far Fixed priority and Dynamic Priority assignment classes are ?

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 6 / 42

damien.masson@esiee.fr

Why ? Dual Priority Scheduling

The Dual priority scheduler

This scheduler considers a set of n independent periodic tasks with implicit deadlines
{τ1, τ2, ..., τi , ..., τn} with τi = (ri ,Ci ,Ti ,Si ,P

1
i ,P

2
i)

(ri ,Ci ,Ti) are the usual parameters from the Liu&Layland model,

Si is the relative intermediate deadline where the task priority changes,

P1
i and P2

i are respectively the priority before the intermediate deadline and after.

Figure: Example with P1
1 < P1

2 < P2
1 < P2

2

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 7 / 42

damien.masson@esiee.fr

Why ? Dual Priority Scheduling

Conjectures

These conjectures was proved for n = 2 and no counter example was never found for
greater values.

Conjecture (Maximal Utilization Bound)

For any task set with total utilization less than or equal to 100% there exists a dual
priority assignment that will meet all deadlines.

Conjecture (RM2 Optimality)

An optimal priority assignment could be RM2:

both P1
i and P2

i follow the RM rule, ∀i,j ,P1
i < P1

j iff Ti < Tj and P2
i < P2

j iff
Ti < Tj

∀i,j ,P2
i < P1

j

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 8 / 42

damien.masson@esiee.fr

Why ? Dual Priority Scheduling

Facts

(a) Synchronous Scenario

(b) Offset for task τ1

Figure: Counter-intuitive properties illustrations

Property (Response time of the first job)

Consider a synchronous implicit-deadline task set, using dual priority the response time of
the first job is not necessarily the largest one.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 9 / 42

damien.masson@esiee.fr

Why ? Dual Priority Scheduling

Facts

(a) Synchronous Scenario

(b) Offset for task τ1

Figure: Counter-intuitive properties illustrations

Property (The first busy period)

Consider a synchronous implicit-deadline task set, the first busy period is not a feasibility
interval using dual priority scheduling.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 9 / 42

damien.masson@esiee.fr

Why ? Dual Priority Scheduling

Facts

(a) Synchronous Scenario

(b) Offset for task τ1

Figure: Counter-intuitive properties illustrations

Property (No critical instant)

Considering dual priority scheduling, the synchronous case is not the worst case.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 9 / 42

damien.masson@esiee.fr

Why ? Implementation?

What about the implementation ?

FP: Constant Time

EDF: Can be implemented really efficiently but not in constant time

DP: same as EDF

Interest ?

Theoretical: scheduling algorithm classification.

Practical : none ? Indeed the complexity is no less than the one of EDF.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 10 / 42

damien.masson@esiee.fr

Why ? Implementation?

What about the implementation ?

FP: Constant Time

EDF: Can be implemented really efficiently but not in constant time

DP: same as EDF

Interest ?

Theoretical: scheduling algorithm classification.

Practical : none ? Indeed the complexity is no less than the one of EDF.

But if the promotion points were not relative to releases, but dependent on the remaining
costs ? And why only two priorities ?
Then, the implementation is constant time, like FP!

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 10 / 42

damien.masson@esiee.fr

Why ? Implementation?

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 11 / 42

damien.masson@esiee.fr

How ?

Fixed-K Priority Scheduler

1 Why ?

2 How ?

3 Other Limited Preemption Techniques

4 Evaluation

5 Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 12 / 42

damien.masson@esiee.fr

How ? Description

Early stages

From the beginning the idea was to increase the priority of the task when the remaining
costs decreases.
Each task τi is cut in i segments of increasing priorities. The first segment is assigned the
base priority (example DM priority), the second one the priority just above, and so on.
Then the k th segment correspond to code that the k − 1 tasks with priorities just above
the one of τi cannot preempt.

...s1 s2 s3 s4

s5

s6

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 13 / 42

damien.masson@esiee.fr

How ? Description

Motivating Example

τ1 = (4, 10) and τ2 = (6, 14) scheduled by DM

τ1 = (5, 10) and τ2 = (7, 14) scheduled by FKP

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 14 / 42

damien.masson@esiee.fr

How ? Intuitions

Intuitions

Is the utilization bound 100% ? Harbour proved that cutting tasks into segments of
different priorities increases the schedulability, and proved that the bound is 100%
for two tasks.

Issue: how to optimaly cut the task (size and priority of the segments) ?

Circular dependency!

to cut a task, we need to know the way other tasks are cut

We need to be able to compute the worst case response time of task without
knowledge on the way lowest base priority tasks are cut

Key idea 1

the first segment has a non null size

Then, a task cannot be preempted by a task with a lower “base” priority. Only be
delayed.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 15 / 42

damien.masson@esiee.fr

How ? Intuitions

Intuitions

We cut from the highest base priority one to the lowest base priority one

Interference from lower priority tasks is just a blocking factor, that can happen only
once in a level-i busy period

This interference can be computed,

Key idea 2

because it cannot be worst than with DM

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 16 / 42

damien.masson@esiee.fr

How ? Intuitions

Illustration

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 17 / 42

damien.masson@esiee.fr

How ? Formalizations

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 18 / 42

damien.masson@esiee.fr

How ? Formalizations

Formally

s1 s2 ... sp ... si

Li,i

Li,i−1

Li,i−2

Li,i−p+1

Li,i−p

Li,1

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 19 / 42

damien.masson@esiee.fr

How ? Formalizations

Formally

Li,p
def
=

i∑
k=i−p+1

Ci,k (1)

Ci,k
def
=

{
Li,i−k+1 − Li,i−k k 6= i

Li,1 k = i
(2)

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 20 / 42

damien.masson@esiee.fr

How ? Formalizations

Blocking Time

We denote by Bp the maximum blocking time that task τp can suffer due to the priority
promotion of tasks with lower base priorities than τp.
Thanks to the non-null execution time of the first segment of every task τi , the following
Lemma holds:

Lemma

Let τp be any task in τ . At most one job J j
i such that prio(τi) < prio(τp) can block the

execution of a job of τp.

Bp
def
= max

τi∈τ\hp(τp)
{Li,p} (3)

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 21 / 42

damien.masson@esiee.fr

How ? Formalizations

Level-p Static Slack

Definition (Level-p Static Slack)

The Level-p static slack, denoted Sp, is the largest blocking time Bp that can be suffered
by task τp such that τp remains schedulable with FKP.

It can be obtain by a dichotomy search, or adapting the classical slack time computation
theory.

Li,p =

Ci p = i

min(Ci − ε,Sp) p = i − 1

min(Li,p+1,Sp) otherwise

(4)

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 22 / 42

damien.masson@esiee.fr

How ? Response Time Analysis

Response Time Analysis

There are several differences between FP and FKP that must be considered when
computing the worst-case response time of a task τi

1 First, the jobs released by any task τi are composed of multiple segments. The
response time of the j th job J j

i released by τi is therefore given by the sum of the
response time of the segments of J j

i .

2 Second, the segments composing τi have different priorities. It implies that different
sets of tasks interfere with each segment.

3 Finally, as a consequence of the jobs increasing their priorities over time, tasks with
lower base priorities than τi can block the execution of τi for Bi time units.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 23 / 42

damien.masson@esiee.fr

How ? Response Time Analysis

Response Time analysis

Lemma

The length | BP(i) | of the longest level-i busy period BP
(i)

is the minimum solution to

| BP(i) |= Bi +
i∑

r=1

⌈
| BP(i) |

Tr

⌉
× Cr (5)

Lemma

The worst-case completion time F j
i,k of the k th segment of the j th job released by τi in

the longest level-i busy period is given by the minimum solution to

F j
i,k =Bi + (j − 1)× Ci +

k∑
p=1

Ci,p

+
i−1∑

q=i−k+1

⌈
F j
i,q

Tq

⌉
× Cq +

i−k∑
r=1

⌈
F j
i,k

Tr

⌉
× Cr (6)

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 24 / 42

damien.masson@esiee.fr

How ? Response Time Analysis

Response Time analysis

F 1
i,1 = Bi + Ci,1 +

i−1∑
r=1

⌈
F 1
i,1

Tr

⌉
× Cr (7)

F j
i,k = F j

i,k−1 + Ci,k + I ji,k (8)

I ji,k
def
=

i−k∑
r=1

⌈
F j
i,k

Tr

⌉
× Cr −

i−k∑
r=1

⌈
F j
i,k−1

Tr

⌉
× Cr (9)

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 25 / 42

damien.masson@esiee.fr

How ? Response Time Analysis

Response Time analysis

Theorem

The worst-case response time of τi is given by

Ri = max
1≤j≤nmax

i

{
F j
i,i − (j − 1)× Ti

}
(10)

where nmax
i

def
=

⌈
|BP(i)|

Ti

⌉
is the maximum number of jobs released by τi in BP

(i)
.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 26 / 42

damien.masson@esiee.fr

Other Limited Preemption Techniques

Fixed-K Priority Scheduler

1 Why ?

2 How ?

3 Other Limited Preemption Techniques

4 Evaluation

5 Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 27 / 42

damien.masson@esiee.fr

Other Limited Preemption Techniques

Other Limited Preemption Techniques

Essentially, FKP algorithm can be classified amongst limited preemption techniques.
Indeed, rising the priority between two segments leads to prevent some higher priority
tasks to preempt the task.
There is three main approaches:

Preemption Thresholds Scheduling (PTS)a parameter called preemption threshold
is added to each task. Only tasks with a priority higher than the running task
threshold can preempt it.

Deferred Preemptions Scheduling (DPS)a longest non preemptive interval is
defined for each task. When an higher priority task arrives, the preemption can be
delayed for that interval.

Fixed Preemption Points (FPP)specific preemption point are defined by the
programmer in the task. Then at runtime, preemption are delayed until the next
preemption point.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 28 / 42

damien.masson@esiee.fr

Evaluation

Fixed-K Priority Scheduler

1 Why ?

2 How ?

3 Other Limited Preemption Techniques

4 Evaluation

5 Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 29 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

We evaluate the performances of FKP against DM and EDF regarding the following
metrics:

Success ratio, the number of schedulable systems divided by the number of systems,

WCRT ratio, for each task, the worst case response time is normalised with respect
to the task deadline, then an average value for the system is computed, and we
present the average value over the simulated systems,

Max Tardiness ratio, for each task, the maximum tardiness is normalised with
respect to the task deadline, then an average value is computed for the system, and
we present the average value over the simulated systems,

Preemptions ratio, the total number of preemptions is divided by the total number
of jobs released during the simulation, and we present the average value over the
simulated systems.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 30 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 31 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 32 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 33 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 34 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 35 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 36 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 37 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 38 / 42

damien.masson@esiee.fr

Evaluation

Evaluation

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 39 / 42

damien.masson@esiee.fr

Future Work / conclusion

Fixed-K Priority Scheduler

1 Why ?

2 How ?

3 Other Limited Preemption Techniques

4 Evaluation

5 Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 40 / 42

damien.masson@esiee.fr

Future Work / conclusion

Future Work / conclusion

FKP is a constant time scheduler

higher schedulability compare to FP

less preemptions compare to FP and EDF

easy to implement, but need offline computations (could be a problem for online
admission in dynamic systems)

As future works, we would like to

evaluate performances against other limited preemption techniques

formalise a utilisation bound for FKP

provide an actual implementation of this algorithm in an embedded real-time
operating system

extend the task model to consider tasks that share resources and generalise it to
multiprocessor platforms.

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 41 / 42

damien.masson@esiee.fr

Future Work / conclusion

D. Masson (damien.masson@esiee.fr) FKP Tuesday, June 30th 2015 42 / 42

damien.masson@esiee.fr

