

XDense: A Mesh Grid Sensor Network for
Extreme Dense Sensing

CISTER-TR-190802

2020/01/24

João Loureiro

PhD Thesis

PhD Thesis CISTER-TR-190802 XDense: A Mesh Grid Sensor Network for Extreme Dense Sensing

© 2020 CISTER Research Center
www.cister-labs.pt

1

XDense: A Mesh Grid Sensor Network for Extreme Dense Sensing

João Loureiro

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: joflo@isep.ipp.pt

https://www.cister-labs.pt

Abstract

We introduce XDense, a novel sensor network system for application scenarios that couldbenefit from densely
physically deployed sensors. More specifically, XDense was conceivedfor cyber-physical systems (CPS) that require
real-time dense sensing, for example,involving thousands of sensors per square meter in real-time.We motivate
our work by presenting CPS application scenarios that could potentiallybenefit of dense sensor networks, which
are currently limited by available technology.Out of the different application fields we discuss, we give special
focus to avionics. Morespecifically, we focus on active flow control (AFC) on aircraft wing surfaces. We aim
atproviding means of sampling data with a high spatial and temporal granularity about theair flowing through an
aircraft wing, so that active control over the aerodynamics of thewing is feasible.The XDense architecture consists
of a wired 2D-mesh grid network that provides itdistributed processing capabilities, that are used to enable real-
time complex environmentaldata extraction in a distributed fashion. It resembles Networks-on-Chip (NoC)
architecture,principles of operation and temporal behavior. The similarities and differencesare discussed.We
detail XDense 19s node and network architecture, protocols, and principles of operation.We evaluate the
performance of XDense in fluid dynamic application scenarioswith extensive experiments on sensing and feature
detection capabilities.We also tackle the issue of time predictability of XDense. We present a methodologythat
uses traffic shaping heuristics to guarantee bounded communication delays while fulfillingmemory constraints. We
evaluate the model for multiple network configurationsand workloads, and present a comparative performance
analysis in terms of link utilization,queue size and execution time. With the proposed traffic shaping heuristics,
weendow XDense with the capabilities required for real-time applications.We also discuss the practical issues
involved in implementing XDense and the stepsfor its experimental validation. A prototype node and a test-bed
was implemented tovalidate our assumptions and to assess the performance capabilities.

XDense: A Mesh Grid Sensor Network

for Extreme Dense Sensing

João Loureiro

Supervisor: Eduardo Médicis Tovar

Co-Supervisor: Raghuraman Rangarajan

Programa Doutoral em Engenharia Electrotécnica e de Computadores

January, 2019

c© João Loureiro: January, 2019

Faculdade de Engenharia da Universidade do Porto

XDense: A Mesh Grid Sensor Network for
Extreme Dense Sensing

João Loureiro

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto

to obtain the degree of

Doctor Philosophiae in Electrical and Computer Engineering

President: José Silva Matos

External referee: Leandro Indrusiak

External referee: Jean-luc Scharbarg

Referee: Paulo Portugal

Referee: João Cardoso

Supervisor: Eduardo Tovar

January, 2019

Abstract

We introduce XDense, a novel sensor network system for application scenarios that could

benefit from densely physically deployed sensors. More specifically, XDense was con-

ceived for cyber-physical systems (CPS) that require real-time dense sensing, for example,

involving hundreds of sensors per square meter in real-time.

We motivate our work by presenting CPS application scenarios that could potentially

benefit of dense sensor networks, which are currently limited by available technology.

Out of the different application fields we discuss, we give special focus to aviation. More

specifically, we focus on active flow control (AFC) on aircraft wing surfaces. We aim at

providing means of sampling data with a high spatial and temporal granularity about the

air flowing through an aircraft wing, so that active control over the aerodynamics of the

wing is feasible.

The XDense architecture consists of a wired 2D-mesh grid network that provides it

distributed processing capabilities, that are used to enable real-time complex environmen-

tal data extraction in a distributed fashion. It resembles Networks-on-Chip (NoC) archi-

tecture, principles of operation and temporal behavior. The similarities and differences

are discussed.

We detail XDense’s node and network architecture, protocols, and principles of op-

eration. We evaluate the performance of XDense in fluid dynamic application scenarios

with extensive experiments on sensing and feature detection capabilities.

We also tackle the issue of time predictability of XDense. We present a methodology

that uses traffic shaping heuristics to guarantee bounded communication delays while ful-

filling memory constraints. We evaluate the model for multiple network configurations

and workloads, and present a comparative performance analysis in terms of link utiliza-

tion, queue size and execution time. With the proposed traffic shaping heuristics, we

endow XDense with the capabilities required for real-time applications.

We also discuss the practical issues involved in implementing XDense and the steps

for its experimental validation. A prototype node and a test-bed was implemented to

validate our assumptions and to assess the performance capabilities.

Keywords: Real-time Embedded Systems, Real-time Communication, Traffic Shap-

ing, Feature Detection, Distributed Computing, Dense Sensor Networks, Active Flow

Control.

i

Resumo

Apresentamos o XDense, um novo sistema de rede de sensores para cenários que pode-

riam se beneficiar de instalações densas de sensores. Mais especificamente, o XDense foi

concebido para sistemas ciber-físicos (CPS) que requerem operação em tempo real, por

exemplo, para amostrar milhares de sensores por metro quadrado em tempo real.

Motivamos nosso trabalho apresentando cenários de aplicação dos CPS que poderiam

beneficiar de redes densas de sensores, que atualmente são limitadas pela tecnologia dis-

ponível. Dos diferentes campos de aplicação que discutimos, damos especial atenção à

aviônica. Mais especificamente, nos concentramos no controle de fluxo ativo (AFC) nas

superfícies das asas das aeronaves. Nosso objetivo é fornecer meios de amostragem de

dados com alta granularidade espacial e temporal sobre o ar que flui através de uma asa

de aeronave, para que o controle ativo sobre a aerodinâmica da asa seja viável.

A arquitetura XDense consiste em uma rede de malha 2D, com fio, que fornece re-

cursos de processamento distribuído, que são usados para permitir a extração de dados

ambientais complexos em tempo real de maneira distribuída. Esta arquitectura se as-

semelha à arquitetura das Network-on-Chip (NoCs), aos seus princípios de operação e

comportamento temporal. As semelhanças e diferenças são discutidas.

Nós detalhamos o projeto do XDense e a arquitetura de rede, protocolos e princípios

de operação. Avaliamos o desempenho do XDense em cenários de aplicação de dinâmica

de fluidos com experimentação extensa em monitorização e estração de detalhes de sinais

físicos.

Também abordamos a questão da previsibilidade temporal do XDense. Apresentamos

uma metodologia que utiliza heurísticas de modelação de tráfego de comunicação para

garantir atrasos de comunicação limitados e o cumprimento dos requisitos de memória.

Avaliamos o modelo para diferentes configurações de rede e carga de trabalho e apresenta-

mos uma análise de desempenho comparativa em termos de utilização de “link”, tamanho

de fila e tempo de execução. Com a heurística de modelagem de tráfego proposta, nós

possibilitamos aplicações em tempo real no XDense.

Também discutimos as questões práticas envolvidas na implementação do XDense e

as etapas para sua validação experimental. Um nó protótipo e um banco de testes são

implementados para validar nossas suposições e para a medição de desempenho.

Keywords: Sistemas Embarcados em Tempo Real, Comunicação em Tempo Real,

Modelagem de Tráfego, Detecção de Recursos, Computação Distribuída, Redes de Sen-

iii

iv

sores Densos, Controle de Fluxo Ativo.

Acknowledgments

First and foremost, I would like to thank my supervisor, Eduardo Tovar for his support

during my PhD. Despite his busy schedule as the director of CISTER, he was always

available to advise. I am thankful for the opportunity to conduct my PhD in such presti-

gious laboratory.

I thank Raghuraman Rangarajan for his guidance during my PhD. He was very helpful

on the development, maturing and consolidation of ideas. His support in writing was also

fundamental. It helped me greatly to develop a critical sense of scientific writing.

I express my gratitude to Borislav Nicolic, Shashank Gaur, Vikram Gupta and Vi-

cent Nélis, who were available to discuss and develop ideas. Pedro Santos also helped

greatly with the programming tasks related to the development and experimentation with

the hardware prototypes. It was a pleasant experience to co-work with them. Their knowl-

edge and advises were clearly beneficial to my learning and overall PhD experience. Sev-

eral contributions in this Thesis resulted from collaborations with other researchers in

CISTER, to which I am grateful.

I thank to Inês and Sandra who contributed in administrative and everyday bureau-

cracy.

I thank my family for their support, and for understanding my absence in important

moments due to our physical distance. Finally, and most importantly, I would like to

thank my beloved wife Sandra Montes, for her support, encouragement, patience and

unwavering love. I dedicate this work to my son Gabriel, who was born meanwhile, and

brought the most joyful moments of my life.

João Loureiro

1This work was supported by CNPq (Brazilian National Council for Scientific and Technological De-

velopment) under the PhD grant 201176/2012-2.

v

Publications related with the Thesis

E. Tovar, N. Pereira, I. Bate, L. Indrusiak, S. Penna, J. Negrão, J. C. Viana, F. Philipp, D.

Mayer, J. Heras et al., “Networked embedded systems for active flow control in aircraft,”

in Proceedings of the 11th International Workshop on Real-Time Networks (RTN 2012).

10, Jul, 2012. Pisa, Italy.

J. Loureiro, N. Pereira, P. Santos, and E. Tovar, “A sensing platform for high visibility of

the datacenter.” in Proceedings of the 4th International Workshop on Networks of

Cooperating Objects for Smart Cities 2013 (CONET/UBICITEC 2013). 8, Apr, 2013.

Philadelphia, PA, U.S.A.

J. Loureiro, V. Gupta, N. Pereira, E. Tovar, and R. Rangarajan, “XDense: A sensor

network for extreme dense sensing,” Proceedings of the Work-In-Progress Session at the

2013 IEEE Real- Time Systems Symposium - RTSS, pp. 19–20, 2013.

J. Loureiro, N. Pereira, P. Santos, and E. Tovar, “Experiments with a sensing platform for

high visibility of the data center,” in Internet of Things Based on Smart Objects, ser.

Internet of Things, G. Fortino and P. Trunfio, Eds. Springer International Publishing,

2014, pp. 181–198.

N. Pereira, S. Tennina, J. Loureiro, R. Severino, B. Saraiva, M. Santos, F. Pacheco, and

E. Tovar, “A microscope for the data center,” International Journal of Sensor Networks,

2015.

J. Loureiro, R. Rangarajan, and E. Tovar, “Demo abstract: Towards the development of

XDense, a sensor network for dense sensing,” Poster presented in 12th European

Conference on Wireless Sensor Networks (EWSN 2015). 9 to 11, Feb, 2015, pp 23-24.

Porto, Portugal.

J. Loureiro, R. Rangarajan, and E. Tovar, “XDense: A dense grid sensor network for

distributed feature extraction,” 33o Simpósio Brasileiro de Redes de Computadores e

Sistemas Distribuídos (SBRC 2015) - Workshop de Comunicação em Sistemas

Embarcados Críticos (WoCCES), 2015.

J. Loureiro, M. Albano, T. Cerqueira, R. Rangarajan and E. Tovar, “A module for the

XDense architecture in ns-3,” Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May,

vii

viii

2015. Castelldefels, Spain.

J. Loureiro, R. Rangarajan, and E. Tovar, “Distributed sensing of fluid dynamic

phenomena with the XDense sensor grid network,”Proceedings of the IEEE International

Conference on Cyber Physical Systems, Networks and Applications (CPSNA’15). 19 to

21, Aug, 2015. Hong Kong, China.

J. Loureiro, R. Rangarajan, B. Nikolic, L. Indrusiak, and E. Tovar. 2017. “Real-time

dense wired sensor network based on traffic shaping”. In proceedings of the 23rd IEEE

International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA). 16 to 18, Aug, 2017. Hsinchu, Taiwan. 1–10.

https://doi.org/10.1109/RTCSA.2017.8046307

J. Loureiro, P. J. Santos, R. Rangarajan, E. Tovar, “Simulation Module and Tools for

XDense Sensor Network”. In proceedings of the Workshop on NS-3 (WNS3’17). 13 to

14, Jun, 2017, pp 110-117. Porto, Portugal.

R. Robles, J. C. Viana, J. Loureiro, J. Cintra, A. Rocha, E. Tovar, “Active Flow Control

using Dense Wireless Sensor and Actuator Networks”. In proceedings of

Microprocessors and Microsystems: Embedded Hardware Design (MICPRO), Elsevier.

2018, Volume 61, pp 279-295.

Loureiro J, Rangarajan R, Nikolic B, Soares Indrusiak L, Tovar E. “Extensive Analysis

of a Real-Time Dense Wired Sensor Network Based on Traffic Shaping”. ACM

Transactions on Cyber-Physical Systems. https://doi.org/10.1145/3230872.

Contents

List of Figures xvii

List of Tables xix

List of Abbreviations xxii

1 Introduction 1

1.1 Motivation and Challenges . 2

1.2 Thesis Statement . 5

1.3 System Requirements and Proposed Approach 6

1.4 Methodology . 9

1.5 Thesis Structure . 10

I Background 11

2 Applications and Technology Enablers 13

2.1 Introduction . 13

2.2 Related Network Architectures . 13

2.2.1 Computation Arrays . 13

2.2.2 Many-core Systems and Networks on Chip 14

2.2.3 Study Case: The Epiphany Processor 19

2.3 Dense Deployments of Sensors . 21

2.3.1 Airflow Sensing . 21

2.3.2 Other Dense Deployments of Sensor and Actuators 26

2.4 Summary . 29

3 Survey of Distributed Data Processing Techniques for Dense Sensing 31

3.1 Introduction . 31

3.2 Feature Detection and Extraction . 31

3.2.1 Using Many-core Processors . 31

3.2.2 Feature Extraction in Sensor Networks 33

3.3 Real-time Communication . 35

3.3.1 Real-time Guarantees for NoCs 35

3.3.2 Real-time Guarantees for General Purpose Networks Using Traf-

fic Shaping . 36

ix

x CONTENTS

3.4 Summary . 37

II Proposed Novel Design: XDense 39

4 Network Design and Principles of Operation 41

4.1 Introduction . 41

4.2 Network Design . 42

4.2.1 Networking Device . 43

4.2.2 Router . 44

4.2.3 Processor . 44

4.2.4 Sensor . 45

4.3 Assumptions and System Definitions . 45

4.3.1 Network Temporal Behavior . 45

4.3.2 Packet Structure . 46

4.3.3 Addressing . 47

4.4 Networking Protocols . 48

4.4.1 Routing Protocols . 48

4.4.2 Communication Protocols . 50

4.4.3 Application Protocols . 57

4.5 Example Scenario . 59

4.6 Concluding Remarks . 60

5 Simulation Model for Fluid Dynamics Sensing 61

5.1 Introduction . 61

5.2 Simulation Model . 61

5.2.1 Pre-processing Tools . 66

5.2.2 Post-processing Tools . 69

5.3 Performance Evaluation With Airflow Input Data 71

5.3.1 Distributed Application Execution 73

5.3.2 Experiment I: Sensing Compressed Static CFD Data 75

5.3.3 Experiment II: Detecting Transition Region on Static CFD Data . 80

5.3.4 Experiment III: Detecting Transition Region on Static Image Data 85

5.3.5 Experiment IV: Sensing Temporal CFD Data 89

5.4 Concluding Remarks . 91

6 Analytical Model for Real-time Sensing Using Traffic Shaping 93

6.1 Introduction . 93

6.2 Application Execution . 94

6.2.1 Clustering Nodes . 95

6.2.2 Temporal Isolation Through Phases 95

6.2.3 Spatial Isolation Through Routing Schemes 96

6.3 Real-time Networking Model . 97

6.3.1 Shaping Flows and Traffic Throughout the Network 98

6.3.2 Shaping Traffic at a Single Output Port 100

6.3.3 Worst-case Per-hop Delays and Maximum Queue Sizes 103

CONTENTS xi

6.4 Validation Example . 106

6.5 Evaluation of Traffic Shaping Heuristics 107

6.5.1 Maximum queue size with homogeneous load distribution 109

6.5.2 Phase execution time for homogeneous load distribution 112

6.5.3 Maximum queue size with heterogeneous load distribution 114

6.5.4 Phase execution time for heterogeneous load distribution 117

6.6 Concluding Remarks . 119

7 Hardware Implementation and Performance Evaluation 121

7.1 Introduction . 121

7.2 Hardware Design . 121

7.3 System Requirements . 122

7.4 Design Decisions . 123

7.4.1 Composing an FPGA XDense node 124

7.4.2 Microcontroller Based XDense Node 126

7.5 Performance Evaluation and Comparison 129

7.5.1 Experiment 1: Single Hop Delay 130

7.5.2 Experiment 2: Multi-hop Delay 131

7.5.3 Current Limitations . 135

7.6 Concluding Remarks . 137

8 Conclusions and Future Directions 139

8.1 Summary of Contributions . 139

8.2 Future Directions . 140

Bibliography 143

List of Figures

1.1 Example fluid dynamic application scenario: Airflow over a wing surface

exhibiting transition from laminar to turbulent flow. 3

1.2 Spatial and temporal scales of coherent structures in various applications.

Closed circles correspond to a 30 wall-unit length and 0.01 wall-unit fre-

quency in different applications. Ovals represent different application

groups. The figure is taken from [1]. 4

1.3 Proposed XDense network: (a) A single node with four ports in the four

directions; (b) Example of a 5× 5 mesh grid network; (c) Deployment

envisioned for XDense. 6

1.4 Tasks to be executed iteratively for the completeness of this research. . . . 8

2.1 (a) Multi-core vs. (b) many-core systems. 15

2.2 Epiphany processor internals. It shows 64 cores interconnected by a mesh

grid NoC. Each node on the network consists of a router, CPU, Memory

and communication framework. 19

2.3 (a) A linear array of forty of the same MEMS sensors mounted on a poly-

mer foil; (b) pressure sensor diaphragm and a hot-wire MEMS sensors on

top of an Euro cent coin; (Figures taken from [2]). 22

2.4 Schematic representation of an aircraft concept with a multi-modal sensor

networks embedded inside the composite structural components to enable

“fly-by-feel” (Figure taken from [3] . 24

2.5 (a-b) Different interconnection schemes of electrodes of a brain implantable

stimulator and (c) the interconnections limitations faced as the number of

electrodes scale. (Figure taken from [4]). 28

4.1 Overview of XDense architecture. (a) It is a 2-D mesh network; (b) Node

pinout: two channels per port for transmitting and receiving data; (c)

Node internals: processor (P), router (R), net-device (ND) and the sen-

sor (S); (d) net-device’s internals: output queue (Q), traffic shaper (SH),

and a parallel-to-serial/serial-to-parallel (PS/SP) converters. 42

4.2 Routing protocols - Nodes unicast to the node in the center using different

routing algorithms: (a) XY; (b) YX; (c) Clockwise; (d) Shifted-clockwise. 49

4.3 Unicast example: Node on left requests data from node on right with a

unicast request. The figure shows all internal logical steps taken in the

process of exchanging data between nodes. 51

xiii

xiv LIST OF FIGURES

4.4 Example of three concurrent and non-interfering unicast transmissions.

The coordinate pairs inside the square brackets show the content of [xa,ya]
and [xb,yb] respectively, at the origin and destination of the packet. 52

4.5 Multicast example - with relative addressing. The two coordinate pairs

show the packet content of xa,ya and xb,yb at origin and destination. . . . 53

4.6 Broadcast example: packet flow from origin to destination, using relative

addressing scheme. 56

4.7 Example of networking protocols utilization. The application execution

consists of: (a) Nodes requests data from cluster of nodes using multicast-

alternative data request using counter-clockwise routing; (b) Cluster heads

in turn request data from their cluster using multicast area with counter-

clockwise routing; (c) Nodes unicast sensor data back to the requester

using conter-clockwise routing; (d) Cluster heads process received data

unicast it back to the requester using shifted couter-clockwise routing to

avoid concurrency and contentions. 59

5.1 XDenseSim list of classes and their hierarchy. 63

5.2 XDenseSim example: main steps involved on the simulation of a Data

Announcement between two nodes, unicast with one intermediate hop. . . 65

5.3 Steps required to import data from different external sources into XDense

sensor input module. 66

5.4 (a) Pressure distribution over a wing’s surface; (b) Data of a single time-

frame, from Computational Fluid Dynamics (CFD) simulation, as input

for XDense; (c) Sensors displacement; (d) Normalized data, as seen by

each sensor. 67

5.5 Tool for generating temporal sensor data from a video files of a CFD

simulation. 68

5.6 The node in the center (sink) requests and receives back compressed data

from clusters. (a) and (b) show different snapshots of the reconstruction

of the data by the sink, as the data is received. 69

5.7 Packet trace (in the left) and extracted information on the right. It shows

the input data and node’s activity heatmaps. 70

5.8 Single packet trace. It shows the time instant at which each transmission

occurs. 71

5.9 XDense network superimposed on the CFD dataset snapshot from [6],

showing clustering for nradius = 1. 71

5.10 State diagram for an XDense node. 73

5.11 Reading sensed data: Number of receptions over time for different values

of nradius. 76

5.12 Reading sensed data: Maximum queue size for nradius = 1 to 4. 77

5.13 Total number of packets transmitted in the network with nradius = 1 to 4,

using clustering (CL). 78

5.14 Reading sensed data: Extracted data for different values of nradius. 79

5.15 Reading sensed data: Trade-off between mean square error and maximum

acquisition delay delay for different values of nradius. 79

LIST OF FIGURES xv

5.16 Feature detection: Extracted boundary data, and reconstruction of bound-

ary data for nradius = 1 to 2. 81

5.17 Feature detection: Extracted boundary data, and reconstruction of bound-

ary data for nradius = 3 to 4 for comparison. 82

5.18 Feature detection: Maximum queue size for nradius = 1 to 4. 83

5.19 Feature detection: Number of receptions over time for different values of

nradius. 83

5.20 Feature detection: Trade-off between mean square error and maximum

acquisition delay for different values of nradius. 83

5.21 Total number of packets transmitted in the network with nradius = 1 to 4,

using feature detection (FD). 84

5.22 Process steps for boundary computation described in [7]: (a) Original

image; (b) binarized image; (c) contour tracing and contour smoothing. . 86

5.23 Processing steps of our network. (a) Is the phenomena as seem by our

network, after downsampling the full resolution image to 101×101 pix-

els. (b) is the gradient detection by the sensor nodes with nradius = 3, and

(c) is the contour smoothing post-processing done by the sink. 86

5.24 Processing steps of our network. (a) Transition region detection by the

sensor nodes with nradius = 1, and (b) is the contour smoothing post-

processing done by the sink in black, superimposed on 5.22(c). 87

5.25 Processing steps of our network. (a) Transition region detection by the

sensor nodes with nradius = 7, and (b) is the contour smoothing post-

processing done by the sink in black, superimposed on 5.22(c). 87

5.26 Cumulative density function for different nradius, of the error between . . . 88

5.27 (a) Trade-off between mean square error (MSE) and maximum acquisi-

tion delay (TTS) for different values of nradius, and (b) is the total number

of transmissions for the different protocols, for the same values of nradius . 88

5.28 Real-time sensing: Input data at (a) t = 0 and (b) t = 120 sampling time

slots (STS). 89

5.29 Real-time sensing: Network activity, shown as number of DAs per sam-

pling instant, over 120 sampling instants, for nradius = 1 to 4. 90

5.30 Realtime sensing: p1 queue sizes for nradius = 1 to 4. 91

6.1 Example 45× 45 network, with a single central sink. In this case, with

nradius = 2. Application phases: (a) φ1 – Sink requests data from cluster-

heads; (b) φ2 – cluster-heads in turn send a multicast request to nodes

in their cluster; (c) φ3 – Nodes send sensor data back to their respective

cluster-head; (d) φ4 – cluster-heads process received data and send result

to sink. 94

6.2 Traffic shaper example scenario: two input flows shaped by an intermedi-

ate node as an output flow. Parameters for the input flows are f1 = {O =
2.5,β = 1,σ = 10} and f2 = {O = 1,β = 1

5
,σ = 3}. The resulting flow

is f3 = {O = 2,β = 1
2
,σ = 13}. 98

xvi LIST OF FIGURES

6.3 Traffic shaping heuristics: (a) input, and output flows using the proposed

heuristics; time-line showing offset and duration of (b) arriving flows and

(c) departure flows. 99

6.4 Cumulative arrival/departure curves for a single node, using (a) Min-O,

(b) Max-S and (c) LQ heuristics. 106

6.5 Homogeneous flow scenario: Maximum queue size for traffic shaping

heuristics against simulation. Results are for phases φ3 and φ4 and nradius

set to 1, 3 and 5. 110

6.6 Queue size density map of the top-right quadrant of the network (17×7

nodes), for heuristics (a) LQ and (b) BE. X and Y axis are nodes coordi-

nates relative to the sink. 111

6.7 Homogeneous flow scenario: Link utilization for traffic shaping heuristics

against simulation. Results are for phases φ3 and φ4 and nradius set to 1, 3

and 5. 112

6.8 Homogeneous flow scenario: Execution time of phases φ3 and φ4 for traf-

fic shaping heuristics against simulation. 113

6.9 LQ heuristic - (a) link utilization, (b) maximum queue size and (c) total

execution time, with varying burstiness and nradius = [1,2,3,4,5]. 114

6.10 Heterogeneous flow scenario: Maximum queue size for traffic shaping

heuristics against simulation. Results are for phases φ3 and φ4 and nradius

set to 1, 3 and 5. 116

6.11 Heterogeneous flow scenario: Link utilization for traffic shaping heuris-

tics against simulation. Results are for phases φ3 and φ4 and nradius set to

1, 2 and 5). 116

6.12 Heterogeneous flow scenario: Execution time of phases φ3 and φ4 com-

puted for traffic shaping heuristics against simulation. 118

6.13 Link utilization (a), maximum queue size (b) and total execution time (c)

with varying burstiness, for the LQ heuristic only, for nradius = [1,2,3,4,5]. 118

7.1 Simplified schematic of the XDense node’s Switch and Net-Device im-

plementation using on a FPGA. 124

7.2 FPGA implementation: floor plan of the router and four networking devices.126

7.3 (a) Node’s schematic showing each of the major components of the sys-

tem. (b) and (c) show the top and the bottom sides of the PCB, respec-

tively. 127

7.4 Deployment of a 3× 3 network connected to a computer that shows the

acquired sensed values using color scale. 128

7.5 Packet forwarding internal delay on a single hop, using (a) a FPGA-based

node and (b) a µC-based node. 130

7.6 3 × 3 testbed deployment. 132

7.7 Average trip delay in a multi-hop scenario for varying trip distances. . . . 133

7.8 Comparison between simulation and hardware of the packet trip delay

distribution, for different number of hops. 134

7.9 Packet drop ratio in a multi-hop scenario for varying trip distances. 134

7.10 Packet forwarding internal delay on a single hop without RTOS. 135

LIST OF FIGURES xvii

7.11 Waveform showing the internal delay due to concurrent transmissions on

(a) FPGA implementation and (b) µC implementation. Note the differ-

ence in time scales. 136

List of Tables

4.1 Packet structure and size in bits, totaling 128 bits (16 bytes). 47

4.2 List of routing protocols and content of the RP packet field. 50

4.3 Unicast example - Packet content at each numerated instant of Figure 4.3. 51

4.4 Unicast example - TTS: Transmission Time Slot (TTS) in which each

logical step from the example of Figure 4.3 occur. 52

4.5 List of communication protocols and content of the CP packet field. . . . 56

4.6 List of application protocols and content of the AP packet field. 59

5.1 XDense simulation parameters. 72

7.1 FPGA implementation: Resource utilization due to XDense’s communi-

cation logic. 125

7.2 Resource utilization of the Atmel ATSAM4N8 ARM Cortex M4 running

XDense. 127

7.3 XDense testbed configuration. 129

xix

List of Abbreviations

FEUP Faculdade de Engenharia da Universidade do Porto

AFC Active Flow Control

SJA Synthetic Jet Actuator

NS-3 Network-Simulator-3

MSE Mean square error

CDF Cumulative density function

TTS Transmission time slots

DOR Dimensional ordered routing

COTS Commercial off-the-shelf

FIFO First-in-first-out

ADC Analog-to-digital-converter

SN Sensor network

WSN Wireless sensor network

COTS Commercial-of-the-shelf

IP Intellectual property

FIFO First-in-firs-out

MEMS Microelectromechanical systems

GPU Graphic processing units

CPU Central processing unit

LIDAR Light detection and ranging

MAC Media access control

BE Best-effort

GS Guaranteed service

MR Multicast radius

MT Multicast alternative

MA Multicast area

BC Broadcast

BC Guaranteed service

MSE Mean square error

xxi

xxii List of Abbreviations

FPGA Field programmable gate array

µC Microcontroller

RP Routing protocol

CP Communication protocol

AP Application protocol

Chapter 1

Introduction

As a consequence of Moore’s law, single embedded computers equipped with increasing

processing, communication and sensing capabilities are tending to be minimally priced.

This makes it economically feasible to deploy dense sensor networks with very large

quantities of computing capable sensor nodes. Accordingly, it is possible to take a very

large number of sensor readings from the physical world, perform computation on sensed

quantities and take decisions from the results.

Very dense sensor networks can offer information about the physical world with

greater spatial resolution. When associated with high temporal capabilities, such sensor

networks can offer better opportunities in detecting the occurrence of dynamic events with

high resolution on an observed natural phenomenon. This is of paramount importance for

a number of applications with high spatial and temporal sensing resolution requirements.

Some examples are: (i) airflow monitoring on aircraft wings [8]; (ii) fluid dynamic tests

on under-water vehicles [9]; (iii) fine-grained structural monitoring [10]; (iv) biomedical

devices for electroencephalogram [11]; (v) robotic e-skins [12]; (vi) health-monitoring

wearable sensor networks [13] and others.

Such densely instrumented systems face serious scalability issues in many key aspects,

such as: communication and processing time, predictability of time, interconnectivity,

power requirements, reliability and cost [14]. Moreover, the need for high spatial and

temporal resolutions are related, but are concurring requirements, which are difficult to

address simultaneously.

Today’s dense sensor deployments usually have each sensing element connected to a

central digital processor, with multiplexed analogue inputs that allow reading each sen-

sor individually [15]. This usually involves impractical complex wiring setups, in witch

sensors are read at predefined time slots [16, 17].

Furthermore, collecting and processing data from a dense sensor network is costly

1

2 Introduction

in terms of communication and computation. Feature extraction is challenging and very

difficult to achieve in real-time, hence prohibiting real-time dense sensing and its use in

real-time applications.

Despite the various applications of dense sensor networks mentioned, in this thesis

we focus on fluid dynamic applications and its related challenges. More specifically, we

focus on airflow sensing on aircraft wings for active flow control (AFC); a scenario that

benefits from such dense deployments of cyber-physical systems.

In the next section, we give an overview of the importance of airflow monitoring for

AFC in aviation and its spatial and temporal requirements. We also discuss the involved

challenges on implementing a sensing system for AFC.

1.1 Motivation and Challenges

In order to understand the importance of AFC, we first have to understand the benefits it

can have in terms of flight costs reduction to the growing aerospatial industry.1

Cost reduction is often associated with the reduction of fuel consumption, which is

important because of both environmental effects and cost efficiency. It is known from the

Breguet range equation [19] that improvements in aerodynamics, engines, and structure

have major importance in reducing weight and drag of the aircraft. In fact aerodynamic

drag due to skin friction is known to be one of the main factors contributing to increased

fuel consumption. It constitutes approximately one half of the total drag for a typical long

range aircraft at cruise conditions [20].

A significant part of the skin friction is due to turbulent airflow over the wing [21].

Turbulent airflow is composed of coherent structures of chaotic temporal evolution, such

as vortices. This chaotic behavior causes an increase in interaction between the air and

the wing (and the fuselage, in general), and consequently an increase in total skin fric-

tion [22]. Turbulent airflow is usually undesirable on aircraft as it increases drag and

noise, and consequently fuel expended [23].

The main cause of the occurrence of turbulent airflow on an aircraft, is the flow sep-

aration from the wing’s surface. The airflow tends to separate from the solid surface due

to its high speed and high inertial forces, that exceed the viscous-elastic forces that keep

it attached to the surface. This excess causes its detachment from the surface of the wing,

and creates a low pressure zone under the airflow. This difference is pressure leads the

1According to the Airbus 2016-2035 Global Market Forecast, it is expected that until 2035 the world

passenger traffic will nearly triple, and airlines will more than double their fleets of passenger aircraft (with

over 100 seats) [18].

1.1 Motivation and Challenges 3

Figure 1.1: Example fluid dynamic application scenario: Airflow over a wing surface

exhibiting transition from laminar to turbulent flow.

airflow into turbulent chaotic behavior as the air tends to spread and mix while flowing to

the low pressure zone [24].

The region in which the separation initiates is called transition region. It is where the

airflow transits from the laminar regime (with a more homogeneous speed profile distri-

bution) to turbulent regime (with coherent structures of chaotic temporal evolution) [22].

In an aircraft, a high speed airflow over a wing can present both laminar and turbulent

characteristics at the same time at different regions. Figure 1.1 shows an airflow over a

wing surface, illustrating the transition region.

In order to minimize turbulent airflow, it is crucial to understand, distinguish, char-

acterize and quantify the physical mechanisms taking place in the transition region. This

is where the separation takes place and originate the turbulent airflow [25]. More impor-

tantly, in some applications, detecting where the transition takes place may be enough to

enable efficient AFC.

Many studies have been conducted towards flow characterization and features extrac-

tion. A direct approach consists of developing sensor deployments to study the airflow

by measuring its properties on-site, such as pressure, speed and temperature. However,

in order to depict such phenomena with enough granularity, deployments of sensors with

inter-space smaller than that of the spatial granularity of the observed phenomena may

be required. That is for example, of 100 µm or less, with sampling rates in excess of

100 kHz. Figure 1.2 shows the spatial and temporal scales of coherent structures from

different application scenarios.

Along these lines, in 2011, NASA proposed a design concept called “fly-by-feel” that

also tries to address the challenge of dense sensing [26]. Their objective was to equip

the next generation aircraft with a self-sensing capability via an integration of a dense

network of sensors within the wing structure to achieve high spatial and temporal sensing

resolutions.

4 Introduction

Figure 1.2: Spatial and temporal scales of coherent structures in various applications.

Closed circles correspond to a 30 wall-unit length and 0.01 wall-unit frequency in differ-

ent applications. Ovals represent different application groups. The figure is taken from

[1].

A “fly-by-feel” system could measure the aerodynamic forces directly on the aircraft

surfaces and use that information in a physics-based adaptive flight controls system to

increase maneuverability, safety and fuel efficiency. In this way, the wing would be able

to “feel”, “think” and “react” in real-time for increased performance through autonomous

control. Other advantages are also foreseen in [3], such as:

• structural complexity reduction by saving the efforts of large sensors installation;

• structural health monitoring through the embedded multi-functional sensor net-

work;

• extreme conditions investigation and prevention for flight safety improvement;

• autonomous flight control for real-time optimum decision-making;

• maintenance cost reduction and structural design optimization.

Microelectromechanical systems (MEMS) are a technology with the potential to en-

able dense micro sensing, and are widely found in literature. More specifically to fluid

dynamics, micro flow sensor arrays for AFC that try to meet such requirements are sur-

veyed in [1].

1.2 Thesis Statement 5

However, as mentioned previously, such dense sensor deployments are challenged by

the dynamics and complex nature of the data. Due to that, validations are usually done by

individually connecting each of the many sensors to multiplexed channels of an analog-

to-digital-converter (ADC), and data acquisition and analysis are limited to laboratory

controlled conditions, with off-line data processing [27, 28, 29].

In order to achieve AFC, actuation technology is also required. A promising actuator

technology that aims at doing that is the Synthetic Jet Actuator (SJA). SJAs run at key

positions on the wing and continuously energize the low pressure zone by blowing jets of

air into it. This action displaces the transition region towards the back of the wing, and

consequently reduces the overall friction [30]. The weakness of SJAs is to not use sensors

to detect and trace the turbulent flows and hence offer only open loop actuation. This

compromises the efficiency of AFC, leading to waste of energy resources when there is

no turbulent flow or when the turbulence lies outside the actuators’ control field.

Morphing wings are another potential actuating technology to enable AFC, as it al-

lows wings to actively change their shape in order to achieve efficient flight conditions.

However, none of the proposed solutions perform closed-loop actuation through dense

sensing [31]. Cattafesta and others survey these and other actuators for AFC [32].

The importance and challenges related to airflow sensing discussed, and the avail-

ability and low cost of computationally powerful COTS microcontrollers, have led us to

believe in the potential of a custom design network architecture. Following, we elaborate

the objectives of this research work and the proposed approach.

1.2 Thesis Statement

Considering the aforementioned requirements of AFC applications, we state our thesis as

following:

By associating low latency mesh grid communication networks, with computationally ca-

pable sensor nodes, it should be possible to sense a phenomena and perform in-network

distributed complex feature extraction in real-time. Such sensor networks should enable

dense deployments that fulfill the spatial and temporal granularity required by AFC ap-

plications, while keeping low spatial and temporal complexity, minimally influenced by

the large number of nodes on the network.

6 Introduction

N

(a) (b) (c)

Figure 1.3: Proposed XDense network: (a) A single node with four ports in the four

directions; (b) Example of a 5× 5 mesh grid network; (c) Deployment envisioned for

XDense.

1.3 System Requirements and Proposed Approach

Having introduced the application requirements and challenges, next we state the require-

ments of the sensor network targeted, which were considered while deciding on the sys-

tem architecture:

(a) Efficient data extraction: The network infrastructure should allow efficient extraction

of complex information about the phenomena. This should be done without the need

of centralized data collection or processing. The network should provide mechanisms

to allow distributed data exchange and processing for efficient feature extraction;

(b) Scalable infrastructure: The network infrastructure should allow scalability in terms

of nodes count and density of deployments. An increase in sensor count should have

minimal impact on the complexity of the architecture (spatial and temporal);

(c) Real-time behavior: Along with efficiency, the network infrastructure should also be

able to respond with timeliness, so that actions can be taken in real-time based on the

extracted data. Metrics such as end-to-end delay, response time, network load need

to be considered in the design;

(d) Plug-n-Play: The network should accommodate different kinds of sensors. The sys-

tem should also allow communication, data processing and high level data extraction

algorithms to be co-designed with the application’s requirements. Robustness and

cost should also be taken into account.

In order to fulfill such system requirements, a custom designed network seems to be

the most suitable solution. Therefore, we propose XDense: a sensor network tailored to

address the challenges of eXtremely Dense sensor deployments for real-time applications.

1.3 System Requirements and Proposed Approach 7

The network uses a 2-D mesh grid architecture where each node is connected with

four neighbors. Figure 1.3 shows (a) the XDense node and (b) network, along with the

(c) envisioned deployment for airflow monitoring.

In order to enable efficient data extraction of the observed phenomena, XDense takes

advantages of the mesh topology. That is, it exploits the available throughput and com-

putational power (that scales with the number of nodes on the network) to extract data of

interest, in real-time, without the need of collecting the data from each individual node

centrally. Furthermore, because the network is based on regular structures, it allows dense

and scalable sensor deployments.

The data of interest here are the airflow characteristics. More specifically, the feature

we want to detect is the transition region, which is (as stated before), the region of the wing

on which the airflow transits from laminar to turbulent regime. For this detection process,

we use distributed feature detection and extraction algorithms to localize the transition

region, by detecting the presence/absence of vortices that characterize turbulent/laminar

airflow.

To detect the transition region, XDense performs local data sharing and processing

operations in clusters of nodes before communicating pre-processed results to a central

node, which is connected to a gateway link. By reducing the number of transmissions

to a central node on the network (gateway), we achieve better network load distribution,

decreased congestion and improved response time.

XDense differs from other sensor network (SN) architectures that also use nodes clus-

tering with similar purposes. The main difference is that XDense was conceptualized and

designed specifically to maximize opportunities on distributed processing for demanding

real-time applications, keeping scalability and low system complexity as an important re-

quirement. We state the following main differences from traditional wired/wireless sensor

network approaches:

(a) Communication link: XDense uses point-to-point (P2P) links, which are not subject

to concurrency for shared media, and are very little susceptible to noise issues when

compared to shared buses and wireless star or multi-hop networks;

(b) Density: we consider a far more denser deployment scenario than traditional SNs (up

to hundreds of nodes per square meter);

(c) Power constraints: XDense nodes may share power supply and the impact of com-

munication on power is negligible, specially when compared to battery powered radio

links on wireless networks;

8 Introduction

(d) Communication rate: assuming wired links, rates are expected to be higher when

compared with wireless links.

XDense builds a SN that behaves as if it is a distributed many-core computation plat-

form, but programmed with specific sensing applications in mind. In a sense, it resembles

Network-on-Chip (NoC) architectures. This is especially true regarding aspects like net-

work topology (based on regular structures that compose mesh grids), routing schemes,

timing properties and distributed computing capabilities [33]. On the other hand, it also

differs from NoCs. The key differentiating aspects:

(a) The network is not on a single chip, but built on a larger surface that is physically

attached to the phenomena of interest;

(b) Node count is greater than that for typical NoC applications;

(c) Input data is locally generated at each node by its sensor (which imposes different

restrictions and opportunities);

(d) Distributed algorithms will have to be designed taking into account nodes location on

the network;

(e) NoCs are likely to have communication links with higher throughput (as they tend to

be parallel links), because of the lower cost of interconnecting nodes at such scales.

Moreover, the XDense topology is not limited to static layouts, protocols or applica-

tions. Quite the contrary, our design goal is to allow plug-n-play nodes and applications

for a diversity of deployment scenarios.

Figure 1.4: Tasks to be executed iteratively for the completeness of this research.

1.4 Methodology 9

1.4 Methodology

To realize XDense, we elaborate on the methodology of this work by identifying a set

of sub-tasks that should be executed in sequence in order to achieve our overall goal.

Figure 1.4 outlines that.

In summary, we define the application requirements, specify the network architecture,

protocols and its principles of operation. Having that defined, we enter into an iterative

co-design process in order to develop and refine the simulation, analytical and implemen-

tation models.

Each of these tasks are summarized individually in the following paragraphs, that

serves as an introduction to the next chapters in the thesis in which we address each of

these issues in details.

Requirements Definition

An in depth understanding of the airflow phenomena is required to determine the sensing

requirements in terms of magnitude, rate of change and granularity.

We do this with a detailed literature survey. We also survey the available network ar-

chitectures which are suitable to dense deployments of nodes, and the protocols utilized.

A special attention is given to 2-D mesh grid networks. Finally, we survey currently avail-

able dense sensing solutions, airflow sensing, visualization and feature detection methods.

Network Design

Taking into account the application requirements definition, we specify the network archi-

tecture. Its feasibility, performance and impact of different communication protocols, and

data processing techniques are studied. We ensure that the specified network architecture

and protocols are suitable to the hardware implementation.

Simulation Model

Having specified the network architecture and protocols, we develop a simulation model

to test and debug the protocols, measure the performance and identify the limitations of

the proposed network architecture. Our simulator also allows investigating distributed

processing algorithms for feature detection applied on fluid dynamics data.

The simulation model also serves as a validation tool for any feature conceived during

the development of the analytical model or hardware implementation.

10 Introduction

Analytical Model

In carrying out the analytical model of XDense, we provide time guarantees and bounds

on the resource utilization for real-time applications like AFC. The bounds provided are

crucial to correctly dimension the hardware implementation.

The resulting model is validated using the simulation model, and its feasibility is

demonstrated.

Hardware Implementation

We then implement and benchmark XDense nodes using different hardware in order to

identify the potential performance bottlenecks associated with each implementation.

To close the design loop, the benchmark data is feed into the simulation model, in

order to approximate the performance results from the simulation to the ones measured in

the hardware.

1.5 Thesis Structure

The reminder of this thesis is structured as follows: In Chapter 2 we discuss the differ-

ent technologies that inspired XDense, followed by a literature survey of dense sensor

networks and their limitations. In Chapter 3, we review the theoretical background and

state-of-the-art on techniques utilized for airflow features detection for AFC, as well as for

real-time communication networks. Chapters 2 and 3 correspond to Part I (Background)

of this Thesis. In Chapter 4, we detail the design of XDense by presenting its architecture,

protocols and principles of operation.

Following, in Chapter 5, we present the proposed simulation model along with results

from experiments with airflow feature extraction algorithms. In Chapter 6, we present

our analytical model and traffic shaping heuristics, that enables real-time communication

and provides memory bounds for XDense. We simulate various scenarios to evaluate the

performance resulting from the heuristics proposed. In Chapter 7 we present the hardware

implementation of XDense using commercial-of-the-shelf (COTS) hardware, along with

benchmark results for various implementation approaches. Chapters 4-7 correspond to

Part II (Proposed Novel Design: XDense) of this Thesis. Finally, in Chapter 8, we con-

clude this Thesis by providing a summary of the present research contributions and the

future research plan.

Part I

Background

11

Chapter 2

Applications and Technology Enablers

2.1 Introduction

XDense is a sensor network inspired by modern networking and sensing technologies,

which have demonstrated feasibility, benefits and performance. In this chapter we review

these technologies, which, in different contexts, partially deal with the challenges that

XDense tries to address.

We review 2-D mesh networks used on many-core processors and discuss their net-

work topology, routing protocols, communication protocols, how they relate to XDense

and how XDense can potentially benefit from some techniques used on such networks.

We then review sensor specifically designed for airflow sensing, the networks that try to

interconnect dense deployments of such sensors and their limitations. We then review

some general purpose dense sensor networks that try to address the challenges related to

dense sensing.

2.2 Related Network Architectures

2.2.1 Computation Arrays

Array Processors ware probably the first attempt to have a dense interconnect of comput-

ing elements. They were proposed in early 80’s [34] and are widely found in literature.

In order to interconnect a large amount of computing nodes, different interconnection

architectures have been utilized, either application tailored or for general purpose com-

puting. In general, simple processing elements are set in an array, and more complex

processing operations are done using pipelined computation; that is, input data enters

through one extreme of the array from a host interface bus, and the result of the compu-

13

14 Applications and Technology Enablers

tation is delivered at the opposite extreme of the array. At each node traversed, simple

computations are done by each node, until the final result is computed at the end of the

array, where the result is collected.

The XDense network architecture resembles array processors regarding the large num-

ber of processing elements (nodes), and the distributed processing capabilities that we

provide. This kind of architecture has the advantage of its modularity given by its con-

struction based on regular structures. This leads to high performance, low cost and scal-

able systems.

A practical example of array processors arrays is provided in [35]. The authors pro-

pose grids of processors that use very large system integration (VLSI) technology to per-

form relational database operations directly in hardware. Each processing element was

suited to compare tuples of data, then combined to perform complex database operations.

Another example of a computation array is the Geometric-Arithmetic Parallel Proces-

sor (GAPP). It is a processor with over 10,000 processing elements [36], in which each

element can only perform simple processing such as one bit sum. They are interconnected

to their nearest orthogonal neighbors to form a grid array such that it can perform matrix

operations for image processing. It was used in military applications for tracking moving

targets in real-time. It has proven performance thanks to pipelined computation.

The drawback of computational arrays is usually associated with the specificity of its

architecture that requires custom solutions to address each specific problem. Therefore,

computational arrays are not a good solution for general purpose computing, and were

rapidly substituted by more modern and general purpose oriented architectures.

2.2.2 Many-core Systems and Networks on Chip

Since computation arrays were first proposed, the individual processing elements evolved

and became highly complex, to become what is now called multi-core and many-core

computing systems. The sharp increase in the number of cores, with much greater com-

puting power within a single chip, lead to various new opportunities and challenges. One

of the major challenges is related to the interconnection of cores, since their input/output

capacity increased proportionally to their computing capacity.

Interconnecting multiple cores using shared buses is a common approach utilized to

connect multiple cores with each other and with peripherals inside a chip. This is a suit-

able approach specially in cases where the data traffic is still low. For example, the AMBA

bus by ARM [37] uses time division multiplexed (TDM) buses, and define a multilevel

bus with a system bus and a lower-level peripheral bus for exchanging data with different

purposes with different priorities. It was designed for custom silicon, to provide standard

2.2 Related Network Architectures 15

bus protocols for connecting on-chip intellectual property (IP) components and custom

logic. These bus protocols are independent of the processor and are generalized for sys-

tems on chip.

Even though shared buses offer good performance and timing predictability for multi-

core systems, throughput is limited and do not scale with the increase of the number of

nodes (cores and/or peripherals). Having multiple cores communicating though a shared

bus can result in substantial increases in access time by each core due to concurrency

and contention issues [38]. This simple fact imposes a reduced network performance

as the nodes count increases. This is a limiting factor of shared buses, as it decreases

opportunities on distributed data processing on systems with many nodes [38].

Core 1 Core 2 Core 3 Core 4

Shared Memory

Traditional multi-core architecture

(a)

Tile 1x1

Shared Memory

Many-core architecture

Tile 2x1 Tile Nx1

Tile Nx2Tile 2x2Tile 1x2

Core

Cache

Router

(b)

Figure 2.1: (a) Multi-core vs. (b) many-core systems.

Due to the limitations imposed by shared buses, such design paradigms had to be

shifted towards more scalable interconnection schemes, which gave rise to NoCs [39],

that aim at interconnecting even more numerous cores inside a chip and enable many-core

processor architectures. Figure 2.1 compares both interconnections using (a) a shared bus

and (b) a mesh network to interconnect many-cores.

For scalability issues and to keep low cost, many-core processors tend to use many

of the same processing nodes, which form regular structures interconnected by the NoC.

Each node is composed, for example, of a processor core, a private cache subsystem and a

network switch. Each node is connected to its four neighboring nodes located in the four

cardinal directions, thereby forming a 2D-mesh. The NoC provides a communication

channel among the cores and other off-chip subsystems, for example a shared memory, in

a multi-hop fashion. Figure 2.1(b) shows a typical NoC architecture.

Such many-core systems offer enhanced computational capabilities as compared to

traditional multi-core platforms, as discussed in [38]. To list some: distributed processing

capabilities; dynamic load balancing for reduced bottlenecks; fault tolerance; low power

consumption.

16 Applications and Technology Enablers

Many-core processors are now becoming commercially available, as for example the

Epiphany processor [40, 41]. It features up to 64 processors on a single chip connected

through a high-bandwidth on-chip 2-D mesh NoC. Its NoC was designed to interconnect

up to 4096 cores in a multi-chip arrangement. Each Epiphany core includes a small high

performance floating-point RISC processor, a high bandwidth local memory system, and a

set of builtin hardware features for networking. A distributed shared memory space allows

the multiple cores to access their own, or neighbors data, trough load/store instructions

using DMA. The Tile64 from Tilera, which is a 64 core processor [42], and the 48-core

Single-Chip-Cloud computer [43] are just a couple of other examples of such many-core

architectures.

XDense presents similarities with NoCs regarding the architecture and distributed pro-

cessing capabilities, except that it is not confined into a single chip. This leads to differ-

ent challenges regarding node’s interconnection. That is because the physical distance

between XDense’s nodes are much higher when compared to the many-cores, prevent-

ing sensors nodes to be connected by wide, high bandwidth parallel links (as in NoCs).

Instead, serial links tend to be more appropriate to interconnect XDense nodes (as com-

monly used in mid to long-range links). These issues lead us to further investigate possible

alternatives.

Routing Protocols

Due to the limitations imposed by the serial links used by XDense, it is important to

use the limited communication resources efficiently. This makes it important to correctly

define routing and communication protocols to achieve low latency with low resource

utilization. The choice of the algorithms can impact in memory requirements, power con-

sumption, traffic utilization, performance, scalability, among others aspects. To choose

the right algorithms, we analyze the trade-off between different available implementa-

tions approaches considering different aspects.

Routing algorithms can be classified as either static or dynamic. Static routing uses

fixed paths for transferring data between two nodes in the NoC. Routers do not take into

account the load on the network, neither avoid congested paths while taking routing de-

cisions. Static routing algorithms are easy to implement and demand less hardware re-

sources. Some of the most common static routing algorithms available are: XY routing,

including X-first, Y-first and other variants [44]; pseudo-adaptive XY [44]; surrounding

XY [45]; turn model (west-first, north-last, negative-first) [46]; ALOAS [47]; topology

adaptive [48]. In [49] the authors survey many of the available static routing algorithms.

2.2 Related Network Architectures 17

With dynamic routing, routing decisions are taken on-the-fly, according to the actual

load on the network and availability of links. Because of that, different paths between

two nodes can be taken, depending on the network state. In general, dynamic routing

allows a more balanced and better use of the network resources, with the cost of non-

determinism and overhead, which is added by the resource monitoring activities. There

are many dynamic routing algorithms available, such as: minimal adaptive [50]; fully

adaptive [50]; congestion look-ahead [51]; turnaround–turnback [52]; turnback when pos-

sible [53]; IVAL [53]; 2TURN [53]; odd–even [54]; and hot potato routing [55]. In [56]

the authors survey these and other examples of dynamic routing algorithms available.

However, because of their constrained memory resources, most NoCs (including the

ones mentioned in Section 2.2.2) use deterministic routing algorithms. Deterministic rout-

ing algorithms are also deadlock and livelock free [33], what make them suitable for real-

time systems.

Communication Protocols

Communications protocols are also a significant aspect to consider in order to achieve a

network with increased bandwidth, better resource utilization, better load balance, real-

time behavior and good overall performance [39]. The trade-off between performance,

power consumption and predictability has to be taken into account before the specification

of a communication protocol.

Communication protocols have been extensively studied by numerous researchers. In

general, implementations are specific to the network architecture, while trying to fulfill

common application requirements, such as minimum bandwidth, real-time behavior or

any other service guarantees, power consumption, cost, among others. In the following

paragraphs, we review communication protocols which were taken into account while

designing XDense.

A connection oriented communication protocol for NoCs, named SoCBus, was in-

troduced in [57]. The authors introduce the concept of packet connected circuit, where

a packet is routed through the network establishing a circuit as it travels. Their contri-

bution cover the physical, link, network and transport layers mainly. Once the circuit is

established, circuit switched networks enable low latency communication, minimally in-

fluenced by the distance of the two nodes communicating; latency is mainly dependent on

contentions that may occur while setting up the circuit. Data is also guaranteed to arrive

in the same order it was sent. However, the authors show that SoCBus is not suitable for

general purpose computation platforms with random traffic patterns, because of the high

probability of route blocking due to contention caused by already existing circuits. Long

18 Applications and Technology Enablers

distance circuits limit the maximum number of connections, saturating the network and

decreasing the bandwidth maximum usage.

The wormhole protocol [58] is also widely applied on NoC-based many-cores. That is

specially due to its good throughput and small buffering requirements. For its operations,

a packet is divided into a number of parts called flits (flow control digits) for its transmis-

sion. Each flit has the size of the channel width, which transfers one flit at the time, in

a single transaction, between two adjacent routers. Consecutive flits are pipelined after

the header-flit (which governs the route) to form what is called a virtual channel. If along

the way, a channel is found busy, the flow is blocked until the channel becomes avail-

able. During this period, all the flits are blocked through a process called back pressure,

each at its corresponding channel. If the transmission is completed successfully, channels

are released as the tail-flit passes through each channel. It is widely used in NoC-based

many-cores due to its low latency, which is relatively insensitive to path length, and due

to its reduced buffering (memory) requirements.

In [59] the authors proposed AEtheral. It is a complete architecture and implementa-

tion of a NoC, with guaranteed services such as uncorrupted, lossless ordered data deliv-

ery with guaranteed throughput and bounded latency. For services guarantees, they use

resource reservation for the worst case, but also provide best-effort services to exploit

the unused NoC capacity. Guaranteed services serve critical real-time applications traffic,

while best-effort serve non-critical applications traffic.

The authors use contention-free routing, or pipelined time-division-multiplexed cir-

cuit switching, to provide such guarantees; both requiring the reservation of wires and

buffers, in order to accomplish the guaranteed services. Nodes have to be synchronous,

and each node uses a slot table to determine how to forward blocks of data arriving at

one of the N ports and departing from one of the N− 1 ports. The latency that a block

incurs in every router it passes, is equal to the duration of a slot, and for guaranteeing

bandwidth, multiple slots are reserved for multiple blocks transmissions. With this, there

is no contention, because there is at most one input per output for each time slot, and the

blocks can contain data only, improving the NoC efficiency.

Building the slots table is an optimization problem, which is done offline when de-

signing specific applications. The resulting slot assignments are then programmed at

runtime. However, if the connection requirements are only known at runtime, the design

should use a distributed algorithm for randomly picking slots, or some other centralized

algorithm, assuming limited runtime computational resources. Best-effort services uses

conventional wormhole-routing. The packet header contains the path from the source to

the destination.

2.2 Related Network Architectures 19

Figure 2.2: Epiphany processor internals. It shows 64 cores interconnected by a mesh grid

NoC. Each node on the network consists of a router, CPU, Memory and communication

framework.

2.2.3 Study Case: The Epiphany Processor

From the reviewed literature, the Epiphany NoC presents the most similar network archi-

tecture and protocols to the ones of XDense. Thus, we review its architecture routing and

communication protocols closely, in order to substantiate the design decisions taken for

XDense.

The Epiphany NoC consists of three independent 2-D mesh grid networks. Each of

the three networks interconnect each node with their four immediate neighbors with a

full duplex connection. Each node’s router serve packets using a per-direction round

robin arbiter, whereas each communication port has a single stage first-in-firs-out (FIFO)

queues. Figure 2.2 shows the epiphany processor internals.

The network is packet switched, and packets are transmitted or forwarded in a single

clock cycle, meaning that a single cycle latency is added per node as the packet travels.

The network links supports up to 64 bits of data and 32 bits of address, per transmission

and per cycle.

Each of the three meshes have different purposes: (i) Requests for data; (ii) carry data

on-chip and (iii) carry data off-chip.

This architecture favors writes over reads, since reading a foreign address consists

of sending a read request and waiting for the answer to arrive with the data requested.

Writes, on the other hand, allow the node to send the data and continue processing while

the data moves towards its destination (without busy waiting for any reply).

20 Applications and Technology Enablers

The two separate networks used for writing data are meant to decouple off-chip and

on-chip communication. The intention of the designers was to make it possible to write

on-chip applications that have deterministic execution times regardless of the types of ap-

plications running on neighboring nodes. From the application angle, the off-chip traffic

is indistinguishable from on-chip one; apart from its lower bandwidth and higher latency.

The Epiphany NoC uses X-first static routing based on an absolute addressing system,

that specifies an static global address to each memory address at each node. It is a dead-

lock free routing algorithm that works as follows. At every hop, the router compares its

own address with the destination address. If the row addresses are not equal, the packet

is routed to the east or west; once it reaches the correct row, but if the column addresses

are still not equal, the packet gets routed to the north or south. When both column and

row addresses match, the packet gets routed into the node. When multicasting, a different

routing algorithm is used. In this case, the data is sent radially outwards from the trans-

mitting node. Receiving nodes compare the destination addresses with their own, and

in case it matches, the packet gets routed into the node. This feature allows writing to

multiple nodes using a single transmission.

The off-chip write mesh network allows the NoC to expand among multiple chips

through what they call eLink IO interface (see Figure 2.2), allowing it to scale to very

large arrays; limited only by the address space. A 32-bit Epiphany architecture can scale

up to 4,096 processors while a 64-bit architecture could scale up to 18 billion processing

elements within a unified shared memory system.

To design the Epiphany NoC, the authors considered a number trade-offs while taking

design decisions. We list the main ones regarding the topology, the switching mechanism,

the routing algorithms and the flow control techniques:

• The 2-D mesh network topology was selected because of its simplicity, imple-

mentable on low complexity planar standard CMOS fabrication processes. Other

topologies were considered by the authors, such as Torus wraparound, Butterfly

and CLOS [60], but ruled out because of their complex circuitry and big footprint

as they would have required twice as many wires per cross-section;

• Because 2-D mesh is a well studied topology, many numerical methods and signal

processing algorithms have already been ported to (and can benefit from) processors

based on this kind of NoCs;

• Packet switching with a global addressing scheme was chosen instead of a circuit

switching, in order to provide implementation flexibility. For it to work, the com-

plete destination address has to be transmitted at every transaction. This decision

2.3 Dense Deployments of Sensors 21

may sound counter-intuitive, but in this way, the hardware implementation resulted

simpler, what justifies the cost of the extra address bits;1

• Flow control uses extra pins to perform back-pressure to signal congestion on the

route, to ensure that there are no packet drops. Protocols for QoS are not provided

by the authors, and with the current architecture it is not possible to provide guar-

antees for real-time applications;

XDense has a lot in common with the Epiphany NoC, including the aforementioned

design considerations. Specially concerning the 2-D mesh network topology and the

packet switched communication protocols. The actual design differences result mainly

as consequence of the difference in magnitude of the nodes and the resulting cost of in-

terconnection. These differences are mainly the following:

• We use a single mesh, while compared to the three meshes used by Epiphany;

• We use serial full-duplex serial links to interconnect nodes (instead of wide parallel

ones);

• Our nodes are connected to sensors that produce data locally;

• We provide more options of routing algorithms, which can be selected at run time;

• Our nodes are based on microcontrollers with much more per-node resources, in-

cluding memory and processing power;

• Because we have reduced pin-count per node’s microcontrollers, we do not use

extra pins for flow control (what would imply an unacceptable added costs).

2.3 Dense Deployments of Sensors

2.3.1 Airflow Sensing

Passive Airflow Sensors

As previously discussed in the Introduction, a common goal in fluid dynamics is to per-

form active flow control on aircraft’s fuselage in order to reduce the turbulent airflow

and, consequently, drag forces, noise and energy waste [27, 23]. That is, an increase in

1That is because, at the on-chip scale, the relative cost of wires, drivers and registers are orders of

magnitude lower as compared to larger scale systems (on board, off board and Ethernet connections for

example).

22 Applications and Technology Enablers

(a) (b)

Figure 2.3: (a) A linear array of forty of the same MEMS sensors mounted on a polymer

foil; (b) pressure sensor diaphragm and a hot-wire MEMS sensors on top of an Euro cent

coin; (Figures taken from [2]).

the flight efficiency is desirable, and different opportunities to minimize turbulence with

MEMS devices have been proposed [61]. Sensor [1] and actuators [32] have been actively

researched, and had promising advances towards the realization of active flow control; al-

though we focus mainly on the sensing part.

Among other requirements, sensors need to be easy to install, be non-invasive with

respect to the observed phenomena, and mainly, be able to detect and estimate the flow

state near the surface it is installed. To measure the flow state, sensors have to be able

to directly or indirectly measure the flow properties, such as its pressure and shear stress

distribution.

The main methods to measure shear stress are categorized as thermal, mechanical and

optical. Thermal micro hot-wire shear stress sensor has been studied from the early stages

of MEMS technologies [2]. In simple terms, it consists of indirectly measuring the shear

stress by measuring the heat loss on a hot wire exposed to the airflow. For that, a control

circuit keeps either the temperature, current or voltage across the hot wire at a constant

value, and by means of measuring the variation on the current, voltage or temperature (the

non-fixed variable) of the hot-wire, it is possible to indirectly measure the shear stress.

Good results were achieved with this kind of sensors, specially on their miniaturiza-

tion and on-chip integration. In [2], for example, a MEMS sensor chip that combines a

hot-wire flow sensor with a pressure sensor is presented. An array with forty sensors was

obtained in an area of 70×70mm2, with a sensor spacing of 1.5mm.

However, hot-wire sensors are limited by mainly two reasons: (i) the heat loss to the

substrate can lead to wrong measurements; and (ii) it is impossible to measure the flow

direction (and consequently the vortices orientation) with a single hot-wire.

2.3 Dense Deployments of Sensors 23

In the same context, two consecutive European projects (called AeroMEMS and AeroMEMS

II), aimed at engineering the integration and cost/benefit assessments of AFC using MEMS

technology applied to improve the performance of wings, engine nacelles and turbo-

machinery components. Prototype MEMS flow sensors and actuators were developed

under the scope of those projects.

To address these limitations, in [29], the authors present a double hot-wire sensors

which they called hybrid AeroMEMS sensor array. It is a combination of a flexible printed

circuit board and a number of double and single hot-wire MEMS sensors with different

setups. Each sensor features an area of 800×600µm2. As an improvement over the single

hot-wire mentioned previously, the doubled sensor allows measuring the flow direction.

Tests were made in a wind tunnel demonstrating its applicability in determining flow

speed and directions, showing efficacy on determining the flow characteristics. It also

presented improved frequency responses thanks to numerical optimizations done during

the design phase.

In the same project context, with a different approach, in [62] the authors described

how they designed a high-resolution AeroMEMS sensor array for pressure distribution

measurement. The sensor cell is composed by a diaphragm with a piezoresistor located

on the edges of it. Measurements are taken indirectly, by measuring the longitudinal and

transversal piezoresistance. A 2.5×4.5×0.3 mm3 chip was obtained. The sensing element

consists of a a 900×900 µm2 diaphragm with the appropriate sensitivity and frequency

response of up to 160kHz. An array of 13 sensors was mounted on cylinder in a wind

tunnel in order to compare the measurements with the theoretical expected values. It

resulted in a fully functional and reliable sensor.

In [27] the same authors presented a sensor array for transient wall pressure and wall

shear stress measurements. They deployed 154 sensors over the surface of a cylinder,

in order to obtain extensive data about the wall pressure distribution and pressure fluc-

tuations as well as transient pressure data on its surface. The sensor array is shown in

Figure 2.3(a).

Previously, the same authors compared two designs, with two sensors each, in a

2x3 mm2 chip area. They combined a piezoresistive pressure sensor with a diode for

temperature measurement [63] or with an on-chip wall hot-wire for wall shear stress mea-

surement [64]. The sensor chip described is shown in Figure 2.3(b).

In [65] the authors have developed another kind of shear stress MEMS sensor. It

consists of a micro fence 300 µm high and 5 mm long, equipped with piezoresistors that

stick in one of the fence sides. As the fence bends with the pressure due to the airflow,

the resistance in the piezoresistor changes proportionally. It provides high resolution on

measuring the shear stress, and its temporal resolution is up to 1 kHz.

24 Applications and Technology Enablers

Figure 2.4: Schematic representation of an aircraft concept with a multi-modal sensor

networks embedded inside the composite structural components to enable “fly-by-feel”

(Figure taken from [3]

).

With a similar approach, in [66] and [67] the authors proposed micro-pillar MEMS

sensor using doped-silicon piezoresistive strain gauges and an epoxy pillar for the wall

shear stress measurement. Inspired by the hair cell or the lateral line of a fish, it consists

of a micro pillar that bends in the direction of the flow, proportionally to the pressure

imposed. The authors reported that water flows as low as 1 mm/s can be measured with

their sensor.

In all the above solutions, to be tested, sensors are wired individually to analog-to-

digital converters, which limits their use to laboratory conditions due to the complex setup

requirements. To the best of our knowledge, despite the immense effort towards sensor

development, no interconnection solutions is proposed.

Inspired by bird’s feathers that can feel surrounding aerodynamic forces, NASA pro-

posed a design concept called “fly-by-feel” for next generation aircrafts [26]. The basic

concept is to equip aircraft’s wing with a self sensing capability. This is an effort towards

providing integrated sensing solutions for wings by enabling dense sensor networks for

AFC. Figure 2.4 illustrates this concept.

Towards enabling “fly-by-feel”, in [3] a novel approach was given to the problem.

The authors introduced what they called self-sensing intelligent composite materials with

state-sensing capabilities. Their objective was to develop aerospace intelligent structures

that can sense the environmental conditions and their own structural state, and effectively

interpret the sensed data to achieve real-time state awareness.

2.3 Dense Deployments of Sensors 25

To enable that, sensor networks were designed to be embedded in the composite wing

in order to provide it with sensing capabilities. Piezoelectric sensors were used to sense

the vibration of the wing in order to identify the coupled airflow-structural dynamics,

while strain gauges are used to determine the strain distribution of the wing and identify

potential critical areas for the considered operating conditions. Stochastic signal process-

ing and identification techniques are employed in order to accurately interpret the sensing

data and assess the actual structural state.

The experimental evaluation and assessment of the intelligent composite wing is demon-

strated via wind tunnel experiments for the identification of the airflow dynamics and in-

vestigation of the wing strain distribution. The authors successfully integrated the sensor

network within the composite material of the wing. The results demonstrate as well the

effectiveness of the data interpretation algorithms. More recently, in [68], the authors

proposes data processing algorithms that use neuronal networks to identify the flight state

in real-time. The authors believe that this research may enable new perspectives in devel-

oping intelligent self-awareness capabilities for the next generation of smart wings.

Despite the excellent results provided by the “fly-by-feel” initiative, the solutions pre-

sented rely on X-Y scanners2 to read each sensing element individually. This approach

presents similar limiting factors as pointed out earlier, which are mainly the following:

it’s fixed topology and read-out scheme, limits the network to the maximum sampling

rate provided by the read-out circuitry, which do not provide opportunities for in-network

data processing and complex feature extraction.

Active Airflow Sensors

Using a network to interconnect the sensors, in [70] and [71] the authors propose a human-

like flexible array composed of numerous MEMS sensors capable of detecting multiple

stimuli. To deal with the vast amount of data produced by the stretchable network of

sensors, local processors are integrated into the network to perform local data processing.

The network uses local processors to collect and process data from a small set of nodes

around it, and a global processor to collect the data from the local processors, process it,

and take decisions based on the collected data. Even though a multi-stage data acquisition

scheme is used with local data pre-processing, the network topology and the way nodes

are grouped is fixed.

A commercial solution for airflow sensing on airplanes is called Pressure Belt [72]. It

consists of a strip of sensors mounted crosswise on the wing of an aircraft, with up to 254

2X-Y scanners are commonly used to scan matrix of sensing elements, as the ones widely used on

multi-touch screens of tablets and cellphones [69].

26 Applications and Technology Enablers

sensors nodes. In one end, a coordinator sample and log the data from the nodes on an

external data-logger situated inside the airplane. The network uses a full-duplex RS485

shared bus to interconnect nodes, and can communicate at up to 5 Mbps with packets

of 48 bits each. The coordinator uses a clock synchronization scheme and time division

multiple access (TDMA) for sampling the other nodes on the network.

Both the above approaches use active sensor, with integrated processors which are

connected in a network. Despite that, because the network is based on shared buses, it

does not provide opportunities to execute more elaborate algorithms for distributed data

processing and feature extraction.

2.3.2 Other Dense Deployments of Sensor and Actuators

General Purpose Dense Sensor Networks

Not directly related to airflow sensing and AFC, different general purpose sensor networks

have been proposed to address the challenges related to dense sensing.

A multi-modal sensor network with up to hundreds of sensors per square meter was

proposed in [15]. The authors present a sensor network in which sensor nodes are based

on microcontrollers. Nodes communicate using an infrared transceiver, which can send

and receive data from its surrounding neighbors. One full-duplex serial port is used for

its wireless link. The authors propose solutions for data management, localization, data

aggregation and routing. Extensive experiments of their platform is presented in [73].

However, due to the wireless nature of the links (infrared), contentions and collisions

substantially increase the cost of communication. Their research leans more towards

wireless sensor networks whose performance does not suit the application scenarios we

focus on.

Other researchers have extended this concept, and have proposed some alternative

topologies in [74]. The network is based on a wired grid, master-slave communication

scheme, which decreases the distributed processing opportunities due to shared links.

The number of nodes on the network is also limited, therefore, it is not scalable.

Instead of wireless links, in [75], the authors use wired links to deploy a few sensors

in a grid network, to act as an electronic skin. Even though nodes are deployed in a

matrix, they are still interconnected using shared buses. More recently, the authors of [76]

presented a modular dense sensor network in a form factor of a tape, tailored to wearables.

Master-slave buses are used to interconnect nodes (through SPI or I2C [77]), regardless

of the shape of the network.

Not only shared buses drastically decrease the opportunity for distributed processing

due to their finite bandwidth that does not scale along with the number of nodes, but

2.3 Dense Deployments of Sensors 27

they also constraint the number of nodes due to the limited address space and the related

electrical limitations. They are therefore not a scalable solution.

Tactile skins

Electronic skins, or e-skins, are inspired by biological skins. These are multi-functional

structures of great interest for robots and medical prostheses, in which sensors and actua-

tors are closely integrated with microelectronic circuits. They should be flexible, stretch-

able, and robust devices that are compatible with large-area implementations and inte-

grated with multiple functionalities. It represents a new kind of integrated electronics

with a large area and flexibility ranging from electronic muscles [78] and textiles [79].

A survey of current available e-skins is provided in [80]. Authors comment on various

different approaches, from organic stretchable electronics, optical capillary sensors and

passive smart materials, including arrays of actuators. For example, a conceptual hard-

ware architecture of skin-like circuits is presented in [79]. An elastomeric skin carries

rigid islands on which active subcircuits are made. The subcircuit islands are intercon-

nected by stretchable metalization by using stretchable conductors.

In [81] the authors designed a conformable tactile sensor skin. The skin is organized

as a network of self-contained modules consisting of tiny pressure-sensitive elements that

communicate through a serial bus. Another e-skin solution was presented in [82]. It

consists of a stretchable active matrix sheet of sensors that can be stretched by 70% with-

out mechanical or electrical damage. The elastic conductor allows for the construction of

electronic integrated circuits, which can be mounted anywhere, including arbitrary curved

surfaces and movable parts, such as the joints of a robot’s arm.

The most common strategy for device readout is direct addressing, in which each de-

vice is contacted by a separate connection. Good temporal resolution can be achieved

with this method, but large arrays quickly lead to an unmanageable number of connec-

tions. X-Y scanners is one of the direct readout strategies. It consists of two sets of

parallel electrodes with the sensing elements located at the crossing points of perpendic-

ular electrodes. Appropriate readout mechanisms allow reading as large matrix, with the

disadvantage of slow readout speeds.

It is important to mention that, despite the vast number of innovative designs, most

authors emphasis has been on the sensors and on the mechanical challenges related, and

the read-out system has largely being ignored. This is pointed out by [83], where au-

thors shows that there are only a few tactile sensing arrays with any kind of mixed mode

(analog and digital), or simply electronic circuitry on chip with sensors. Very few of the

reviewed work even mentions any of the constraints and challenges posed by the system,

28 Applications and Technology Enablers

Figure 2.5: (a-b) Different interconnection schemes of electrodes of a brain implantable

stimulator and (c) the interconnections limitations faced as the number of electrodes scale.

(Figure taken from [4]).

like the embedded electronics, computing of the data, interconnection schemes, network-

ing, wiring, power consumption, robustness, manufacturability, and maintainability.

Biomedical Devices

Electronic biomedical devices are broadly used in medical applications with different pur-

poses. In many cases, arrays of MEMS devices are desirable for sensing and/or actuating

withing the human body. For example, implantable arrays of electrodes are used to sense

electrical signals from different parts of the brain, or to stimulate muscles artificially.

For example, in [84] the authors present two implantable electronic devices meant to

provide artificial vision in blind patients. It is composed of a retinal prosthesis, and a

brain-implantable stimulator. In simple terms, the retinal prosthesis works like a low res-

olution camera, that sends the sensed signals to the brain stimulator, that in turn provides

the visual information to the brain using electrical stimuli.

The stimulator is a MEMS device with an array of electronically controlled actuating

electrodes, in order to build a high resolution stimulator, with numerous stimulus elec-

trodes. According to the author, the stimulators should ideally count with more than 1000

electrodes to enable good quality artificial vision. In [4], in attempting to fulfill these re-

quirements, the authors use multiple shared buses in a tree scheme in order to interconnect

many electrodes to a main controller. Figure 2.5 shows the different schemes utilized.

More recently, a fully intraocular CMOS prosthesis with 512 channels was presented

in [85]. It is a stimulator with 16 shared buses, with 32 stimulators individually address-

able per bus. One central logical controller, which is connected to outside the network,

controls each stimulator by writing to its communication interface.

2.4 Summary 29

In a slightly different context, electroencephalogram (ECG) is the recording of the

electrical activity along the scalp, which can be seen as a signature of the brain activity,

and can be used to quantify and diagnose humans health among others. This is another

application example of the biomedical field that might require hundreds of sensing ele-

ments. In [86] the authors comment on different ECG techniques, and on the need for

complex signal processing techniques. In [11], the authors compare works with different

number of electrodes, and recommends at least 125 channels for reliable results. Such

density of electrodes leads to challenging setups due to wiring (small) sensors individu-

ally to each channel, which can be challenging. It is prone to installation issues, and does

not provide opportunities on real-time distributed processing, but only off-line analysis.

These examples of biomedical devices turn out to have the same scalability issues as

seen in various use cases surveyed.

2.4 Summary

In this chapter we reviewed networking and sensing technologies which inspired and mo-

tivated XDense. We also review the different typologies, routing and communication

protocols used by common NoCs, which is the network solution that most resembles

XDense. We analysed in more details the Epiphnay processor due to its similarities with

XDense. We also identified the differences and the limitations.

We also reviewed some available air-flow sensing technology, and their current limi-

tations. We review general propose arrays of sensors and actuator that try to address the

challenges of dense sensing within different application contexts. From the analyzed so-

lutions, its clear that the interconnections issues have been largely ignored, since most of

the research focuses only on the sensing elements and the mechanical aspects.

Chapter 3

Survey of Distributed Data Processing

Techniques for Dense Sensing

3.1 Introduction

Having reviewed network architectures and a broad range of sensor and sensor networks,

in this chapter we survey the techniques and methodologies utilized to endow XDense

with distributed feature detection capabilities, and real-time communication capabilities.

We start by reviewing distributed data processing algorithms that allow detecting and

extracting features of interest from raw data, both in the field of sensor networks as well as

in the context of many-core processors with NoCs. We want to understand how distributed

algorithms from both areas intersect, as we believe the most suitable strategies for XDense

to reside exactly in this intersection.

Enabling feature detection and extraction by distributed processing is not sufficient.

We have to provide time guarantees, as we target closed-loop applications like AFC, with

real-time requirements, where timeliness is fundamental. We review different approaches

that provide real-time guarantees for NoCs with similar network topologies to XDense,

aiming at finding the approach that best meets the requirements of XDense.

3.2 Feature Detection and Extraction

3.2.1 Using Many-core Processors

Due to the similarity between the topology of XDense and some many-core architectures

(as presented in Chapter 2), it is important for us to understand how some distributed

processing algorithms perform on many-core processors, and how they benefit from each

31

32 Survey of Distributed Data Processing Techniques for Dense Sensing

architecture specifically. Our interests are specially on image processing algorithms, that

have a lot in common with the algorithms we want to use with XDense. These similarities

regard mainly the underlying objective of feature detection, that is a common goal.

Extraction and matching of 2-D features in image and video is important in many com-

puter vision tasks like object detection, recognition, structure from motion and augmented

reality. Many computer vision and image processing algorithms map well into distributed

processing models and have high inherent parallelism. Image processing tasks, which can

process multiple pixels independently (for example convolution) can be performed very

fast by fragment programs (computation kernels) by exploiting parallelism [87].

For example, in [88] the authors benchmark some feature tracking and feature extrac-

tion algorithms that run on graphic processing units (GPUs), suitable for video analysis

in real-time vision systems. A GPU-based feature tracking algorithm called KLT [89],

tracks about a thousand features in real-time at 30 Hz on 1,024 × 768 resolution video,

which represents a 20 fold improvement over a quad core central processing unit (CPU).

Another GPU-based feature extraction algorithms called SIFT [90], extracts about 800

features from 640 × 480 video at 10 Hz which is approximately 10 times faster than an

optimized CPU implementation. Both KLT and SIFT have been used for a wide range of

computer vision tasks ranging from structure from motion, robot navigation, augmented

reality to face recognition, object detection and video data-mining with quite promising

results.

In addition to GPUs, other many-core architectures can also provide great levels of

parallelization. For example, the 2-D network topology of the Epiphany processor is

appropriate for tasks in which the data may be decomposed into two dimensions. This

property favors many image processing kernels, that have a natural 2-D domain decom-

position whereas inter-process communication occurs among neighboring processes at

neighboring cores within the 2-D computational domain [41].

In [91] the authors benchmark the performance of the Epiphany chip running different

image processing kernels. More specifically, they show that image processing algorithms

can benefit of this property, such as the 2-D Fast Fourier Transform (FFT) with high-

pass filter for edge detection; Gaussian blur, used for image noise reduction, and a Sobel

filter, used for edge detection. Gaussian filters are often used as part of larger image

processing tasks that rely on inter-core communication for sharing image edges between

neighboring cores. The Epiphany architecture can perform basic 2-D arranged operations,

like a Gaussian filter or the Sobel operator with remarkable efficiency.

To parallelize tasks using the Epiphany processor, the authors use a lightweight im-

plementation of the message passing interface (MPI) programming model to perform 2-D

3.2 Feature Detection and Extraction 33

arranged operations efficiently. However, due to the limited memory resources at each

core, algorithms must be re-designed for lower and more efficient memory utilization.

Despite the similarities between the Epiphany and the XDense architecture, the mem-

ory and computing power available in a XDense node is much higher since each node

is a complete system on chip with much larger memory and CPU capacity. In the other

hand, the parallel links that interconnect the cores of the epiphany chip have much higher

throughput when compared to serial links. This settles different challenges and opportu-

nities.

The Tile64 many-core processor also shares similarities with the XDense regarding

its network architecture. In [92], the authors evaluate its capacity to perform real-time

feature detection using its distributed processing power. Specifically, they provide strate-

gies for parallelizing algorithms for hazard detection and avoidance for an autonomous

vehicle. The hazard detection algorithm constructs a topographic map of the area using

light detection and ranging (LIDAR) sensing data, to then generate estimates of surface

slope, roughness and potential hazards. Given the detected hazards, the hazard avoidance

software generates a map that encodes the distance to the nearest hazard at each pixel in

the map.

Because of the in-place nature of its memory architecture, some algorithms have to

be rewritten in order to cache data locally while the other processors finish their work,

to avoid overwriting of data yet to be processed. If one core needs to access data from

another core, it can also access the other core’s cache memory, without being delayed

by accessing the shared memory. Taking these optimizations in mind, for this type of

application, the Tile64 architecture provides excellent performance.

After reviewing applications such as the above, the benefits of parallelism of algo-

rithms for image processing become notorious. It is also important to notice that many-

core processors with architectures similar to the one from XDense (namely the Epiph-

nay and Tile64 processor) can perform very well on running distribute image processing

algorithms; specially the algorithms we intend to use with XDense for airflow feature

detection.

3.2.2 Feature Extraction in Sensor Networks

Even though XDense utilizes NoC-like topology and protocols, it is ultimately a sensor

network, which makes it important to understand how distributed processing is performed

in the context of sensor networks in general. We review wireless sensor networks (WSN),

since a lots of effort have been put towards efficiently extracting data from large deploy-

ments through distributed data processing.

34 Survey of Distributed Data Processing Techniques for Dense Sensing

There are various techniques found in the literature about feature detection and extrac-

tion on sensor networks. More specifically, boundary and edge detection and tracking is a

common functionality of interest on sensor networks. A good survey of such techniques

can be found in [93].

Some work in the area is worth mentioning. In [94], sensors acquire measurements

of neighboring nodes to determine whether they are near the edge of two inhomoge-

neous (two or more smoothly varying regions separated by boundaries) fields. The work

proposes three approaches for edge detection using a WSN (one based on a statistical

approach, one based on a high-pass filter and another based on a classifier), where each

sensor gathers information from its neighbors, and independently determines whether it

is on the edge of an event.

The approach in [95] is to disseminate a query such that it propagates by following

the contour line (isoline). The work assumes a tree-based routing scheme, which is used

to disseminate this query. Upon receiving the query, each node decides if it is part of the

contour line (isoline) or not according to its sensor value, the sensor values of neighboring

nodes and the contour line tolerance band. Nodes also perform local modeling on sensing

values within its neighborhood to obtain an estimation of the gradient direction, needed

to construct the contour map.

Some other works employ in-network data processing techniques, aiming at reducing

the total number of transmissions. For example in [96], the observations from sensors

are aggregated and confidence intervals around the true boundary are obtained for a set

of points. The procedure requires a hierarchical structure of communication. The sensor

nodes must be able to detect not only local physical properties such as local tempera-

ture, but also measure the properties within a certain distance. Many other examples of

aggregation techniques can be found (e.g. [97, 98, 99]).

Another interesting approach is to define a model of the physical phenomenon being

monitored [100]. Using this model, nodes can then individually decide if the phenomenon

is behaving as expected, and significantly reduce communication by only reporting devi-

ations.

A cross-layer approach to contour nodes interference of monitored physical phenom-

ena with data fusion in WSN is presented in [101]. Sensor nodes that are close to the

desired contour line within some distance are defined as contour nodes. To determine the

contour line location, the probability for a sensor node to be a contour node is calculated

at a central node called fusion center. Additionally, the authors design an adaptive data

fusion scheme to avoid excessive packet retransmissions.

It is important to notice that the work reviewed was developed to track physical phe-

nomena such as temperature changes over a large area. These techniques mentioned were

3.3 Real-time Communication 35

not designed to cope with the requirements of very dense sensing, and highly dynamic

phenomena. While they provide good insights into techniques to achieve the same overall

goals, the requirements of very dense sensing, and highly dynamic phenomena call for

a more integrated approach. Other works such as [102, 103, 104], although addressing

similar dense deployments, they built on top of dominance based network media access

control (MAC) protocols, which have important practical limitations. Thus, in our work,

we propose a design that integrates the sensing architecture (including the interconnect)

together with the algorithms for data extraction.

3.3 Real-time Communication

As stated in the Introduction, providing real-time communication guarantees for XDense

is of crucial importance to enable AFC; a great source of temporal non determinism comes

from communication delays (as we discuss further in Chapter 6). We review the different

approaches given to the problem of providing real-time guarantees for communication

networks that resemble the one we use in XDense.

3.3.1 Real-time Guarantees for NoCs

We start by reviewing some relevant work that aim at providing real-time guarantees for

NoCs.

As pointed out in [60], often real-time guarantees are provided for NoCs as different

quality of service (QoS). Generally, NoC systems provide two QoS: best-effort (BE) and

guaranteed service (GS). These are two different levels of commitment that differ on

the predictability of the communication behavior in terms of: (i) data delivery; (ii) data

integrity; and (iii) performance guarantees.

In most NoCs, BE communication provides guarantees on data delivery and data in-

tegrity, whereas for GS communication performance guarantees are provided in addi-

tion. GS communication guarantees are usually correlated with an analytical verification

framework.

For instance, the authors of [105] provide GS by proposing a worst-case analysis

for priority-preemptive, wormhole switched NoCs. This approach was later extended

in [106], in which an end-to-end schedulability analysis was proposed for many-core

systems.

Additionally, in [107] authors provide methods to efficiently calculate the worst-case

bandwidth and latency bounds for real-time traffic streams on wormhole-switched NoCs

with arbitrary topology.

36 Survey of Distributed Data Processing Techniques for Dense Sensing

ÆTHEREAL [59], NOSTRUM [108], MANGO [109], SONICS [110], aSOC [111],

SoCBUS [57] and also the NoCs presented in [112], and the static NoC used in the RAW

multiprocessor architecture [113], are some other examples of NoCs that implement GS.

Most of the works referred above implement GS by using variants of time division

multiplexing (TDM). TDM is used to implement connection-oriented packet routing, thus

guaranteeing bandwidth on connections.

The clockless NoC MANGO uses virtual channels to establish virtual end-to-end con-

nections. Hence, limitations of TDM, such as bandwidth and latency guarantees which are

inversely proportional, can be overcome by appropriate scheduling. In [109], a scheme for

guaranteeing latency, independently of bandwidth, is presented. Differently, in [114], an

approach for allocating individual wires on the link for different connections is proposed.

The authors call this spatial division multiplexing as opposed to TDM.

However, all the above solutions are tailored to parallel links found in NoCs, which

are designed for very high bandwidth, where large amounts of data transfer between cores

are required. Because XDense relies on non-prioritized packet switched serial communi-

cation, these approaches do not fit the XDense network architecture.

3.3.2 Real-time Guarantees for General Purpose Networks Using Traf-

fic Shaping

More in line with our approach, initially proposed in [115], network calculus enables real-

time communication for packet switched multi-hop point-to-point networks, addressing

the issue of guaranteeing the delivery of messages with time constraints.

Network calculus has been extensively researched since then; in [116], the authors

survey the state-of-the-art of deterministic and probabilistic network calculus, by provid-

ing a review of service curve models of common schedulers along with different types of

networks and methods for identification of a system’s service curve representation. With

a slightly different concept, the authors in [117] propose a feasibility analysis of periodic

real-time traffic in packet-switched networks using first-in-first-out (FIFO) queuing. Their

framework fits real-time analysis of switched Ethernet, and can provide better results as

compared to network-calculus in some cases.

Traffic shaping has also been used along with network calculus in order to achieve

tighter deterministic bounds. For example, in [118] the authors use rate controlled Earliest-

Deadline-First scheduling in conjunction with per-hop traffic shaping to provide deter-

ministic end-to-end delay guarantees. They identify the shaping parameters that result

in maximal network utilization. This has also been studied for NoCs in [119] for worst-

case response guarantees and buffer space optimization. Traffic shaping is also used on

3.4 Summary 37

Ethernet networks to provide real-time guarantees by shaping the packet sources [120].

The authors provide an asynchronous traffic scheduling algorithm, which gives low delay

guarantees, while keeping low implementation complexity.

In [121] the authors investigate a scheduling scheme for packet injection in a NoC

with a ring topology. A basic scheduling is used to favor traffic already in the ring while

providing high network utilization. A weighted scheduling scheme is also used to prior-

itize and serve different cores in the system with the trade-off of network utilization. In

[122], the authors also study the impact of varying the packet injection in the system, by

providing an injection control mechanism in order to maintain a fixed buffer size.

3.4 Summary

In this chapter we reviewed two areas of interest: feature detection and extraction using

many-core processors and sensor networks, and real-time communication.

By reviewing strategies for feature detection and extraction on many-core networks

processors, we were able to understand why and how feature detection algorithms benefit

from many-core processor architectures. Specially regarding the inter-core communi-

cation strategies, that allow local data sharing for decentralized processing of data, for

increased CPU utilization with lower network congestion. These properties are specially

interesting for the development of XDense, as we plan to apply the same strategies on our

network.

Distributed processing strategies utilized in sensor networks also show that it is pos-

sible to benefit from distributed processing for feature detection, even with low capacity

links with high congestion.

In the second half of this chapter we review different techniques utilized to provide

real-time communication guarantees for NoCs and some other wired mesh networks. We

focused mainly on networks that have some degree of similarity with the XDense design,

as we believe that some of these techiniques can be adapted to XDense in order to provide

it with real-time capabilities.

Part II

Proposed Novel Design: XDense

39

Chapter 4

Network Design and Principles of

Operation

4.1 Introduction

Having discussed the application requirements and revised the available technology and

related work in Chapters 1 and 2, we now design the architecture and define the principles

of operation of XDense.

We start by the design of the internal architecture of the node, and each of its internal

components, essential to its operation on the network. We also define all the protocols

required for nodes to communicate on the network, and to allow XDense to accomplish

its main goal of performing dense sensing in a timely fashion.

Considering that one of our main objectives is to have a feasible sensor network (based

on low cost COTS components) for us it is essential to consider the hardware implemen-

tation during this phase. This is a co-design problem, in which every design decision,

including the principles of operation, must be taken considering their impact on the hard-

ware design. On the other hand, the hardware chosen imposes the resource availability,

the processing power and, consequently, the maximum achievable performance.

While taking design decisions, it is always better to choose components from existing

general purpose networks with proven performance, than to design a network from scratch

with a topology matched to the problem.1 Therefore, the selection of a practical network

design and architecture is a job of fitting requirements to available technologies. The

trade-off between functionality, performance and cost also needs to be considered.

1This is a common pitfall for network designers, that wastes valuable time on design and verifica-

tion [123].

41

42 Network Design and Principles of Operation

In this chapter we present the design specifications, which describes the network

and node architecture and principles of operation. We also present the basic aspects of

XDense’s communication timeliness. Following that, we detail XDense operation by

looking at the protocols and its implementation, at each of the abstraction layers individ-

ually.

4.2 Network Design

(a) Network

N

(b) Node

R

P

S

ND x4

(c) Node inter-

nals

SH

SPPS

Q

(d) ND internals

Figure 4.1: Overview of XDense architecture. (a) It is a 2-D mesh network; (b) Node

pinout: two channels per port for transmitting and receiving data; (c) Node internals:

processor (P), router (R), net-device (ND) and the sensor (S); (d) net-device’s internals:

output queue (Q), traffic shaper (SH), and a parallel-to-serial/serial-to-parallel (PS/SP)

converters.

XDense architecture is a 2-D mesh network. Nodes are connected in a grid, with up to

four neighboring nodes, physically located in the four directions (north, south, east, west).

This architecture shares some similarities with NoCs regarding network topology, routing

schemes, timing properties and distributed computing capabilities [33]. The topology

enables low-latency local communication between nodes, allowing the user to exploit its

in-network data processing capabilities, and execute algorithms distributively.

Despite the similarities with NoC, it differs greatly in physical dimension and node

count, since XDense is meant to be deployed on surfaces (like wings in the aeronautical

usecase), and node count will tend to be much higher as compared to number of cores

on NoCs. It also differs in terms of link bandwidth, since NoCs tend to use wide parallel

links to interconnect nodes [41], while XDense relies on full-duplex serial links for lower

integration cost (given the dimensions of the nodes and network). Also, data is generated

locally at each sensor node, which imposes other restrictions and opportunities.

4.2 Network Design 43

It also differs in some ways from traditional wireless sensor network approaches. We

use short wired serial links, which are very little susceptible to concurrency or noise is-

sues, compared to wired shared buses or wireless links, and also allows higher commu-

nication rates. We consider a far denser deployment scenario than traditional SNs (of the

order of hundreds of nodes per square meter). Nodes may share power supply and the

impact of communication on power is negligible as compared to battery powered radio

links.

An example scenario of a 5×5 network is show in Figure 4.1(a). Each node is con-

nected to its neighboring nodes using two directional links as seen Figure 4.1(b). Each

node can be tough off as a self-contained system, with dedicated hardware peripherals

and a CPU. Figure 4.1(c) illustrates the components of a node’s internals at different lev-

els of abstraction. A node is composed of a sensor (S), a processor (P) and a router (R)

and is connected to its neighboring nodes located in the four cardinal directions using

bidirectional communication ports (termed networking devices (ND)). Because they are

bidirectional ports, we refer to their input and output independently as input and output

ports.

Any set of nodes can be a potential multi-hop communication link from any node to

the sink, enabling fault tolerant protocols. Multiple sinks are supported, and any node can

be configured to be a sink.

In the rest of this section, we define each of the XDense components and their opera-

tion.

4.2.1 Networking Device

At the lowest abstraction layer in the node’s architecture, networking devices are node’s

component responsible for connecting with other nodes. Each node contains four net-

working devices that connect them to their four immediate neighbors in the grid.

Networking devices internals are shown in Figure 4.1(d). Its design resembles that

of a full-duplex asynchronous serial port, with some differences. At its output, there is a

queue (Q), a traffic shaper (SH) and a serializer (PS). Outgoing packets delivered by the

router (R) are first queued, dequeued by the traffic shaper, serialized and transmitted. At

the input port, there is only a deserializer (SP). Input packets are deserialized and served

by the router (R) immediately, and queued at the destination output port, and/or at the

input of the processor (P).

The serializer is used by XDense nodes to convert packets from its in-memory form

(inside the node), to its serial form so it can be transmitted serially (outside the node). The

deserializer does the opposite. The purpose of the traffic shaper is to provide determinism

44 Network Design and Principles of Operation

to the output traffic, and consequently make it amenable to real-time analysis. Briefly, its

function is to implement a release offset on the output traffic to make the transmission

periodic. This enables us to formulate the output traffic as a linear cumulative function of

the input traffic. We will discuss our traffic shaping techniques in detail in Chapter 6. All

network transfers are non-preemptive packet-switched, and all packets have a fixed and

equal size.

4.2.2 Router

The router (R) is the interface between each networking device (ND) and the processor

(P). The router is able to receive and transmit packets in parallel, from/to the processor

and networking devices. Packets generated by the processor are transferred and queued

at the router, in a dedicated queue, which is served in the same way as those from the

networking devices (ND).

Packets are transmitted in the network in a multi-hop fashion from a source node to a

unicast, multicast or broadcast destination. At each hop, the router analyses and updates

the incoming packet’s headers. The routing protocols determine where to forward each

packet, through one or many NDs and/or to the processor (P); that is based on the routing

protocol configured and on the origin and destination of the packet.

Packets may compete for a single output port, in which case they are served using a

defined arbitration policy. In this work, we use FIFO arbitration. In FIFO, input packets

are immediately processed by the router, and only get queued at the output port it is

competing for. This was a decision made to favor analysis for applications with real-time

requirements and is further discussed in Chapter 5.

4.2.3 Processor

The processor (P) is where the application runs. It is connected to the sensor through

a dedicated link that poses no interference on any other communication link inside the

node. On the other side, it communicates over the network through the router (as men-

tioned above). A queue at the input link between the processor and the router queue input

packets to be server by the processor. The purpose of the processor is to provide high

level functionalities to fulfill XDense goals like, enabling distributed data acquisition and

processing. We do that by implementing different predefined primary operations to en-

able the exchange of sensed data between nodes, and the execution of a data processing

algorithm on the data exchanged by any node.

4.3 Assumptions and System Definitions 45

According to the application goals, based on these primary operations, we define ap-

plication protocols as a sequence of these operations executed by nodes. Different appli-

cation protocols may enable more elaborate applications to be executed on the XDense

network. Each application protocol will be discussed further on this chapter as we talk

about XDense’s application protocols and its principles of operation.

The processor should be able to interface with any kind of sensor, according to the

application’s monitoring goal. Also, it should be able to accommodate applications that

might require measurements of quantities of various kinds of phenomena, from more than

one sensor. For example, to enable high-precision AFC, pressure and temperature sensors

are desirable, and can jointly provide better sensing of the airflow [1].

4.2.4 Sensor

The sensors interact with the physical world, and transduces the physical stimulus into a

measurement quantity that is feed to the processor. The sensor is application specific, and

depends on the nature of the phenomena to be monitored and its requirements.

The nature of the data may influence on node’s behavior, and therefore on network

load and performance. This is important in cases where the user is intended to investigate

on distributed processing algorithms, when it is indispensable to have access on the ex-

pected input data (for AFC for example). We provide an implementation model that will

be detailed in the next chapter, as we present the simulation model.

4.3 Assumptions and System Definitions

In this section we define the basic concepts of the temporal behavior of the network, the

packet structure and the addressing system adopted.

4.3.1 Network Temporal Behavior

As we use serial links, it is important to remark that the delays imposed by communica-

tion is orders of magnitude higher than the delay due to routing a packet inside the node.

In other words, moving packets inside nodes consists of copying data between different

memory regions using dedicated parallel buses at the CPU clock rate. While, to commu-

nicate them serially using an universal asynchronous receiver transmitter (UART) port,

the packet is serialized and asynchronously transmitted in a fraction of the clock of the

CPU.

46 Network Design and Principles of Operation

Because we co-design the network model and implementation model, we performed

a statistical survey on the time required by different hardware platforms to route a packet.

The results have shown that, depending on the implementation details and hardware ca-

pabilities, the internal delays can be as low as four clock cycles using an FPGA, to one

hundredth of the time required to transmit a packet using a 100 MHz microcontroller. The

complete results are presented later in Chapter 7.

Given the insignificance of the internal delays as compared to the communication

delays, we neglect internal delays for the rest of this work and only account for delays

imposed by communication. This simplifies the temporal analysis of the network. We

define that the time taken for one node to fully transmit a packet to its neighbouring node

as 1 transmission time slot, or 1 TTS. A transmission time slot is defined as the packet

duration, calculated as:

1 T T S =
PacketSize×(8+2)

baudrate
(4.1)

The packet size (given in bytes) is multiplied by eight bits per byte plus two bits added

per byte by the UART physical layer overhead (start and stop bits). One TTS is then the

total size of the packet in number of bits, divided by the communication baudrate given

in bits per second (bps). As the baudrate is an implementation specific parameter, we

normalize our temporal base according to TTS.

4.3.2 Packet Structure

The XDense packet structure was designed for low resource utilization and for ease of

routing and processing by simple low cost COTS hardware. We choose a fixed size packet

structure to allow fast handling of packets by the hardware; the size is dependent on the

input and output buffers’ size at each node.

We choose a packet size of 16 bytes, which is a typical buffer size of UART ports on

COTS microcontrollers.2 Out of these 16 bytes, 6 bytes are for protocol overhead and

error checking and 10 bytes for the actual payload. It is important to notice that, because

the UART ports are asynchronous, for each byte transmitted, two extra bits are added as

start and stop bits, so nodes can synchronize their bit rate at each transmitted/received

byte. This means that, although the packet can carry 128 bits (16 bytes) of useful data, its

total size is 160 bits. The detailed packet structure, excluding start and stop bits, is shown

in Table 4.1.

2For example, the Atmel SAM4N8A, a microcontroller with ARM Cortex M4, has five UART ports with

16 bytes buffer at both input and output. More details on the node hardware implementation are provided

later in Chapter 7.

4.3 Assumptions and System Definitions 47

Table 4.1: Packet structure and size in bits, totaling 128 bits (16 bytes).

Protocol Addressing Payload Checksum

RP CP AP xa ya xb yb

Size (bits) 3 2 3 8 8 8 8 80 8

The packet header carries protocol and addressing information. The first byte, al-

located to the protocol, is subdivided into 3 independent fields, dedicated to: Routing

(RP), communication (CP) and application (AP) protocols. The three combined with the

2 coordinate pairs used for addressing will tell the router how to interpret and serve the

packet. Packets are processed by node’s router and are consumed (forwarded to the node

processor) and/or forwarded to a single or multiple destinations, using the defined routing

algorithm. CM, RP and AP protocols will be detailed in Section 4.3.3.

The coordinate pairs [xa,ya] and [xb,yb] are used with different purposes according to

the communication protocol utilized. One functionality common to most protocols is to

carry information about the origin and destination of the packet. Another functionality is

to define multiple destinations, by designating a region of the network that should con-

sume the packet specified by [xb,yb]. Again, the way the router interpret these coordinates

depend on the communication and routing protocols specified on the header of the packet.

Since we use wired short range communication links, which are little prone to interfer-

ence, we do not consider link errors. Hence, no error correction nor recovery algorithms

are considered. If required, error recovery protocols can be implemented at the applica-

tion layer.

4.3.3 Addressing

The coordinate pairs [xa,ya] and [xb,yb] at each packet, refer to a relative coordinate sys-

tem whose origin location ([0,0]) is the node who originated the transmission.

Relative addressing adds scalability in many aspects, but mainly because nodes do

not need to be uniquely addressed in a distinguished setup phase, and it allows having a

network greater than the actual address space. The address space only limits nodes to a

confined “horizon”, which is how far each node can communicate to.

As from Table 4.1 each coordinate xa,ya,xb and yb is represented by an 8-bits signed

integer. The coordinate size in bits is cs = 8, which defines each node address space

(2cs = 256). Meaning that each node is able to communicate with nodes in the range of

−128 to 127 hops in the x and y directions.

Because we use relative addressing, the size of the network is not strictly limited

to a square of 2cs × 2cs nodes. On the contrary, the address space only confines each

48 Network Design and Principles of Operation

individual node to this square communication range around itself, while the network can

grow beyond these limits.

We chose cs = 8 bits because a network with 2cs×2cs nodes gives us enough resolution

for capturing phenomena in the usecases we are interested in. Otherwise, cs could be

increased, sacrificing the payload size for a greater address space. On the other hand, by

increasing the network size without increasing the number of data sinks on the network

may lead to undesired contention, increased delays and consequently slower sampling

rates.

4.4 Networking Protocols

In this section, we outline the protocols that comprise the XDense communication stack.

The layered protocols consist of the routing, communication and application protocols,

as introduced earlier in this chapter. The routing protocols allows delivery of a packet

from its origin to its destination on a deterministic route. The communication protocols

allow nodes to perform one-to-one, one-to-many or one-to-all transmissions. Finally,

the application protocols enable the nodes to establish complex transactions, such as re-

quest/response communication, handshaking, configuring, among other possibilities.

4.4.1 Routing Protocols

We implement multiple routing algorithms to enable applications to exploit a diversity of

routes in the network. This allows the system to reduce contentions, reduce bottlenecks,

deliver better load balance and provide better means to benefit from the network capacity

overall.

Moreover, given that communication delays are the predominant source of delays,

exployting routes diversity becomes even more important for real-time applications, in

which routes without interfering traffic are essential to establish temporal predictability.

The basic idea is to provide multiple possible orthogonal routes, allowing transmis-

sions occurring in one direction to not affect others occurring in an orthogonal or opposite

direction. This is possible because we assume that routers can route packets in parallel,

simultaneously, as long as the incoming packets do not compete for the same output port.

We use multiple variants of the common dimensional ordered routing (DOR) protocols

[124]. In DOR protocols, all packets follow the same order when traversing. First, the

progress occurs on only one of the axis, and upon reaching the desired coordinate of the

destination, (if necessary) the transfer is continued along the other axis, until reaching

the destination. The advantage of DOR protocols is that they always use the shortest

4.4 Networking Protocols 49

path between the source and destination nodes (considering rectilinear distance, a.k.a.

Manhattan distance) and are proven to be deadlock and livelock free [125].

(a) (b)

(c) (d)

+x

+y

Origin

Destination

Node

Figure 4.2: Routing protocols - Nodes unicast to the node in the center using different

routing algorithms: (a) XY; (b) YX; (c) Clockwise; (d) Shifted-clockwise.

XDense implements six DOR protocol variations. This allows enough diversity of

routes, yet with low implementation complexity (due to their commonality), and low

communication overhead. More specifically, we provide X-Y, Y-X, clockwise, counter-

clockwise, shifted-clockwise and shifted-counterclockwise routing protocol variations.

Figure 4.2 shows different many-to-one scenarios, in which nodes transmit to the node

in the center. Each node transmitting is highlighted, as the packets being transmitted,

which are highlighted at the respective networking device it is traversing. Each scenario

shows a different routing protocol, which we define as follows.

50 Network Design and Principles of Operation

XY Routing In X-Y routing (resp. Y-X), packets are first routed along the X (resp.

Y) dimension and then along the Y (resp. X) dimension (see Figures 4.2(a) and 4.2(b)

respectively).

Clockwise Routing In the clockwise routing (resp. counterclockwise) the starting di-

mension (X or Y) depends on the quadrant in which the destination node is, relatively to

the origin of the packet (see Figure 4.2(c)). The rest of the route is calculated as for the

other DOR protocols.

Shifted Clockwise Routing Another routing protocol, hereafter referred to as Shifted

Clockwise (resp. counterclockwise) routing, adds an initial change in dimension on the

first hop and then uses a regular clockwise (resp. counterclockwise) routing. For example,

in Figure 4.2(d), the packet sent from the upper-left node towards the central node, first

travels in Y, then in X and then in Y again. A change in direction is add for route diversity.

This or any of the presented routing algorithms do not present any particular advantage

over the other when considered separately. The actual benefits of having multiple routing

algorithms is actually related to, as mentioned earlier, route diversity and concurrence

avoidance.

4.4.1.1 Protocols List and Packet Content

Table 4.2: List of routing protocols and content of the RP packet field.

Routing Protocol Packet Content

XY 0b000

YX 0b001

Clockwise 0b010

Counterclockwise 0b011

Shifted Clockwise 0b100

Shifted Counterclockwise 0b101

The routing protocol is the first field to be analyzed by the router. We reserved 3

bits for it, allowing us to specify on the header of the packet up to 8 different routing

protocols. In our use-cases, having only six routing protocols have shown to be enough,

and therefore we only provide these variations, as from Table 4.2.

4.4.2 Communication Protocols

Next, we explain the communication protocols that compose our communication stack.

4.4 Networking Protocols 51

4.4.2.1 Unicast

+x

+y

R

P

ND

ND

ND

ND R

P

ND

ND

ND

ND R

P

ND

ND

ND

ND R

P

ND

ND

ND

ND

Figure 4.3: Unicast example: Node on left requests data from node on right with a unicast

request. The figure shows all internal logical steps taken in the process of exchanging data

between nodes.

Table 4.3: Unicast example - Packet content at each numerated instant of Figure 4.3.

Steps 1-4 5-7 8-10 11 12-15 16-18 19-21 22

xa,ya 0,0 -1,0 -2,0 -3,0 0,0 1,0 2,0 3,0

xb,yb 3,0 2,0 1,0 0,0 -3,0 -2,0 -1,0 0,0

Payload - - - - DATA DATA DATA DATA

Checksum CS1 CS2 CS3 - CS4 CS5 CS6 -

Unicast refers to a one-to-one transmission from one node in the network to any other

node inside its address space, located at [∆x,∆y] from it, transmitted in a multi-hop path

using any of the routing protocol presented in Section 4.4.1.

Figure 4.3 shows a unicast communication. The start of communication is triggered

by the processor (application layer) on the first node, which sends the request, through its

router, to the rightmost node. At the intermediate nodes, the packet is received, processed

and forwarded by the router, without the interference of the processor. At its destination,

the router forwards the packet to the processor. The node may then perform a given action

depending on the content of the protocol. In the request for data example in Figure 4.3,

the receiver is expected to reply by transmitting a packet with its sensed value.

At each hop, as the packet traverses a node, its router updates the value of origin and

destination coordinate pairs [xa,ya] and [xb,yb]. This is done so that it reflects the current

distance of the packet to its origin and destination respectively (in terms of the Manhat-

tan distance). The packet reaches its destination the moment the coordinate pair [xb,yb]

becomes zero. At the same time, the coordinate pair [xa,ya] will reflect the coordinates of

the origin of the packet. This information is required by the application layer to reply to

any kind of request.

52 Network Design and Principles of Operation

The above sequence is explained with help of Table 4.3. From steps 1 to 11, as the

packet traverses each hop in the positive direction of the x-axis, the router subtracts a unit

from the coordinates xa and xb. The inverse occurs when it travels in the opposite direction

of the x-axis, during steps 12 to 22. At each hop, before the packet leaves the router, the

checksum is updated by the router according to the new content of the packet. On its way

back, the packet payload contains the data requested. The checksum is meant to allow

error verification on the data exchanged between each node. Currently, it is not utilized,

as we assume error-free communication; even though we found important to consider it

in case we see the need of it while experimenting with the hardware prototype.

Table 4.4: Unicast example - TTS: Transmission Time Slot (TTS) in which each logical

step from the example of Figure 4.3 occur.

Steps 1-3 4-6 7-9 10-14 15-17 18-20 21-22

Transmission time slot (TTS) 0 1 2 3 4 5 6

In addition, Table 4.4 shows the TTSs of the occurrence of each step. As stated before,

we only account for the delays imposed by communication, meaning that 1 TTS elapses

while the packet leaves one node and arrives at its neighbor. Because we neglect internal

delays, all steps that occur inside the same node happen in the same TTS.

+x

+y

[0,0]

[-6,4]

[0,0][2,4]

[-2,-4]

[0,0]

[6,-4]

[0,0][4,-2]

[0,0]

[0,0]

[-4,2]

Origin

Destination

Node

Figure 4.4: Example of three concurrent and non-interfering unicast transmissions. The

coordinate pairs inside the square brackets show the content of [xa,ya] and [xb,yb] respec-

tively, at the origin and destination of the packet.

Figure 4.4 gives a larger picture of the unicast communication. In this setup, three

non-interfering unicasts happen simultaneously. The square brackets show the content

of packet’s origin [xa = 0,ya = 0] and destination [xb = ∆x,yb = ∆y] respectively. It is

important to notice that, in this example, two flows intercept at a single node locate at [6,4]

(absolute coordinates). In this case, there is no interference, as there is no competition for

resources (output ports) for two reasons: because the flows arrive at node [6,4] at different

time instants, since their origins are at different distances; and because the flows output

ports are distinct, and therefore can be handled in parallel by the router.

4.4 Networking Protocols 53

Finally, we define the deterministic property of unicast transmissions. We state that,

in a contention-free scenario (as the one in Figure 4.4), the end-to-end delay of a packet

unicast is deterministic and defined by:

DelayU = abs(∆x)+abs(∆y) T T S (4.2)

4.4.2.2 Multicast

[-3,2] [3,2]

[3,-2][-3,-2]

[0,0][3,2]

[3,2]

[3,2][3,2]

[3,2]

(a)

[0,3]

[0,-3]

[3,0][3,0] [3,0]

[3,0]

[3,0]

[3,0]

(b)

[0,0]

[-4,3]

[2,3]

[2,3]

[-4,-3][2,3][4,-3][2,3]

[4,3][2,3]

(c)

Figure 4.5: Multicast example - with relative addressing. The two coordinate pairs show

the packet content of xa,ya and xb,yb at origin and destination.

Multicast refers to a one-to-many packet transmission, from one node to a group of

nodes. This functionality is required, for example, in scenarios where a node wants to

request data from specific groups of nodes. It also allows a node to rule clusters of nodes,

in order to perform some coordinated operation. With multicast protocols we intend to

enable some sort of selective communication, constraining the network activity to a lim-

ited number of nodes contained in a group or cluster. The node initiating the transmission

is able to transmit the same packet in the four directions in simultaneous.

In that sense, in order to address the challenges related to our AFC use-case, we define

three different types of multicast, each one meant to address application requirements

differently. In the next paragraphs we present each variant.

54 Network Design and Principles of Operation

Multicast Area: We call the first variant, Multicast Area (MA). Nodes work on the

basis of forwarding the packet received only inside a defined rectangular area around the

sender (and not outside it).

In this case, the two coordinate pairs in the packet header are used differently. The

first coordinate pair (Sx,Sy) is constant, and defines a rectangular area around the sender.

The second coordinate pair (Ox,Oy), contains the address of the origin of the packet, to

allow the recipients to reply to any kind of request. The total number of nodes reached by

this kind of multicast is given by (2Sx +1)× (2Sy +1) (including the sender).

At each node the router looks at the (Ox,Oy) coordinates to calculate their distance

to the sender, in order to decide to forwarding the packet to its neighbors or not. If its

distance in x or y matches that from the maximum area size Sx or Sy, it is no longer

forwarded on that axis, and the multicast finishes. Every receiver of the packet consumes

it; that is, internally forwards it from the router to the processor, to be processed by the

application layer.

A multicast area example with (Sx,Sy) = (2,3) is shown in Figure 4.5(a). It shows

that, as the packet is forwarded, only the (Ox,Oy) coordinates are updated by the router,

while the cluster area (Sx,Sy) remains constant.

In a contention-free scenario, the time taken to perform a MA is given by:

DelayMA = (Sx +Sy) T T S (4.3)

This is the time required for the packet to travel from the sender, located in the center of

the rectangle, to the farthest nodes.

Multicast Radius: Another variation we use is Multicast Radius (MR). It is conceived

with the same objective of allowing nodes to communicate within a cluster of nodes

around the sender, but in this case, this cluster is no longer defined by an area, but by

a radius.

The packet carries the coordinate pair (Ox,Oy) with the same objective of keeping

track of the origin of the packet. In this case, the second coordinate pair carries a single

integer (Sr,−), which specifies the maximum distance from the sender to which the packet

should be forwarded, given in number of hops.

An example with Sr = 3 is shown in Figure 4.5(b). Like MA, only the (Ox,Oy) coor-

dinates are updated by the router, while the cluster radius Sr remain constant.

In a contention-free scenario, the time taken to perform a complete MR transmission

is given in terms of TTS by:

DelayMR = Sr T T S (4.4)

4.4 Networking Protocols 55

which is the time required for the packet to travel from the sender, located in the center to

the farthest nodes.

Multicast Alternative: The last multicast protocol we propose is Multicast Alternative

(MT). The coordinate pair (xb,yb) no longer defines a cluster around the node. Instead, it

defines which nodes within the sender address space are supposed to consume the packet.

This arbitration is with respect to their position relative to the sender. The arbitration is

made at each node’s router, as they receive the packet, by testing if its relative position

Ox and Oy coordinates are both multiple of xb and yb, respectively. If true, the packet

is consumed and forwarded to the next hops. If false, the packet is forwarded without

being consumed. In short, the coordinate pair (xb,yb) = (Mx,My) defines which nodes are

meant to consume the packet in both axis, in an alternated pattern.

Note that in this case, not all nodes who receive the packet will necessarily consume

it, but may serve only as a relay to forward the packet to the next hop. Also, the packet

will travel until the end of the network or until the end of its address space, since the

packet does not carry information that limits the transmission range.

As in the other multicast protocols, as the packet is forwarded, only the (Ox,Oy)

coordinates are updated by the router. An example is illustrated in Figure 4.5(c), for

(Mx,My) = (2,3).

The time taken to execute a MT transmission will also be limited by either the network

size, or by the address space limitation and is given by:

DelayMT = min
(

(

max(De+x,De−x)+max(De+y,De−y)
)

,⌈2cs/2⌉
)

T T S (4.5)

where De refers to the distance between the sender and the edge of the network, in the

direction of the axis that represents the farthest distance to the edge of the network on that

direction. cs is the coordinates size in bits, which defines the address space (as introduced

earlier in Section 4.3.3).

This multicast protocol is specially important in scenarios in which establishing clus-

ters of nodes is desired. For example, the sender can ask nodes at specific positions to

aggregate the data of their surrounding nodes and send it back. It may also allow sam-

pling data from the network in a more sparse way and dynamic way, for scenarios in

which smaller granularity is required, or when the nature of the data is homogeneous and

does not require sampling every node on the network.

56 Network Design and Principles of Operation

[0,0][0,0]

Figure 4.6: Broadcast example: packet flow from origin to destination, using relative

addressing scheme.

4.4.2.3 Broadcast

The Broadcast (BC) protocol can be seen as a particular case of the MT protocol. The

difference is that the packet will be consumed and forwarded by every node inside the

sender’s address space. That is, we set (Mx,My) = (1,1), which results in all nodes that

receive the packet will consume the packet (since in MT protocol, its coordinates will

always be multiple of (1,1).)

Just like MT, only the (Ox,Oy) coordinates are updated by the router as the packet

travels. An example is illustrated in Figure 4.6. The time taken to execute a BC transmis-

sion will be limited in the same way, either by the network size, or by the address space

limitation, given by:

DelayBC = min
(

(

max(De+x,De−x)+max(De+y,De−y)
)

,⌈2cs/2⌉
)

T T S (4.6)

4.4.2.4 Protocols List and Packet Content

Table 4.5: List of communication protocols and content of the CP packet field.

Communication Protocol Addressing Packet Content

xa ya xb yb

Unicast (UC) Ox Oy Dx Dy 0b00

Multicast Area (MA) Ox Oy Sx Sy 0b01

Multicast Radius (MR) Ox Oy Sr − 0b10

Musticast Alternative (MT) Ox Oy Mx My 0b11

Broadcast (BC) Ox Oy 1 1 0b11

The communication protocol occupies only two bits of the header, giving four dif-

ferent protocols possible. For each protocol, the meaning of the coordinate pairs [xa,ya]

remains the same, as corresponding to the origin of the packet, while the coordinates

4.4 Networking Protocols 57

[xb,yb] is specific to each protocol variation. The meaning of each of these fields was

presented earlier in this chapter.

4.4.3 Application Protocols

The application layer sits on top of the routing and communication layers and aims at

enabling high-level functionalities. These include functions to perform data exchange

between nodes, or groups of nodes, with the ultimate goal of fulfilling the sampling ob-

jectives of the targeted application scenario. However, as application objectives may vary,

there are different approaches to fulfill these goals. So we address the potential require-

ments, while keeping design flexibility in mind.

We propose a set of high level application protocols with which we aim at giving the

user the ability to program XDense, built using a set of application protocols, to customize

for the application target.

Each of the proposed application protocol may be built with the utilization of any

combination of communication and routing protocols. To decide on which application

protocol to use, the designer should take into consideration the network load distribution,

as well as the delays associated with each strategy. The application protocol is transmitted

on the packet within the packet payload, making it completely independent of the routing

and communication layers. The same payload may be used to carry sensor data.

We do not propose any specific strategy in this chapter, but only the building blocks

to allow us to build and present our use cases later in this Thesis.

4.4.3.1 Data Request

We start by providing three different application protocols to allow nodes to directly re-

quest data from any other node, or groups of nodes. They may be located anywhere on the

network, but inside the sender address space. After receiving the request, receiver node(s)

reply with the requested data. This request can be a unicast, multicast or broadcast, lead-

ing to one, multiple or all nodes replying to the sender with the desired data. This is an

essential functionality of our sensor network, but its implications have to be considered

as this may easily overload the network.

Furthermore, when a data request is done, nodes can specify whether they want a node

or a clusters’ data. These possibilities may differ on the nature of the data, as explained

below.

Node Data Requesting for nodes’ data means that the receiver node(s) will reply to the

request with their individual data (fetched by the receiver on its own sensor or internal

58 Network Design and Principles of Operation

memory). Another possibility is to request nodes to send their data on an event driven

basis. This allows a node to configure other node(s) to send back the requested data

whenever an event occurs, such as a threshold reached. The node will then maintain this

behavior until it is reconfigured again to perform another protocol.

The requested data can be from different sensors. The data may also vary. They might

be raw sensed data or preprocessed data. For example, temporal derivatives and frequency

of variation. The sender has to explicitly specify the desired data with its request.

Cluster Data Another possibility is for a node to ask any other node or groups of nodes

to transmit back the data sensed by its surrounding nodes, or cluster. In turn, the node

which gets the request, called cluster head, asks the nodes around it for their data. On

reception of all the data, it processes/aggregates the data, and replies to the first node with

the requested data. This application protocol will make use of the nested request function,

in which the cluster heads will perform a multicast area or multicast radius (depending

on request) to ask its cluster data.

Another possibility is to request cluster heads to send the aggregated data on an event

driven basis. Each cluster head will continuously receive data from its cluster and analyze

it. If an event of interest is detected, it transmits the processed data to the first node.

The events of interest may be extracted from spatial and temporal data. This requires the

user to program cluster heads to detect more complex features on the analyzed spatial

and temporal data. Doing so will result in increased local network communication load,

and reduced long range communication, leading to better network load distribution and

reduced congestion.

With respect to our main use case (AFC), enabling local in-cluster processing allows

extracting high level aerodynamic information of the airflow. This can then be transmitted

back in a smaller number of packets when compared to transmitting raw data. The pre-

processing and compression algorithms to be used are application-specific. We discuss

application specific issues in Chapter 5.

Data Announcement Data Announcements are used to send data and can be done from

any node to any other node or groups of nodes.

Data announcements can be set as periodic or event driven, depending on the applica-

tion goals. In most cases, Data Announcements are triggered by Data Requests.

4.5 Example Scenario 59

Table 4.6: List of application protocols and content of the AP packet field.

Packet content Application Protocol Associated payload

0b000

Request

A
N. of samples,

period,

offset,

0b001 B

0b010 C

0b011 D

0b100

Announce

A

Data
0b101 B

0b110 C

0b111 D

4.4.3.2 Protocols List and Packet Content

The application protocols are also summarized in Table 4.6. We allocate 3 bits on the

packet header to specify the application protocol to be used. Out of these three bits, one

is used to specify if the packet is either a data request or a data announcement. The other

two bits are used to specify which data the packet is requesting or announcing, among

four different data types.

4.5 Example Scenario

(d)

(b)

(c)(a)

Input flow Output flow

Figure 4.7: Example of networking protocols utilization. The application execution con-

sists of: (a) Nodes requests data from cluster of nodes using multicast-alternative data

request using counter-clockwise routing; (b) Cluster heads in turn request data from their

cluster using multicast area with counter-clockwise routing; (c) Nodes unicast sensor data

back to the requester using conter-clockwise routing; (d) Cluster heads process received

data unicast it back to the requester using shifted couter-clockwise routing to avoid con-

currency and contentions.

60 Network Design and Principles of Operation

Figure 4.7 shows a complete application scenario that utilizes many of the protocols

provided in order to extract pre-processed data from the network efficiently. The same

application scenario is analyzed in detail later on in Chapter 6.

4.6 Concluding Remarks

In this chapter we have presented the details of the XDense design, including its archi-

tecture and principles of operation. The network uses custom architecture, designed to

suite COTS hardware, with custom protocols conceived to have low overhead on the tar-

get hardware. The protocols provided are the building blocks of the sensing application

scenarios we present in this Thesis.

The evaluation of the content presented in this chapter will be done in the context of

fluid dynamics sensing application scenarios in the following chapters.

Chapter 5

Simulation Model for Fluid Dynamics

Sensing

5.1 Introduction

In sensor networks, simulation models play a major role in allowing the users to debug

protocols and evaluate performance metrics in complex scenarios that cannot be analyzed

with other means. Simulation models also allow the user to evaluate traffic control and

design strategies without committing expensive, time-consuming resources necessary to

perform the same on a real deployment.

In order to pursue a simulation environment for XDense, we developed a simulator

that is customizable enough to allow implementing its architectural specificities, and, at

the same time, complete enough to enable a detailed analysis of its performance.

In the next sections we detail its implementation methodology and architectural op-

tions behind it, and we also present the tools we developed for importing fluid dynamics

data and for post-processing the simulation results. Then we perform experiments with

XDenseSim to evaluate the different feature extraction algorithms we propose. The source

code of the simulator, as well as the pre and post-processing tools, were presented in [5];

it is open source and available online at [126].

5.2 Simulation Model

We have built a simulator for XDense on top of Network Simulator 3 (NS-3) [127] that

we name XDenseSim. It allows us to evaluate many dimensions of XDense, including its

protocols, distributed processing algorithms and various networking performance metrics.

61

62 Simulation Model for Fluid Dynamics Sensing

In order to obtain a network model with characteristics and performance that faith-

fully approach the real system (which ever is under consideration as use case), the design

of XDenseSim is customizable. This configurable nature is with respect to links, packets,

communication ports, router, protocols and applications; This makes XDenseSim suit-

able to other 2-D mesh network architectures (NoCs for example). Because its based on

NS-3, XDenseSim is scalable, and allows simulations of very large networks with low

processing cost; this is an important criteria arising from use cases. It also makes avail-

able various metrics to study the network performance, including, network bandwidth,

links utilization, load distribution, queue sizes, end-to-end delays, or any other metric of

interest.

XDenseSim also provides the means of debugging distributed feature extraction algo-

rithms. For that, we provide the means to “feed” each node on the simulated network with

data from the phenomena of interest, in order to create a simulated sensing environment

that reproduces the real scenario.

In our case, we use data from an airflow phenomena in order to simulate our study case

reliably, with application-specific temporal and spacial granularity. We provide a frame-

work that allows importing data from reliable fluid dynamics scenarios into XDenseSim

from different sources.

We use NS-3 as the base of our simulator because of its proven scalability, which

allows simulating very large networks with a low computational cost. Because it is open

source, it also allows to easily couple the required tools to import sensing data from

computational fluid dynamics applications and tools.

The different abstractions of XDenseSim were implemented as independent classes

that inherit basic functionalities from its NS-3 parent classes. The main functionalities in-

herited relate to: (a) the logging system that provides means to selectively access runtime

statistics from numerous sources; (b) the tracing system that provides means to selec-

tively access packet exchanges statistics from various sources; (c) the callback system that

allows implementing and reusing multiple-layer implementation with ease; and (d) the

possibility of integrating custom-made C++ classes into the simulator’s discrete-events

system. Apart from these general functionalities inherited from the parent classes, each

custom class has its own specificities which will be discussed in this section.

XDenseSim classes hierarchy is as shown in Figure 5.1, which shows the simulation

model components and the pre and post-processing tools developed. We explain each of

these components next.

Node: We use the main Node class provided by NS-3, with no modifications. The Node

class is the highest in the hierarchy, and serves mainly as a container that keeps track of

5.2 Simulation Model 63

XDenseSim
Node

Application
XDense Application

Sensor
Router
Routing

Clockwise / Counterclockwise
Shifted Clockwise / Counterclockwise
X first
Y first

Networking Device
Packet Headers

Application
Routing
Communication

Channel
Pre-processing Tools

Computational Fluid Dynamics Data Importer
Video Data Importer
Image Data Importer

Post-processing Tools
Trace Files Parser
Statistics Analyzer
Network Visualizer

Figure 5.1: XDenseSim list of classes and their hierarchy.

other class instances that get “installed” into it. This association helps to confine each

class instance to inside the node it is contained in, while also enabling internal communi-

cations to happen more easily by using function calls and callback mechanisms provided.

Application: Inside the Node, at the top layer it is the Application class, which imple-

ments the application protocols presented in Chapter 4. This layer is only able to com-

municate with the Sensor and Router classes, in order to sample data and communicate

through the router.

Sensor: The Sensor class is the interface of each node to its spatial and temporal sensing

data. We implement several pre-processing tools to attain this data from different fluid

dynamics data sources. The mechanism of importing and pre-processing the input data is

discussed in Section 5.2.1.

This is an interchangeable model, potentially useful to any NS-3 module in which the

nature of the sensor’s data would influence on the network operation.

Router: The Router class is responsible for packet IO and routing. It is also a container

that keeps track of the node’s Application and NetDevices instances, to transmit and re-

ceive packets to/from them, using function calls and callbacks. The routing algorithms

64 Simulation Model for Fluid Dynamics Sensing

are implemented in a separate class Routing which is a static class, common to all nodes

in the network.

The router does arbitration in case of contentions and is configurable (for example,

round-robin or FIFO can be used at the input or output ports). To keep our experiments

consistent, we only use FIFO arbitration to serve packets at output ports.

All Application, Sensor and Router components are based on classes that inherit the

NS-3 Application Class. This provides the interchangeability required by these compo-

nents, so that one or more instance of them can be “installed” at any node, and communi-

cate between each other.

NetDevice: The NetDevices are the communication interfaces to simulate bidirectional

serial links as UART ports. They implement communication characteristics like baudrate,

jitter, queue (at input and/or output) and maximum queue size. NetDevices are meant to

simulate resource-constrained hardware, present in COTS microcontrolers. For example,

a standard UART communication port.

Packet Headers: The packet structure of our simulation model is as defined in Sec-

tion 4.3.2 (Table 4.1). It is constructed in situ by the application, Router and NetDevice

instances.

At its creation, the packet contains only the payload and the checksum footer. Three

different headers are added to the packet before its transmission, specifying the communi-

cation protocols utilized. Each of the three headers correspond to the application protocol

(AP), routing protocol (RP) and communication protocols (CP). These headers are added

to the packet by the Application, Router and NetDevice, respectively, as the packet cross

these layers.

Channel: The Channel class is the bottom layer, meant to simulate the serial link. The

link model allows to simulate interference and eventual link failures, even though, as part

of the assumptions of our model, we consider a perfect channel (see Chapter 4.3).

Two channel instance are shared between two interconnected nodes, one in each di-

rection. This means that, each NetDevice is connected to two channels each, whereas each

node is connected to eight channels, two to each neighboring node.

Illustrative XDenseSim example: Figure 5.2 shows the main steps involved on the

simulation of a Data Announcement between two nodes through one hop using XDens-

eSim. The transmission starts at the top-left, at the sender node, whose application layer

starts by reading its sensor (steps 1 and 2), creating a packet and then forwarding it to the

5.2 Simulation Model 65

1

2
3

4
5

6
7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

32

33

34
35

36

37

28

25

22

30

26

27

23

24

29

31

XDenseApp::

DataAnnouncement

NOCRouter::

PacketServe

NOCRouter::

PacketUnicast

NOCRouting::

Route

NOCRouter::

Transmit

NOCRouter::

GetNetDevice

NOCNetDevice::

Send

Queue::

Enqueue

Queue::

Dequeue

NOCChannel::

TransmitStart

NOCChannel::

TransmitCompleted

NOCChannel::

ReceiveCompleted

NOCNetDevice::

Receive

NOCRouter::

PacketServe

NOCRouting::

Route

XDenseSensor::

Read

NOCRouter::

Receive

ns3::Node (Sender) ns3:Node (intermediate hop(s))

n
s
3
::

A
p
p
li
c
a
ti

o
n

n
s
3
::

N
e
tD

e
v
ic

e

n
s
3
::

C
h
a
n
n
e
l

NOCChannel::

TransmitStarted

NOCChannel::

ReceiveCompleted

NOCNetDevice::

Receive

NOCRouter::

PacketServe

NOCRouting::

Route

XDenseApp::

DataReceived

NOCRouter::

Receive

ns3:Node (Receiver)

NOCChannel::

TransmitStarted

NOCChannel::

TransmitStart

NOCChannel::

TransmitCompleted

NOCNetDevice::

Send

Queue::

Enqueue

Queue::

Dequeue

NOCRouter::

Transmit

NOCRouter::

GetNetDevice

Figure 5.2: XDenseSim example: main steps involved on the simulation of a Data An-

nouncement between two nodes, unicast with one intermediate hop.

router (step 3). At this point the packet contains the sensor data, destination and origin

addresses, and the intended application protocol; in this case a Data Announcement.

After receiving the packet (step 4), the Router adds a header to the packet with the

communication protocol chosen (unicast). Given the application and communication pro-

tocol, and the destination of the packet, the route is calculated (steps 5 and 6), and the

packet forwarded internally to be transmitted (step 7). The last step inside the Router

consists of fetching the corresponding NetDevices (steps 8 and 9) and forwarding the

packet ready to send to each NetDevice individually (step 10). Packets received by each

NetDevice are queued (step 11); the first on the queue is dequeued (step 12) and transmit-

ted to the next hop (steps 13 to 16).

The channel layers of both nodes interact twice during a transmission (between steps

14 and 16), one at the start of the transmission (step 14), and one at the end of the trans-

mission (step 16). This is an implementation detail, meant to allow nodes to take actions

on serving consecutive packets.

Since we do not use input queues, the packet received by the next hop is then imme-

diately forwarded by the net device to the router to be served (steps 17 to 19). The Router

analyzes the header content to forward the packet to the next hop following the same

logic previously presented (steps 20 to 31). Again the packet is received and forwarded

internally up to the Router (steps 32 to 34). In this case the receiving Node is the final

destination of the packet, so it is forwarded to the Application (steps 35 to 37).

66 Simulation Model for Fluid Dynamics Sensing

XDenseSensor::

Read

Video

Image

CFD raw
{135465,

6546565,

6546546,

4654654}

Flow visualization

techniques

Computational

fluid dynamics

Data extraction,

conversion and

conditioning

XDense
[[1,2,3,4,5],

[6,7,8,9,8],

[7,6,5,4,3],

[2,1,2,3,],]

Figure 5.3: Steps required to import data from different external sources into XDense

sensor input module.

5.2.1 Pre-processing Tools

To analyze the XDense performance on airflow sensing, we need to provide XDenseSim

with spatial and temporal data from a reliable source. For that purpose we feed data into

XDense node’s sensor, that correspond to the environmental fluid dynamics data that is

to be measured. For our AFC use case, the phenomena to be measured is the pressure

distribution on the surface of a wing (where XDense is deployed) due to airflow.

In fluid dynamic studies, data is often presented visually, either as static representa-

tions of the studied phenomena or as videos used to depict the phenomena temporally.

The main reason is the large storage requirements of raw Computational Fluid Dynamics

(CFD) simulation data. The images and videos can be the result of post-processing of data

from a camera footage of real airflow [7] or from CFD simulations converted to image or

video files.

For camera footage, researchers use special visualization techniques in laboratory

conditions, usually in wind tunnels [7]. These techniques provide means of extracting

detailed visualization data from the real phenomena, which is hardly achievable using

CFD models, as discussed in [128].

CFD simulations, on the other hand, allow extracting image and video files after post-

processing the raw data files. It is also possible to work directly with the raw data files,

with no influence of data losses introduced by image compression or noise introduced

by camera capturing limitations. The draw back is the excessive amounts of computing

power and storage required to obtain high temporal and spatial granularity. This becomes

affordable only in simple situations, and/or when the dynamics of the phenomena and its

evolution occur with low temporal complexity and/or in small time-windows.

We provide three means of importing fluid dynamics data into XDenseSim: (i) from

static images; (ii) from video files and (iii) from CFD simulation data. Figure 5.3 shows

the sequence of steps required to import data from the sources mentioned.

5.2 Simulation Model 67

(a) (b) (c)

0 5 10
0

5

10

15

20

25

30

(d)

Figure 5.4: (a) Pressure distribution over a wing’s surface; (b) Data of a single time-frame,

from Computational Fluid Dynamics (CFD) simulation, as input for XDense; (c) Sensors

displacement; (d) Normalized data, as seen by each sensor.

The process of importing the data includes intermediate steps meant to extract, condi-

tion and convert the data to XDenseSim Sensor input format as follows.

We define a spatial region of interest at the data source, from which we extract data

points, according to the desirable sensing granularity (number of nodes in the network).

We extract data only from the points in which sensor nodes would be physically located

(having defined the deployment region and granularity).

Following, we condition the data extracted by converting it from its original full scale

into a new one, that corresponds to the one of the real sensor considered. The data new

scale is represented using and integer scale, ranging from 0 to 2res, where res is the sensor

resolution given in number of bits.

Finally, the data is converted to a specific file format, which can be imported by

XDenseSim. This is a text-based custom format, suitable to both static and dynamic data

inputs. In essence, it is a 3-D array, with the first two dimensions representing a matrix

in which each cell represents a node, whereas the third dimension is the time. It is impor-

tant to remark that these steps apply to scenarios with both single and multiple frames of

data (both from CFD, image or video input), with the difference that it is applied to every

frame, which are aggregated into a single XDenseSim file.

One approach is to extract temporal data from a video file that shows the data of

interest. Figure 5.5 shows the graphical tool used to extrat data from a video that shows a

planar air-flow over time.

A more elaborate approach consists of using 3-D CFD raw data to generate the input

for XDenseSim. The CFD simulation scnario we use consists of an ONERA M6 wing in

68 Simulation Model for Fluid Dynamics Sensing

Figure 5.5: Tool for generating temporal sensor data from a video files of a CFD simula-

tion.

viscous flow simulation [129].1 This workflow is shown in Figure 5.4.2 It consists of the

following steps:

(i) Generate wing model: A 3-D mesh structure of a wing is generated and imported

into the CFD simulator (Figure 5.4(a));

(ii) Simulate wing performance: The CFD simulator is run to simulate a wing pitching

through a high speed air flow. Temporal pressure and temperature data of the surface

of the wing are produced. (Figure 5.4(b));

(iii) Extract sensor data: These temporal pressure and temperature data are extracted,

but only from the points in space that correspond to the XDense node deployment.

Figures 5.4(c) and 5.4(d) illustrate sensor deployment and sensor data, respectively.

The coordinates in Figures 5.4(d) matrix refer to node’s absolute location coordi-

nates on the network (represented by the gray dots).

We use the SU2 integrated computational environment for multi-physics simulation [130]

to generate this data.

Note that there are fewer nodes per row towards the tip because of the wing’s tapered

shape. This results in a network with uneven distribution of nodes. This should be kept in

1The ONERA M6 wing was designed as an experimental geometry for studying three-dimensional,

high Reynolds number flows with complex flow phenomena (transonic shocks, shock-boundary layer inter-

action, separated flow). It has become a classic validation case for CFD codes due to its simple geometry,

complicated flow physics, and availability of experimental data.
2Note that, for simplicity, Figures 5.4(a-d) shows only the top side of the wing.

5.2 Simulation Model 69

mind when choosing the routing protocols, that should address potential issues related to

the absence of nodes in the matrix.

5.2.2 Post-processing Tools

Post-processing tools are a key component of the simulator, since they allow the user to

debug, analyze and extract usage and performance metrics.

We provide a set of tools to enable an extensive analysis of XDense. In this section,

we showcase some of these tools, which are used throughout this research work ir order

to extract each of the results presented.

(a) (b)

Figure 5.6: The node in the center (sink) requests and receives back compressed data from

clusters. (a) and (b) show different snapshots of the reconstruction of the data by the sink,

as the data is received.

We provide a sensor data visualizer for visualization of sensed data for debuging. It

shows nodes activity overall, from the processors, networking device and sensed data.

Figure 5.6(b) shows two snapshots of a network deployment with 40 × 30 = 1200 nodes

on the bottom and top of a wing (seen unfolded longitudinally at the front of the wing).

The input data is obtained from CFD, as detailed in the previous section. In this scenario,

the node in the center (sink) requests and receive back compressed data from clusters.

The data is reconstructed as it is received by the sink.

The first snapshot (Figure 5.6(a)) shows the initial time instants. The first request by

the sink is still propagating on the network and the sink has only received data from the

nearest clusters. Figure 5.6(b) shows the same scenario, some time instants later, after the

sink reconstructing the data from the entire (active) network.

70 Simulation Model for Fluid Dynamics Sensing

Figure 5.7: Packet trace (in the left) and extracted information on the right. It shows the

input data and node’s activity heatmaps.

Figure 5.7 shows the packet trace in the left, and the extracted information on the

right. It shows the input data and node’s activity heatmaps.

Figure 5.8 shows the trace of a single packet traveling on the network. It shows the

time instant at which each transmission occurs, and consequently the time the packet

stayed at each hop because of queuing.

5.3 Performance Evaluation With Airflow Input Data 71

Figure 5.8: Single packet trace. It shows the time instant at which each transmission

occurs.

5.3 Performance Evaluation With Airflow Input Data

We use XDenseSim to evaluate XDense’s distributed processing capabilities and to pro-

vide metrics on the data acquisition delay, load on the network, queue size and reliability

of acquired data.

Figure 5.9: XDense network superimposed on the CFD dataset snapshot from [6], show-

ing clustering for nradius = 1.

For the representative input phenomena, we use a planar airflow emitting from a noz-

zle into a room filled with air. Figure 5.9 shows the input data before being imported.

This scenario is commonly used to study the evolution of airflows. It allows capturing the

characteristics and the role of the vortices on turbulent flows and at the transition region,

in order to better understand the phenomena [25]. Studies based on the planar airflow

scenario are important due to their low complexity, which allows it to be performed both

using real airflow and imaging setups, but also using CFD with relatively low computa-

tional complexity. Its importance is also related to the possibility it gives on comparing

72 Simulation Model for Fluid Dynamics Sensing

Parameter Value

Network dimension 101×101

Num of Nodes 10200

Sinks 1 (centered)

Clusters size (nradius) 0 to 4

Table 5.1: XDense simulation parameters.

experiment results obtained using imaging setups and CFD, commonly used to validate

CFD models [6].

The planar airflow scenario, and the wing scenario presented earlier in Introduction

(Figure 1.1), exhibit similar mixing phenomena of laminar and turbulent flows, and this

transient region is of interest in both cases. Thus, we use the planar airflow as our valida-

tion scenario.

We perform four experiments to demonstrate and evaluate the different feature ex-

traction algorithms proposed. The first experiment is a straightforward case in which we

examine the efficacy of XDense in sensing, extracting in-network compressed data and

reconstructing the sensed data. We compare the extracted data with reference data in or-

der to measure the reliability of the extracted data. In this experiment we use CFD data

as our input. This allows us to get a base case for XDense’s performance.

In a second experiment we perform distributed feature detection using XDense on

the same CFD input data. We detect the transition region in the planar airflow, and we

reconstruct the sensed data. The reconstructed data is then compared with the reference

data in order to measure the reliability of the extracted data.

In a third experiment, we also detect the transition region on a planar airflow sce-

nario. But instead, we use airflow data from an imaging setup. We evaluate the accuracy

of the detection by comparing it with a reference from literature, obtained using image

processing techniques to perform the same detection.

These three experiments are all temporally static in nature, and we analyze only one

snapshot of an input phenomena. In the fourth experiment, we look at how XDense

handles CFD temporal inputs.

The XDense deployment inter-space (that is, space between nodes), depends on the

minimum size of the observed phenomena. Therefore, this has to be smaller than the

minimum turbulent structure size [29]. Therefore, we use a network with 101× 101 =

10201 nodes with one sink in the center. With believe that this density is more than

enough to observe the features of the airflow we are interested. Deployments with less

nodes are tested later in Chapter 6. Table 5.1 summarizes the system parameters defined,

and the ones varied in order to evaluate XDense.

5.3 Performance Evaluation With Airflow Input Data 73

ND

DS DA

Is sink

Event detected

Wait for ND
ND receivedIs SN

ND done

Data announced

Figure 5.10: State diagram for an XDense node.

5.3.1 Distributed Application Execution

A naive solution to the dense sampling problem is to request each node to continuously

sense information about the airflow and send it back to one or more sinks. The infor-

mation collected by the sinks is reconstructed and used to compute the airflow’s proper-

ties. Clearly, this approach provides the highest resolutions possible, but also generates

a tremendous load on the network, requiring large buffers in each node, and imposing

significant delays between the time at which the information is requested and the time it

is fully received by the sink. Moreover, the sensed information may have a maximum

lifetime.

Instead, we use XDense to efficiently build a global picture of the airflow by orga-

nizing the nodes in clusters and perform local data processing. In each cluster, one node

serves as the cluster-head node. It performs data aggregation within its cluster and is re-

sponsible for processing (and/or compressing) the data locally to send only meaningful

information to the sink.

In another appplication scenario, we program the cluster-heads to inform the sink

only upon the occurrence of meaningful events (e.g., airflow changes from laminar to

turbulent and conversely). Keeping in mind that routing protocols should ideally exploit

the network topology to avoid congestion; we use the application protocols defined in

Chapter 4 to allow coordination of clusters by the sink.

These applications are based on three operative principles: (1) the nodes are clustered

and one node in the center of each cluster (cluster-head) is in charge of aggregating,

pre-processing the data and sending it to the sink; (2) the execution of the application

is divided logically in subsequent phases, each one using different application protocols;

(3) the network uses different routing protocols to guarantee spatial isolation between the

clusters.

The distributed protocol consists of three operating phases (Figure 5.10), namely:

• Phase φ1: network discovery (ND);

• Phase φ2: local data-sharing (DS);

74 Simulation Model for Fluid Dynamics Sensing

• Phase φ3: remote data-announcement (DA).

These three different phases are briefly explained next.

Network discovery (ND): At the ND phase, the network is initialized, with the sink

broadcasting its location. On the reception of the packet, given the application protocol

defined on the packet, nodes compare their relative position with the size of the cluster

specified in the packet, and whether if they are supposed to become cluster-head or not

(depending on their relative position inside their own cluster), and if not where is the

nearest cluster-head located.

The parameter nradius defines the size of the cluster, by defining the maximum distance

(in terms of Manhattan distance) a node can be from the cluster-head to be considered part

of that cluster. It is an application dependent parameter, and it is selected according to the

expected characteristics of the phenomena to observe. The naive case is nradius = 0, which

means that each node is a cluster-head of itself, sending data directly to the sink without

aggregating from any other node. The greater the value of nradius, the greater the number

of nodes N in the cluster. The number of nodes N in a given cluster is given by:

N = 4×
nradius

∑
i=1

i = 2×nradius× (nradius +1) (5.1)

This is the sum of nodes in each of the 4 quadrants of the cluster (except for nodes on the

edges of the network, which are inactive).

For clustering, as nodes switch from ND to DS phase, they verify three conditions

related to its location and cluster size (nradius), in order to perform cluster-head election:

x mod nradius = 0

y mod nradius = 0

(x+ y) mod (2∗nradius) = 0

(5.2)

The rational behind this equation is that the three conditions are only satisfied for

nodes located in the center of a cluster with nradius = n. In this case, the node set itself as

cluster-head.

At the reception of this packet, nodes switch to the DS phase.

Local data sharing (DS): During the DS phase nodes continuously sense the environ-

ment and communicate their sensed values to their cluster-head by unicasting their value

inside their cluster, so that each cluster-head receives values from all nodes on its cluster.

5.3 Performance Evaluation With Airflow Input Data 75

Remote data announcement (DA): Depending on the findings of the cluster-heads,

according to the application goals, they may switch to the DA phase and send their data to

the sink, switching back to the DS phase immediately after, and continuing the cycle. As

the sink receives data from cluster-heads from the entire network, it is able to reconstruct

the observed phenomena with increasing accuracy and coverage.

5.3.2 Experiment I: Sensing Compressed Static CFD Data

In this first experiment, we evaluate XDense performance when extracting compressed

data from the network, by reading aggregated data from clusters of nodes.

We aim at finding the balance between local transmissions and long range transmis-

sions to sinks, that provides the best network load distribution and at the same time, giving

satisfactory resolution of acquired data.

Clusters of nodes are established using the multicast alternative communication pro-

tocol in order to elect the cluster heads. For data aggregation, we use the least square

regression [132]. This is a widely used data fitting algorithm that is suitable for embed-

ded devices applications due to its low computational cost. It demonstrates significant

data reduction and resulting increased performance. There are many other possible ap-

proaches for this goal; we use this one as a placeholder to demonstrate XDense.

Aggregation is done by cluster-heads, on data received from the nodes in the cluster,

as follows. It does it by fitting a plane (of shape z = ax+ by+ c) to the data of the N

nodes on the cluster, being (x,y) the position of the node inside the cluster, relatively

to cluster-head, and z the measured value by that node. N is defined in Equation 5.1 as

the number of nodes in each node’s cluster. We calculate the coefficients a,b,c using

the least square regression, used to determine the plane that best fit the data set. The

least square regression finds the plane that minimizes the distances between itself and the

points (xi,yi,zi).

On switching to the DA phase, the coefficients of the fitted plane are transmitted to the

sink in a single packet that carries a,b and c.

We evaluate the network load for different cluster sizes (nradius). Figure 5.11(a) shows

the number of transmissions on the entire network per transmission time slot (TTS) for

different values of nradius. Because packets have fixed size, the number of transmissions

over time gives us information on the overall network load, which is proportional to the

number of packets exchanged on it.

For nradius > 0, a maximum load spike in the beginning (between 0≤ t ≤ 53) is caused

by the DS phase (shown in Figure 5.11(b)). This maximum load increases with increase

76 Simulation Model for Fluid Dynamics Sensing

0 500 1000 1500 2000 2500

Total execut ion t im e (TTS) in t im e slots

10
0

10
1

10
2

10
3

10
4

10
5

N
u

m
b

e
r

o
f

p
a

c
k
e

ts
 r

e
c
e

iv
e

d
nradius = 0

nradius

nradius

nradius

nradius

= 1

= 2

= 3

= 4

(a) Duration of entire simulation

0 10 20 30 40 50 60

Total execut ion t im e (TTS) in t im e slots

10
2

10
3

10
4

10
5

N
u

m
b

e
r

o
f

p
a

c
k
e

ts
 r

e
c
e

iv
e

d

= 0

= 1

= 2

= 3

nradius = 4

nradius

nradius

nradius

nradius

(b) Zoom in on the transmission time interval (0 to 60)

Figure 5.11: Reading sensed data: Number of receptions over time for different values of

nradius.

of nradius. Figure 5.11(b) shows a zoom in the time window 0≤ t ≤ 60, showing the drop

in communication activity as nodes switch from DS to DA.

Comparing nradius = 1 and 4, this trade-off is due to the increasing number of DS and

decreasing number of DA transmissions as the nradius increases.

Next, we evaluate queue sizes for different values of nradius and analyze the impact

caused by the the variation of the number packets exchanged during DS and DA phases.

We assume infinite queues, with no packet drops. Figure 5.12 shows that the queues

caused by DS are greater for smaller values of nradius. This is because as number of data

announcements (DA) increases, congestion towards the sink also increases.

Additionally, while not shown, nodes in the path to the sink are those that suffer the

biggest queues. As all packets compete for paths leading to the sink. The closer a node is

to the sink, the longer its queue size. Figure 5.13 complements this analysis by showing

the balance between the total number of DS and DA transmissions for different values of

5.3 Performance Evaluation With Airflow Input Data 77

0 1 2 3 4

Neighborhood size (nradius)

0

10

20

30

40

50

M
a

x
im

u
m

 q
u

e
u

e
 s

iz
e

DS

DA

DS + DA

Figure 5.12: Reading sensed data: Maximum queue size for nradius = 1 to 4.

nradius.

Figure 5.14 provides a qualitative comparison of output data. For nradius = 0, all nodes

transmit their readings and this is the maximum possible resolution of the phenomena.

Intuitively, greater the nradius value, greater are the errors when fitting a plane to the data-

set, resulting in greater data loss. In Figure 5.14(d), it is possible to see more clearly how

the increase in the number of nodes in the cluster affect the quality of the sensed data.

Figure 5.15 shows a quantitative comparison of the trade-off between data accuracy

and maximum total acquisition time delay. Accuracy is the mean square error (MSE)

of the sum of differences between the best possible case (which is nradius = 0) and sce-

nario with nradius varying from 1 to 5. The MSE measures the average squared difference

between the sensed values and the values of reference.

The MSE grows with increasing nradius, while maximum acquisition delay decreases.

Looking at these results, nradius = 2 seems to be a good choice, since the smaller turbulent

structures are still distinguishable (as shown in Figure 5.14). It also represents a reduction

in the maximum acquisition delay of approximately 75% of the worst case scenario, with

nradius = 0. With increasing nradius, better data aggregation algorithms could lead to a

smaller slope of the error, but the trend would remain the same.

We compare our results with Pressure Belt, a master-slave, shared bus based network

proposed in [72], for monitoring pressure over an aircraft wing (presented earlier in Chap-

ter 2).3 The authors calculate the time required to read all the nodes simply as: number

of nodes×packet duration. Normalizing Pressure Belt results, and considering one mas-

3Pressure Belt is a strip, mounted crosswise on the wing of an aircraft, connected in one extremity to

a coordinator, and has an embedded data-logger situated inside the airplane. It runs over two parallel full-

duplex RS485 shared links, compatible with the IEEE 1451.2 Standard for a Smart Transducer Interface

for Sensors and Actuators. Up to 255 nodes can communicate at 5 Mbps with packets of 48 bits each. By

using a clock synchronization scheme, time division multiple access (TDMA) is used to communicate with

the nodes.

78 Simulation Model for Fluid Dynamics Sensing

0 1 2 3 44

Neighborhood size (nradius)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
u

m
b

e
r

o
f

tr
a

n
s
m

is
s
io

n
s

1e6

DS

DA (CL)

Figure 5.13: Total number of packets transmitted in the network with nradius = 1 to 4,

using clustering (CL).

ter for each quarter of all nodes, Pressure Belt would have the same performance of the

nradius = 0 scenario. Due to physical and electrical limitations, and due to the maximum

address space, their solution may not be suitable for the density of nodes we consider.

Also, their solution was designed for offline processing, acting as a simple data logger,

making it inapplicable for real-time applications.

5.3 Performance Evaluation With Airflow Input Data 79

0 20 40 60 80 100

0

20

40

60

80

100

(a) nradius = 0

0 20 40 60 80 100

0

20

40

60

80

100

(b) nradius = 1

0 20 40 60 80 100

0

20

40

60

80

100

(c) nradius = 2

0 20 40 60 80 100

0

20

40

60

80

100

(d) nradius = 4

Figure 5.14: Reading sensed data: Extracted data for different values of nradius.

0 1 2 3 4

Neighborhood size (nradius)

0

500

1000

1500

2000

2500

3000

M
a

x
.

e
n

d
-t

o
-e

n
d

 d
e

la
y

 (
T

T
S

)

delay

0.0

0.5

1.0

1.5

2.0

2.5

M
e

a
n

 s
q

u
a

re
 e

rr
o

r
(M

S
E

)

1e7

MSE

Figure 5.15: Reading sensed data: Trade-off between mean square error and maximum

acquisition delay delay for different values of nradius.

80 Simulation Model for Fluid Dynamics Sensing

5.3.3 Experiment II: Detecting Transition Region on Static CFD Data

The response of the system in sensing data from the entire network, even when com-

pressed, may not be satisfactory for some applications’ spatial and temporal requirements.

Figure 5.11 shows that even if we use nradius = 1, total acquisition delay delay is still as

big as 50% of the worst case (nradius = 0).

In this experiment, we introduce and evaluate a distributed feature detection algorithm

that is useful for our application scenario’s real-time nature. We use a feature detection

algorithm to detect the transition region of a flow. As explained earlier, the transition

region is where the fluid transits from a laminar to a turbulent regime.

The feature detection algorithm is distributed as the detection happens independently

at cluster-heads in the network. We show that this approach improves the response time

due to localized distributed processing and thereby decreasing the load on the network.

To detect features of interest at each cluster-head, we use an edge detection algorithm.

We propose a variation of the Sobel operator that is widely utilized in the image process-

ing domain [133]. The algorithm proposed fit to the XDense network capacity, since it is

an algorithm that consumes few computation resources when compered to more complex

image processing algorithms.

In brief, edge detection happens as follows. Each cluster-head performs a 2-D spatial

gradient measurement on an image and emphasizes regions of high spatial frequency that

correspond to edges. This measurement is the weighted sum of values of all nodes in the

cluster, which is proportional to the distance from the cluster-head (rectilinear distance).

After receiving the data from its cluster, the cluster-head applies the edge detection

algorithm to this data and checks if the result exceeds the predefined threshold. This

threshold value defines the minimum sharpness of the edges that we want to detect (as

defined by the application).

If an edge is detected, the cluster head again performs linear regression with the data

gathered from its cluster (as in the previous experiment). This information is then trans-

mitted to the sink, which is then able to reconstruct the scenario with the information

received. The sink receives data only from cluster-heads that detected an edge; that is,

where transitions occurred. In this case the sink is not able to build the complete picture

of the event, but is able to estimate it.

To reconstruct the complete phenomena picture, the sink performs linear vertical in-

terpolation on the aggregated data. The interpolation is done around the center region

of the jet, between the upper and lower limits that define the transition regions of the air

flow. Although we are interested on detecting the transition regions, we reconstruct the

5.3 Performance Evaluation With Airflow Input Data 81

0 20 40 60 80 100

0

20

40

60

80

100

(a) nradius = 1

0 20 40 60 80 100

0

20

40

60

80

100

(b) nradius = 1

0 20 40 60 80 100

0

20

40

60

80

100

(c) nradius = 2

0 20 40 60 80 100

0

20

40

60

80

100

(d) nradius = 2

Figure 5.16: Feature detection: Extracted boundary data, and reconstruction of boundary

data for nradius = 1 to 2.

complete scenario to be able to compare the quality of the acquired with the previous

experiment scenario reference.

Figures 5.16 and 5.17 show qualitative results of feature detection with our algorithms

able to correctly detect the transition regions. As expected, smaller nradius lead to more

accurate detection, providing finer details about regions of greater turbulence (for example

where vortices’s indentations are). The same trend as from the previous experiment can

be observed: With greater nradius values, high frequency shapes on the phenomena data is

degraded, like in the vortices’s indentations.

We also analyze the impact of varying nradius on maximum queue size and network

load metrics. Results are shown in Figure 5.18 and 5.19. They show that queue sizes

and minimum acquisition delay are inversely proportional to nradius, as less nodes are

transmitting to the sink to inform their findings. In this sense, these are similar results to

the ones obtained in the previous experiment.

Figure 5.20 shows a quantitative comparison of the trade-off between MSE and max-

82 Simulation Model for Fluid Dynamics Sensing

0 20 40 60 80 100

0

20

40

60

80

100

(a) nradius = 3

0 20 40 60 80 100

0

20

40

60

80

100

(b) nradius = 3

0 20 40 60 80 100

0

20

40

60

80

100

(c) nradius = 4

0 20 40 60 80 100

0

20

40

60

80

100

(d) nradius = 4

Figure 5.17: Feature detection: Extracted boundary data, and reconstruction of boundary

data for nradius = 3 to 4 for comparison.

imum acquisition delay. As in the previous experiment, the MSE grows with increasing

nradius, while maximum acquisition delay decreases. Again, by looking at these results,

nradius = 2 seems to be a good choice, since the smaller turbulent structures are still dis-

tinguishable (as shown in Figure 5.16). It also represents a reduction in the maximum

acquisition delay of approximately 88% of the worst case scenario, with nradius = 0.

The maximum acquisition delay is shown in Figure 5.19. The delays are much lower

than that for sensing data from the entire network (previous experiment). For nradius = 1,

the delay drops ten-fold when compared to the previous experiment. Even more, the MSE

also dropped by a factor of 2.

Furthermore, Figure 5.21 shows the balance between the total number of packets ex-

changed during DS and DA when performing feature detection. It is important to notice

that both experiments have the same results for the DS phase, which is common among

them. This figure gives us a sense of proportion to the impact of using different distributed

data processing algorithms on the network load.

5.3 Performance Evaluation With Airflow Input Data 83

1 2 3 4

Neighborhood size (nradius)

0

5

10

15

20

25

30

M
a

x
im

u
m

 q
u

e
u

e
 s

iz
e

DS

DA

DS + DA

Figure 5.18: Feature detection: Maximum queue size for nradius = 1 to 4.

0 50 100 150 200 250 300 350 400

Total execut ion t im e (TTS) in t im e slots

10
0

10
1

10
2

10
3

10
4

10
5

N
u

m
b

e
r

o
f

p
a

c
k
e

ts
 r

e
c
e

iv
e

d

nradius = 1

= 2

= 3

= 4

nradius = 1

nradius

nradius

nradius

Figure 5.19: Feature detection: Number of receptions over time for different values of

nradius.

1 2 3 4

Neighborhood size (nradius)

100

150

200

250

300

350

400

M
a

x
.

e
n

d
-t

o
-e

n
d

 d
e

la
y

 (
T

T
S

)

delay

0.0

0.5

1.0

1.5

2.0

M
e

a
n

 s
q

u
a

re
 e

rr
o

r
(M

S
E

)

1e7

MSE

Figure 5.20: Feature detection: Trade-off between mean square error and maximum ac-

quisition delay for different values of nradius.

84 Simulation Model for Fluid Dynamics Sensing

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
u

m
b

e
r

o
f

tr
a

n
s
m

is
s
io

n
s

1e6

DS

DA (FD)

4

Neighborhood size (nradius)

Figure 5.21: Total number of packets transmitted in the network with nradius = 1 to 4,

using feature detection (FD).

5.3 Performance Evaluation With Airflow Input Data 85

5.3.4 Experiment III: Detecting Transition Region on Static Image

Data

Similar to the previous one, in this experiment we detect the transition region between

turbulent and laminar air flow. In this case we use a different, but more realistic, input

data source. Our data source is an image from [7], where the authors use a camera setup

to indirectly measure the speed distribution of a planar airflow on free air by applying

tracers on the flow.

The authors apply image processing techniques to detect the transition region, which

is the envelope of the turbulent airflow. Figures 5.22(a-c) show the application of the

processing techniques on an image in sequence. First, the image is binarized using a fixed

threshold, then all the contours are traced, whereas only the contours with the greatest

area are chosen; finally indentations are removed.

This is a common image processing approach for feature detection. We use this tech-

nique to detect the transition region in the original data, using common image processing

techniques. The result (see Figure 5.22(c)) is then used as a reference, to compute the

accuracy of the detection algorithms run on XDense. We do that as follows. First, we

use the same flow snapshot image from [7] as input to XDenseSim. We use XDenseSim

to detect the transition in network using the modified Sobel operator proposed on the

previous experiment. The output is timely compared with the reference transition region

computed.

Figure 5.23 shows the results of our simulation. It depicts the original snapshot (Fig-

ure 5.14(a)), the events sensed by our setup (Figure 5.23(b)), and the detected transition

region by the sink (Figure 5.23(c)) superposed by the original output from Figure 5.22(c).

We get a measure of our simulation’s accuracy by comparing the distance between our

findings to the reference transition region.

Using this process, we evaluate the behavior of our system under varying cluster sizes

(nradius). We are interested in observing: (i) the accuracy of the transition region detected;

(ii) the total number of transmissions and (iii) the total acquisition time, which is the time

required to perform the detection.

Figures 5.24 and 5.25 show (a) the detected transition by the sensor nodes and (b) the

calculated transition by the sink. The images allow visual comparison that support our

numerical results, and provide intuition for the impact on the accuracy of the detection

algorithm by varying the cluster size between 1 < nradius < 7.

The cumulative density function (CDF) shown in Figure 5.26 gives a measure of the

effect of utilizing different nradius. It shows that for 2 < nradius < 4, more than 80% of

the snapshot has an error lower than 3%. Moreover, increasing the cluster size does

86 Simulation Model for Fluid Dynamics Sensing

(a) (b) (c)

Figure 5.22: Process steps for boundary computation described in [7]: (a) Original image;

(b) binarized image; (c) contour tracing and contour smoothing.

(a) (b) (c)

Figure 5.23: Processing steps of our network. (a) Is the phenomena as seem by our

network, after downsampling the full resolution image to 101× 101 pixels. (b) is the

gradient detection by the sensor nodes with nradius = 3, and (c) is the contour smoothing

post-processing done by the sink.

not necessarily implies a greater accuracy, but generally in fewer events detected. The

other way around, the minimum nradius = 1 presents noisy detection, whereas intermediate

nradius values provide the best trade-off.

Figure 5.27(a) shows the trade-off between the maximum acquisition delay in TTS,

and mean square error (MSE) of the transition region found. This gives an idea of how

responsiveness varies for the different values of nradius, and the impact on the accuracy.

With nradius = 3, MSE is minimum, with a minimum cost in time, when compared to

nradius = 2, which provides the best response time, but with a higher MSE.

Figure 5.27(b) presents the number of transmissions, therefore providing a picture

of the actual load on the network. It shows that with increasing of the cluster size, the

number of global transmissions (DA) goes down (although the local transmissions (DS)

5.3 Performance Evaluation With Airflow Input Data 87

(a) (b)

Figure 5.24: Processing steps of our network. (a) Transition region detection by the sensor

nodes with nradius = 1, and (b) is the contour smoothing post-processing done by the sink

in black, superimposed on 5.22(c).

(a) (b)

Figure 5.25: Processing steps of our network. (a) Transition region detection by the sensor

nodes with nradius = 7, and (b) is the contour smoothing post-processing done by the sink

in black, superimposed on 5.22(c).

increases accordingly). This in turn affects the total transmissions time (as can be seen

back in Figure 5.27(a)).

88 Simulation Model for Fluid Dynamics Sensing

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Error (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v

e
 d

e
n

s
it

y

= 7

= 6

= 5

= 4

= 3

= 2

= 1

radiusn

radiusn

radiusn

radiusn

radiusn

radiusn

radiusn

Figure 5.26: Cumulative density function for different nradius, of the error between .

1 2 3 4 5 6 7

Neighborhood size (nradius)

190

200

210

220

230

240

M
a

x
.

e
n

d
-t

o
-e

n
d

 d
e

la
y

 (
T

T
S

)

delay

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
S

E
 (

1
e

-3
)

MSE

(a)

1 2 3 4 5 6 7

Neighborhood size (nradius)

0

500

1000

1500

2000

2500

D
S

 p
a

c
k
e

t
c
o

u
n

t
(1

0
-e

3
) DS

600

700

800

900

1000

1100

1200

D
A

 p
a

c
k
e

t
c
o

u
n

t

DA

(b)

Figure 5.27: (a) Trade-off between mean square error (MSE) and maximum acquisition

delay (TTS) for different values of nradius, and (b) is the total number of transmissions for

the different protocols, for the same values of nradius

5.3 Performance Evaluation With Airflow Input Data 89

5.3.5 Experiment IV: Sensing Temporal CFD Data

0 20 40 60 80 100

0

20

40

60

80

100

(a) tinitial = 0

0 20 40 60 80 100

0

20

40

60

80

100

(b) t f inal = 120

Figure 5.28: Real-time sensing: Input data at (a) t = 0 and (b) t = 120 sampling time slots

(STS).

In this experiment, we address one of the larger goals of XDense, which is to sense

and process data in real-time. We extend the previous analyses, which had static CFD

input data, to temporal CFD input data.

Figure 5.28 shows two sampling instants, out of 120 total, of a temporal phenomena

that lasts for 600 ms. Within this period, turbulent airflow with vortices emerge. Our

aim in this experiment is to see how our detection algorithms react to temporal data. We

evaluate (using clustering) both data compression and feature detection algorithms of the

previous experiments.

Figure 5.29 shows the network activity with respect to time using both data compres-

sion and feature detection algorithms. Note that in this case, we measure the time using

sampling instants (instead of TTS). A sampling instant (SI) is each period of time in which

a node sample new data. We assume that the interval between each sampling instant is

long enough to fit enough TTSs, enough to all transmissions (DS and DA transmissions)

due to the new sample; that is such that all transmissions of one sampling instant finish

before the next one starts.

The network continuously monitors the evolution of the flow in this time period. At

samplinginstant = 1, there is a peak of transmissions since all data is new and hence

transmitted (this is also experienced in both the previous static experiments). For nradius =

1, the initial activity peak lasts for approximately three samples, a period in which the

network gets overloaded. A few additional samples are required for the nodes to service

their queues. This is a situation to be avoided as it affects the response time of the system.

90 Simulation Model for Fluid Dynamics Sensing

0 20 40 60 80 100 120
0

200

400

600

800

1000
N

u
m

b
e

r
o

f
D

A
s

nradius = 4 (CL)

nradius

nradius

nradius

= 3 (CL)

= 2 (CL)

= 1 (CL)

Sampling instant

(a) Clustering

0 20 40 60 80 100 120
0

200

400

600

800

1000

N
u

m
b

e
r

o
f

D
A

s

= 4 (FD)

= 3 (FD)

= 2 (FD)

= 1 (FD)

nradius

nradius

nradius

nradius

Sampling instant

(b) Feature detection

Figure 5.29: Real-time sensing: Network activity, shown as number of DAs per sampling

instant, over 120 sampling instants, for nradius = 1 to 4.

In all the scenarios, there is an increase in network activity as the flow becomes more

turbulent. A common pattern of peaks can also be identified. This is due to nodes reacting

similarly to abrupt variations in input data, as the appearance of a new vortices’s in the

observed area.

Moreover, for designing a stable system, we need to make sure that one entire cycle

of execution, (that is, cycle of DS followed by DAs or the total execution time of one

snapshot of Figures 5.11 and 5.19) is contained in between two sensor samples.

Figure 5.30 shows the distributions of the maximum queue size during the DS phase,

per sampling instant (from t = 0 to t = 120). As observed earlier, using the clustering al-

gorithm and nradius = 1 causes overload and queuing as noted by the outliers. Also, queues

5.4 Concluding Remarks 91

1 2 3 4

Neighborhood size (nradius)

0

5

10

15

20

25

30

Q
u

e
u

e
 s

iz
e

(a) Clustering

1 2 3 4

Neighborhood size (nradius)

0

5

10

15

20

25

30

Q
u

e
u

e
 s

iz
e

(b) Feature detection

Figure 5.30: Realtime sensing: p1 queue sizes for nradius = 1 to 4.

quickly drop with the increase in nradius, with more contained variations and bounded be-

havior, as seen in Figure 5.30(a). Using the feature detection algorithm, Figure 5.30(b)

shows that the maximum queues are smaller but, with comparably larger variations.

5.4 Concluding Remarks

Larger cluster sizes lead to increased accuracy but also increased traffic. But most im-

portantly, performing in-network data compression, and feature detection and extraction

leads to drastic reductions on the time required to sample the data. These results should

be used to specify the most adequate systems parameters for the operation of XDense,

depending on the application scenario.

92 Simulation Model for Fluid Dynamics Sensing

We use base techniques in this evaluation and, in future work, we intend to investigate

further techniques for comparative analysis. Alternative routing protocols need to be

evaluated in order to decrease the number of transmissions required for a detection and,

consequently, the network utilization and total latency.

Despite the potentials of reducing communication delays by introducing distributed

data processing techniques, we also notice that both queues and delays can be high, with

unbounded behavior. In order to enable the use of XDense in real-time applications, we

need the means to allow reducing delays and queue size, and more importantly, to achieve

real-time communication with bounded delays and queue sizes. An analytical framework

is presented in the next chapter in order to address these issues.

Chapter 6

Analytical Model for Real-time Sensing

Using Traffic Shaping

6.1 Introduction

The practicality of XDense for efficient feature detection and extraction is a necessary but

not sufficient condition. We also need to provide guarantees on execution time and bounds

on resource utilization. Timeliness is important for real-time applications like AFC, for

which timing guarantees are essential to achieve closed-loop actuation. Providing bounds

on resource utilization is also crucial to correctly dimension the network, in order to avoid

overload and consequent data loss. These are factors that have great influence on hardware

requirements, cost and consequently on the applicability of XDense.

In this chapter, we extend XDense with real-time capabilities. We do this by im-

plementing traffic shapers in each node such that the overall traffic is predictable and

analyzable. Further, we propose an analysis framework to accurately model the network

in terms of communication delay characteristics and memory requirements. Specifically,

we present the following three contributions: (i) develop a mathematical framework to

model and analyze applications and network; (ii) propose heuristics to shape traffic in

the network; (iii) provide upper-bounds on communication delays, application execution

time, and maximum buffer requirements.

With this framework, we analyze homogeneous and heterogeneous traffic sources to

compare the performance of the heuristics with a base case best-effort approach.

93

94 Analytical Model for Real-time Sensing Using Traffic Shaping

(d)

(b)

(c)(a)

Input flow Output flow

Figure 6.1: Example 45× 45 network, with a single central sink. In this case, with

nradius = 2. Application phases: (a) φ1 – Sink requests data from cluster-heads; (b) φ2

– cluster-heads in turn send a multicast request to nodes in their cluster; (c) φ3 – Nodes

send sensor data back to their respective cluster-head; (d) φ4 – cluster-heads process re-

ceived data and send result to sink.

6.2 Application Execution

Consider the AFC use case presented earlier in the Introduction as our working example.

The objective is to collect information on the nature of the airflow and identify whether it

is laminar or turbulent by quantifying its characteristics along the wingspan and identify

where the transition region resides.

As previously discussed, we use XDense to efficiently build a global picture of the

airflow by organizing the nodes in clusters and perform local data processing. In each

cluster, one node serves as the cluster-head node. It performs data aggregation within

its cluster and is responsible for processing (and/or compressing) the data locally to send

only meaningful information to the sink. The routing protocols elected should ideally

exploit the network topology to avoid congestion. It is also required to define application

protocols to allow coordination of clusters by the sink.

To tackle the challenge of analyzing and computing upper-bounds on the application

execution time and the buffer requirements of the nodes through distributed processing,

XDense uses three operative principles: (1) the nodes are clustered and one node in each

cluster (cluster-head) is in charge of aggregating and pre-processing the data; (2) the

execution of the application is divided logically in subsequent phases; (3) the network

implements routing schemes which guarantee spatial isolation between the clusters.

6.2 Application Execution 95

6.2.1 Clustering Nodes

As explained earlier, the reason for grouping the nodes into clusters is to reduce the load

on the network by performing in-cluster data pre-processing at the selected cluster-heads.

Our tested solution implements non-overlapping “square” clusters – the network topology

being a 2-D grid of X ×Y nodes, all clusters are non-overlapping and of size nsize×nsize,

with nsize ≤ X and nsize ≤ Y . nsize must be a positive odd number and the cluster-head is

the node located at the “center” of the square. The cluster size nsize is defined through the

system parameter nradius that denotes the maximum distance from the cluster-head to the

farthest node in the cluster (considering rectilinear distance, a.k.a. Manhattan distance).

Figure 6.1 shows a scenario with nradius = 2. Thus, the resulting total number of nodes in

each cluster is a function of the nradius given by (2×nradius +1)2.

Nodes arbitrate their role on the network at run time (to act either as cluster-head or

normal node). They do this on reception of a packet from the sink containing the packet

origin and the nradius parameter. Each node then calculates, based on its position in the

network relative to the sink, if it is supposed to act as a cluster-head or as a normal node.

The purpose of local in-cluster processing is to extract high level aerodynamic infor-

mation of the airflow, which is transmitted in a smaller number of packets (when com-

pared to the number of packets required to transmit the raw data). However, the pre-

processing and compression algorithms to be used are application-specific and are not in

the scope of this chapter. We have though discussed application-specific data processing

issues in Chapter 5.

6.2.2 Temporal Isolation Through Phases

Similarly to the experiments presented in Chapter 5, the execution of the application

is logically divided into a set of consecutive phases. In the previous experiments three

phases were used, which was enough to ensure the feature extraction functionality. In this

case, because we are interested in providing real-time communication, it was convenient

to separate the execution into four phases: φ1,φ2,φ3 and φ4. The first phase is started by

the sink, when it requests data from the cluster-heads. Specifically, the four phases are:

• Phase φ1. The sink requests the cluster-heads of all clusters to send the processed

data;

• Phase φ2. On receiving the request from the sink, the cluster-heads in turn request

the nodes of their respective clusters to send their data;

• Phase φ3. Every node of each cluster transmits its sensed data to its cluster-head;

96 Analytical Model for Real-time Sensing Using Traffic Shaping

• Phase φ4. The cluster-heads process the received data and transmit the result back

to the sink.

Note that φ2 was not used in the previous experiments, given that the request from

the sink (φ1) was used to trigger φ3 directly. However, because our intention is to pro-

vide temporal predictability, the addition of φ2 was convenient in order to add temporal

predictability to each cluster’s behavior and consequently simplify the analysis.

Also note that the clusters may not always be in sync with respect to the phase of

their execution. The second phase (φ2) for instance, starts in each cluster with a different

time offset; this offset being proportional to the distance between the cluster-head of

each cluster and the sink. We assume cluster-heads’ clocks are synchronized during φ1,

at the time they receive the request from the sink. The same applies to sensor node’s

clocks, which are synchronized during φ2, at the time they receive the request from their

cluster-head. That is, all nodes co-participating on a phase (in the same cluster) have a

common time basis, which is an important assumption for the proposed heuristics to work.

We believe this is a reasonable assumption, since nodes’ synchronization point happens

just before synchronism is required, providing a momentary synchronism during a given

phase, even when there is considerable clock skews between nodes.

Another important assumption is that, even though sensors data may arrive at different

time instants to the sink, we assume the samples are done in simultaneous by all nodes.

We assume this is to ensure consistency on the acquired data, as from the same time

instant; even though this has no practical effect on the results provided in this chapter.

Despite their special role, the sink and cluster-heads sense as any other node. The sink

is the only node to act as the gateway with the outside world and has a backhaul link (for

example, a wireless link). Figures 6.1(a) to 6.1(d) show the four phases in a chronological

order.

6.2.3 Spatial Isolation Through Routing Schemes

The four phases described above require spatial isolation so that packets do not compete

with each other for network resources when traversing it. We use the dimensional ordered

routing protocols presented in Section 4.4.1.

Phases φ1 to φ3 use the Counterclockwise Dimension Routing (see Figures 6.1(a)-

(c)), while in phase φ4 we use the shifted clockwise dimension order algorithm (see Fig-

ure 6.1(d)).

The nodes aligned with the sink are not part of any cluster. They provide an exclusive

route for packets of φ4, sent by the cluster-head to the sink. This routing scheme results

6.3 Real-time Networking Model 97

in flows from phase φ4 to travel orthogonal to the flows from phases φ1,φ2 and φ3, and

therefore, they do not compete for the same output port at any node on the way. This

enables spatial isolation between the flows from the different phases.

6.3 Real-time Networking Model

We endow XDense with real-time capabilities by shaping the traffic at every output port of

every node in the network. In simple terms, by controlling how and when packets are sent

by each node, we are able to compute the maximum buffer requirements and determine

the precise maximum application execution time.

The real-time application deployed on the network is characterized by a set Φ =

{φ1,φ2, . . . ,φn} of n consecutive event-triggered phases (communication and processing

primitives) that constitute the logical part of the application execution. In this work, we

assume n = 4 (as explained in the previous section) but the approach can be extended to

any arbitrary number n of phases. Every phase φi ∈Φ, with i ∈ [1,n], is characterized by

a set Fi of mi ≥ 1 communication traffic flows exchanged between the nodes involved in

phase φi. Each flow fi, j ∈Fi, with j ∈ [1,mi], consisting of one or more packets, has an

unique source node from which the communication is initiated, and may have multiple

destination nodes. Formally, a flow fi, j is modeled as:

fi, j = {Oi, j , σi, j , βi, j} (6.1)

The offset Oi, j is a constant delay before the sending of the first packet of flow fi, j. The

message size σi, j is the number of packets that are sent in each flow fi, j and the burstiness

βi, j ∈ [0,1] represents the rate at which those packets are released. A burstiness of 0

means that no packets are transmitted, and a burstiness of x ∈]0,1] means that a packet is

transmitted every 1
x

TTS. These three parameters together describe a finite constant-rate

flow with an initial offset. The flow parameters σ and β were conceived to couple the

application sampling requirements with the communication model, in the sense that they

allow modeling application scenarios with different data sampling requirements. A few

example flows are illustrated below.

Example 1 (9 Degrees of Freedom (DOF) motion sensor) Consider a 9 DOF motion

sensor whose data has to be transmitted as nine separate packets in a single flow (one

packet for each degree of freedom). In this case, we want the data to be transmitted

together. Therefore, we set β = 1 with σ = 9 for that flow.

98 Analytical Model for Real-time Sensing Using Traffic Shaping

f1

f2

R TS f3

ND

Node 0510152025

051015TTS

TTS

Figure 6.2: Traffic shaper example scenario: two input flows shaped by an intermediate

node as an output flow. Parameters for the input flows are f1 = {O = 2.5,β = 1,σ = 10}
and f2 = {O = 1,β = 1

5
,σ = 3}. The resulting flow is f3 = {O = 2,β = 1

2
,σ = 13}.

Example 2 (Pressure sampling) Consider a use-case in which ten samples of pressure

data need to be transmitted, using one packet per sample. We are interested in having

periodic sampling, equally distributed in time. By setting the burstiness to 1
5

for instance,

one packet will be sent every 5 TTS. Therefore, for that flow we set β = 1
5

and σ = 10.

6.3.1 Shaping Flows and Traffic Throughout the Network

As discussed above, the sending of all packets by the source node of the corresponding

flow f is done according to its parameters (O,σ ,β); these three parameters allow for a

precise timing and sending rate at the source node of f . Note that for simplicity, we shall

use hereafter the symbol f to denote a flow. We will mention the indexes i and j that

indicate the phase and flow indexes respectively only if necessary.

Although the flows are shaped at their source, when multiple flows (say, f in
1 , f in

2 , . . . , f in
k)

traverse the network at the same time, pass through the same router, and compete for the

same output port, the resulting output flow f out at that port is a superposition of all these

competing flows. As such, f out may present an irregular packet transmission pattern and

a rate that can no longer be modeled using the three parameters (O,σ ,β).

For example, let us look at Figure 6.2, which illustrates two input flows f in
1 and f in

2

competing for a same output port of a node. Each of these flows f in
k starts at time Ok and

has a duration defined as ℓk =
σk

βk
. That is, flow fk sends all its packets after ℓk TTS, at

t = Ok + ℓk. In this example, thanks to the traffic shaper TS, the interference of these two

input flows lead to an output flow f out
3 that is not a superposition of the two input flows,

but rather it present deterministic patterns that can be modeled using the three parameters

(O,σ ,β).

That is, to make the network amenable to timing analysis, we shape the traffic at

every output port of every node and make it fit the linear model (O,σ ,β). For that, we

first identify the set of input flows f in
k (with k = 1,2, . . .) at every output port of every

node in the network, and based on the respective parameters (Ok,σk,βk) of these flows,

we compute the parameters (Oout,σout,β out) that are used to shape the resulting output

flow at that output port.

6.3 Real-time Networking Model 99

S(t)
Min-O
Max-S
LQ

oLQoMin-O oMax-S

βMin-O

Time (t)

P
a
c
k
e
t

c
o
u
n

t
(n

)

βMax-S

p1

p2 p3

p4

p5

p6

p7

p8

f1 f2

f3 f4

(a)

(b)

Time (t)

βLQ

fMin-O

fMax-S

Time (t)

(c) fLQ

Figure 6.3: Traffic shaping heuristics: (a) input, and output flows using the proposed

heuristics; time-line showing offset and duration of (b) arriving flows and (c) departure

flows.

In Figure 6.3, we present a more detailed example to illustrate how the traffic shap-

ing is done. Figure 6.3(a) shows packet arrivals curve S(t) due to four input flows

f in
1 , f in

2 , f in
3 and f in

4 (see Figure 6.3(b)). The arrival curve corresponds to the input flows

that define the number of packets to be sent over time from the output port, that depends

on the starting time and duration of all the competing input flows. Three possible re-

sulting flows f out are computed and shown in Figure 6.3(c), each with its corresponding

departure curves in Figure 6.3(a).

The computation of (Oout,σout,β out) is therefore performed at every output port of

every node in the network interactively, starting at the source node of every flow and

iterating, one port at the time, throughout the network until a shaper is defined for all the

output ports.1 We make two important assumptions regarding the flows and their routing.

Assumption 1. During phases φ3 and φ4, in every node, all the packets entering by a

given input port are assumed to exit through a single output port. In other words, a single

input packet does not produce more than one output packet.

Assumption 2. There are no circular dependencies between the flows. For any output

port, say p1, the computation of the parameters of its traffic shaper requires each of its

competing input flows to be modeled already by the three parameters (O,σ ,β). If any of

1Note that it has been proven in [118] that to calculate optimal shaping parameters in a multihop scenario

can be computationally intractable, and thus finding an optimal solution at runtime is not feasible.

100 Analytical Model for Real-time Sensing Using Traffic Shaping

these input flows, say f in
k , comes from the output port (say p2) of an upstream router, it is

required that the parameters (Oin
k ,σ

in
k ,β in

k) of the shaper of that upstream output port p2

have been computed already. Similarly, this requirement must be satisfied for all the input

flows competing for p2, and interactively it must be satisfied as well for all the output

ports of the upstream routers till the traffic shaper at the source nodes of all the interfering

flows. Therefore, computing traffic shaping parameters is an iterative process that must be

executed until (Oout,σout,β out) is calculated for all nodes. In simple terms, there cannot

be a flow f1 competing for an output port with a flow f2 that competes for an output port

with a flow f3, and so on until reaching a flow fk that competes for an output port with f1.

Assuming no cyclic dependencies between the flows, the parameters (Oout,σout,β out)

of every traffic shaper may be computed in many different ways for a same set of interfer-

ing input flows. In the next section, we propose three different methods of computation.

6.3.2 Shaping Traffic at a Single Output Port

We propose three heuristics to compute the parameters (Oout,σout,β out) of the shaper

used at a given output port. Let F in denote the set of input flows that compete for the

output port under analysis. Every f in
k ∈ F in is characterized by the three parameters

(Oin
k ,σ

in
k ,β in

k). For each f in
k ∈ F in, we define the function Sin

k (t) as:

Sin
k (t) =

0 t ≤ Oin
k

β in
k × (t−Oin

k) Oin
k < t < Oin

k + ℓk

σ in
k t ≥ Oin

k + ℓk

(6.2)

Broadly speaking, every function Sin
k (t) represents the number of packets sent by the flow

f in
k at a given time t (TTS). When t is earlier than the starting instant Oin

k of the flow, the

function returns 0 since the flow has not sent a packet yet; For t larger than the finishing

time of the flow (Oin
k + ℓk), the function returns the total number σ in

k of packets sent by

f in
k , with ℓk being the duration of the flow; Between the two bounds Oin

k and Oin
k + ℓk, the

function increases steadily from 0 to σ in
k with a constant slope of β in

k .

Let S(t) = ∑ f in
k
∈F in Sin

k (t) be the sum of the functions Sin
k (t) of all the input flows f in

k .

This function S(t) is depicted in Figure 6.3(a). Informally, S(t) gives the number of pack-

ets that arrive at the considered input port in a time window of length t (TTS). We further

denote by T = {t1, t2, . . . , tm} the finite set of time-instants (sorted in chronological order)

corresponding to the discontinuity points of the function S(t). These discontinuity points

are denoted as p1, p2, . . . , pm in Figure 6.3. With these new notations, we can introduce

our three heuristics for the computation of the parameters (Oout,σout,β out) of the shaper

used at the analyzed output port.

6.3 Real-time Networking Model 101

For a given shaper (Oout,σout,β out) represented by a straight line Lout of slope β out

and passing through the point (Oout,0), the vertical distance dvout
j between a point (t j,S(t j))

∈ S(t), ∀t j ∈T , and the line Lout represents the number of packets being buffered at time

t at that output port. The horizontal distance dhout
j between a point (t j,S(t j)) ∈ S(t),

∀t j ∈ T and Lout represents the delay (induced by the shaper) that all the packets that

have arrived at that output port at time t j will incur because of the shaper.

We start by computing the output flow size σout that is the same for all the heuristics

proposed. Since the shaper is not allowed to drop any packet, it is naturally the sum of

the size of all the input flows f in
k , i.e.

σout = ∑
f in
k
∈F in

σ in
k

In the remainder of this section we discuss the intuition behind each heuristic and explain

how they derive the two other flow parameters, Oout and β out.

Minimum offset (Min-O). This first heuristic aims at avoiding bursty traffic while cop-

ing as much as possible with the bandwidth demand of the input flows. This traffic shaper

forwards the first packet as soon as it can, i.e. one TTS after the packet has arrived, at

time Oout = t1+1 TTS, and forwards all the subsequent packets at the highest admissible

rate; that is, with the highest burstiness β out such that the number of packets sent at any

time t ≥ Oout never exceeds S(t). This burstiness corresponds to the highest slope among

the slopes of all the lines passing through the point (t1 +1,0) such that, for every t j ∈T ,

the point of x-coordinate t j in the line has an y-coordinate ≤ S(t) – In simple terms, the

line is “below” the function S(t), ∀t ≥ 0. This slope is simply given by

β out =

[

min
t j∈T

(

S(t j)

t j− (t1 +1)

)]1

0

where [x]zy =max(min(x,z),y). Note that by definition of t1, we have t1 =min f in
k
∈F in(Oin

k).

Figure 6.3(a) shows Min-O departure curve with β out as βMin-O.

Maximum slope (Max-S). The second heuristic aims at not consuming any bandwidth

for as much time as possible and then send all the packets in a burst. Similarly to the

Min-O heuristic, the Max-S approach selects one “anchor” point of S(t) and computes

the maximum slope β out such that the line with slope β out passing through the selected

102 Analytical Model for Real-time Sensing Using Traffic Shaping

point is “below” the function S(t). In Min-O, we selected the anchor point (t1 + 1,0)

whereas Max-S selects the point (tm,S(tm)). The maximum admissible slope is such that

the line remaining below S(t) is given by:

β out = max
t j∈T

(

S(tm)−S(t j)

tm− t j

)

(6.3)

Figure 6.3(a) shows Max-S departure curve with β out as βMax-S. The offset Oout in Max-S

is simply set to the X-intercept of the line of slope β out and passing through the anchor

point (tm,S(tm)) to which we add 1 TTS, to make sure that packets are not forwarded

before the first packet arrives (like we did in Min-O), for example:

Oout = tm−
S(tm)

β out
+1

After computing the offset Oout, it is now safe to readjust the slope as β out = [β out]
1
0 to

model the fact that the shaper cannot forward a negative number of packets and neither

it can forward more than one packet at a time. Note that this re-adjustment must be

performed after computing Oout as doing it before would in some cases allow a packet to

be forwarded before it has even arrived, that is, the line would not be completely below

the function S(t).

Figure 6.3(a) shows the departure line of Max-S, initially calculated with a slope > 1

as a result of Equation 6.3. That slope is then adjusted to β out = 1 as depicted on that

figure. As seen, after adjusting its slope, the line corresponding to the parameters of the

Max-S traffic shaper does not intersect with the function S(t) – It seems to be “too much

shifted to the right”. An easy patch to reduce this gap between S(t) and the shaper is to

set its offset to the minimum offset such that the line remains below all the points of S(t).

That is,

Oout = min
t≥0

t such that β out ≤min
t j∈T

t j>t

(

S(t)−S(t j)

t− t j

)

(6.4)

Note that this value of Oout can be computed easily by positioning the line of slope β out

on every point (t j,S(t j)), ∀t j ∈ T , and retaining the maximum X-intercept of all these

lines.

Least-square regression (LQ) The intuition behind this third heuristic is to minimize

both the queue size and the delay by finding the line Lout that minimizes the distance

6.3 Real-time Networking Model 103

between every point (t j,S(t j)) ∈ S(t), ∀t j ∈T and Lout. This line is commonly known as

the regression line of the points (t j,S(t j)) ∈ S(t). Using the least-squares method, which

is the most common method for fitting a regression line, the slope of that line is given by:

β out = r×

√

1

m
∑

t j∈T

(S(t j)− S̄)2

√

1

m
∑

t j∈T

(t j− t̄)2

(6.5)

where

t̄ =
1

m
∑

t j∈T

t j

S̄ =
1

m
∑

t j∈T

S(t j)

and r is the correlation coefficient computed as:

r =

∑
t j∈T

(t j− t̄)(S(t j)− S̄)

√

∑
t j∈T

(t j− t̄)2 ∑
t j∈T

(S(t j)− S̄)2

Once we have computed the slope, we choose the smallest offset Oout such that the line

of slope β out and passing through (Oout,0) is never above any point (t,S(t)), ∀t ≥ 0. This

is done using Equation 6.4.

6.3.3 Worst-case Per-hop Delays and Maximum Queue Sizes

Having stated the heuristics, we can now apply them to all the phases of the application.

We perform this in a hop-by-hop strategy, starting from the output ports of the nodes

for which the parameters (Oin
k ,σ

in
k ,β in

k) of all the interfering flows f in
k are known. For

each such output port, the resulting output flow f out is shaped using the same model

(Oout,σout,β out) that is then propagated as the input flow in the next hop. The process

continues until the parameters of the shaper of every output port of all the nodes of the

network are defined (the output ports that no flows ever traverse and that are thus unused

are naturally ignored). As mentioned earlier, we assume that there are no cyclic depen-

dencies between the flows at any output port, which implies that the process eventually

terminates.

104 Analytical Model for Real-time Sensing Using Traffic Shaping

After that step, we can now compute at each output port the maximum transmission

delay caused by its traffic shaper (Oout,σout,β out), as well as its maximum queue size.

To ease the explanation, we shall use the same visual representation as that used in the

previous section for the shaper and the function S(t). The shaper is represented by a

straight line of slope β out that intersects with the x-axis at the point (Oout,0). We denote

this line Lout and write its equation as:

Lout(t) = β outt−β outOout (6.6)

We define S(t) as in the previous section and keep the notations T = {t1, t2, . . . , tm} to

express the finite set of time-instants (sorted in chronological order) corresponding to the

discontinuity points of the function S(t).

As explained previously, the number of packets buffered at the output port at any time-

instant t is given by the vertical distance dvout
j between the point (t,S(t)) and the point

(t,Lout(t)) on the line Lout. This vertical distance is simply equal to:

dvout
j = S(t)−Lout(t)

and thus the maximum number MaxQueue of packets buffered at that output port is given

by:

MaxQueue = max
t≥0

(

S(t)−Lout(t)
)

Since S(t) is a continuous piecewise function for which every sub-function is linear, it can

easily be show that the maximum of the previous equation can be found by looking only

at the time-instants t j ∈T rather than at all t ≥ 0, i.e.:

MaxQueue = max
t j∈T

(

S(t j)−Lout(t j)
)

(6.7)

This holds true because every sub-function of S(t) is a segment that is either:

• parallel to Lout. In this case, all the points on that segment are at the same distance

from Lout, including its two extremities that are discontinuity points with an x-

coordinate included in T .

• converging towards Lout. In this case, the leftmost point on the segment (whose

x-coordinate is an instant t j ∈T) is the furthest to Lout.

• diverging from Lout. In this case, the rightmost point on the segment (whose x-

coordinate is an instant t j ∈T) is the furthest to Lout.

6.3 Real-time Networking Model 105

Similarly, the transmission delay at any time-instant t is given by the horizontal dis-

tance dhout
j between the point (t,S(t)) and the point of y-coordinate S(t) on the line Lout.

According to Equation 6.6, that point of y-coordinate S(t) ∈ Lout has an x-coordinate x

such that S(t) = β outx−β outOout and thus x = S(t)
β out +Oout. The horizontal distance is then

simply given by:

dhout
j =

S(t)

β out
+Oout− t

and thus the maximum delay (MaxDelay) at that output port is:

MaxDelay = max
t≥0

(

S(t)

β out
+Oout− t

)

For the same reasons as those mentioned for MaxQueue, the maximum delay (MaxDelay)

can be computed by looking only at the points t j ∈T , i.e.,

MaxDelay = max
t j∈T

(

S(t j)

β out
+Oout− t j

)

(6.8)

Note that the transmission delay is an interesting parameter to analyze the end-to-end

delay or per-hop delays of individual packets. However, in this work we rather focus

on estimating upper-bounds on the execution time of the phases and thus of the overall

real-time application.

To compute the execution time of a given phase, we must know exactly when the phase

starts and when it ends. However, phases may overlap in time and happen simultaneously.

For instance, for the application scenario considered in this paper, a cluster-head located

close to the sink may enter phase φ2 long before a cluster-head that is far from the sink

(since it receives the request from phase φ1 sooner). For simplicity, we assume in this

work that a phase ends when a given node has received all the packets sent to it. For

example, the time at which all the cluster-heads have received their requested data marks

the end of phase φ3 and the time at which the sink has received all the processed data

marks the end of phase φ4. As such, we compute the execution time of a phase as the

relative time-instant at which all the four input flows of that given node – a cluster-head

for phase φ3 and the sink for phase φ4 – terminate, i.e. the four flows coming from the

north, south, east, and west input ports of that node. the execution time of a phase is thus

given by:

ExecTime = max
card∈[↑,↓,→,←]

(

Oin +
σ in

β in

)

(6.9)

where for each cardinal direction ↑, ↓,→, and← (north, south, east, and west), the flow

f in characterized by (Oin,σ in,β in) is the input flow coming from that cardinal direction.

106 Analytical Model for Real-time Sensing Using Traffic Shaping

0 5 10 15 20 25 30

Transmission time slot s(TTS)

0

2

4

6

8

C
u
m

u
la

ti
v
e
 p

a
c
k
e
t

c
o
u
n
t

SIM

Min-O

Delay

Queue

(a)

0 5 10 15 20 25 30

Transmission time slot s(TTS)

0

2

4

6

8

C
u
m

u
la

ti
v
e
 p

a
c
k
e
t

c
o
u
n
t

SIM

Max-S

Delay

Queue

(b)

0 5 10 15 20 25 30

Transmission time slot s(TTS)

0

2

4

6

8

C
u
m

u
la

ti
v
e
 p

a
c
k
e
t

c
o
u
n
t

SIM

LQ

Delay

Queue

(c)

Figure 6.4: Cumulative arrival/departure curves for a single node, using (a) Min-O, (b)

Max-S and (c) LQ heuristics.

6.4 Validation Example

To validate our theoretical model we define an example scenario and compare it with

simulation. We define the following scenario: a single node receives an arbitrary number

of known input flows, which are shaped into an output flow (using each of the proposed

heuristics). We compare the arrival/departure curves calculated using our model, against

the curves obtained in simulation.

Figure 6.4(a-c) shows the cumulative arrival/departure curves due to three input flows,

and the resulting output flow obtained using each of the three heuristics proposed. In this

case, the input flows characteristics were chosen in order to emphasize the effect of each

shaping heuristic on the output flow.

We use the same input flows in all three scenarios, which are Fx = [f in
1 , f in

2 , f in
3], where

6.5 Evaluation of Traffic Shaping Heuristics 107

f in
1 = {O = 0,σ = 3,β = 0.5}, f in

2 = {O = 10,σ = 3,β = 0.5} and f in
3 = {O = 12,σ =

3,β = 0.5}. The resulting output flow is different for each heuristic. These are f out
Min−O =

{O = 1,σ = 9,β = 0.3}, f out
Max−S = {O = 8.2,σ = 9,β = 0.83} and f out

LQ = {O = 4.8,σ =

9,β = 0.49}.

The arrival curves obtained through simulation (common to the three cases) is a stair

function, resulting from the superposition of all the arriving flows. Because the output

flow is shaped, the corresponding departure curve is a homogeneous stair function. As

expected, the arrival/departure curves calculated using our model precede the simulated

ones in every point. It also shows the queue size and delay calculated at every point in

which the arrival and/or departure curves start, finish or change its slope.

For the given Fx, from Figure 6.4(a), Min-O performs badly as compared to the other

heuristics, as it adds large delays between the arrivals and departures, which leads to

equally large queues and long execution time. We notice from Figure 6.4(b) that the

departure curve obtained with Max-S approaches maximally the arrival curve at its tip (1

TTS far), leading to the optimal execution time with the cost of larger queues from 0 to 10

TTS. On the other hand, the LQ heuristic leads to smaller queues, with a slightly longer

execution time.

By running this experiment extensively, using random input flows, we are able to

verify if our model definitions are consistent, besides being able to gain the intuition and

qualify the effect of each heuristic.

Even though these results provide an intuition on the trade-offs between the heuristics

proposed, they do not depict the results of multi-hop communication, in which case the

effects may differ. Therefore, a more complete evaluation is provided in the next section

to understand how each heuristic performs through multiple hops.

6.5 Evaluation of Traffic Shaping Heuristics

Application use-case: To evaluate the proposed heuristics, we consider the application

scenario briefly described in Introduction. Remember that the execution of this applica-

tion is divided logically into four consecutive phases φ1,φ2,φ3 and φ4. In the first phase

φ1, the unique sink node requests all the cluster-heads to send their data; in phase φ2, the

cluster-heads perform another request to all the nodes of their respective cluster; in phase

φ3, the nodes reply to the cluster-heads by sending them the sensed data; and in phase φ4,

the cluster-heads process the data received and transmit the result back to the sink. Since

there is no network congestion in phases φ1 and φ2 – because all the packets sent from the

sink to the cluster-heads and then from the cluster-heads to the sensing nodes have their

108 Analytical Model for Real-time Sensing Using Traffic Shaping

own private route to their destination – these two phases are neither affected by a mod-

ification of the cluster size, nor by changing the number of clusters, nor by altering the

burstiness of the flows generated during phases φ3 and φ4. We shall therefore focus only

on phases φ3 and φ4 in which network congestion does occur and for which a modification

of the aforementioned parameters has an impact on the performance.

Network setup: The network is organized as a square grid of 45× 45 = 2025 nodes

with an unique sink located at the center of the grid. Figure 6.1 depicts a closeup on the

sink. In that figure we can also see the overall cluster organization, the routes taken by

the flows in the different phases and the central row and central column of nodes in the

middle that are dedicated only to the communication between the cluster-heads and the

sink. Based on an integer parameter nradius that we vary in our experiments, we define

every cluster as a square grid of (2nradius + 1)2 nodes with the cluster-head at the center

of the grid. As such, nradius defines both the cluster size and the number of clusters (the

smaller the clusters, the more clusters in the network, and reversely). Because of our

routing algorithms and network symmetry assumptions (position of sink in the center of

the network and cluster-head in the center of their cluster), the workload observed in each

quadrant around the sink or cluster-heads will be identical. This makes it sufficient to

analyze a single quadrant of the network or cluster.

Shaping heuristics: We evaluate the performance of the three proposed heuristics Min-O,

Max-S, and LQ against the performance of a cycle-accurate network simulator that we call

BE. The simulator does not implement any traffic shaper and thus it delivers a best-effort

(BE) performance overall.

Evaluation criteria and methodology: For each of the three heuristics Min-O, Max-S,

LQ, we evaluate the maximum queue sizes and the end-to-end execution time of the

phases φ3 and φ4. For BE, maximum queue sizes and phases execution times are measured

in the simulator. We do so for different cluster sizes, flow burstiness and network load

distributions. Because there is no source of non-determinism in our simulation model,

each runs gives the exact same results for the same input parameters. Thus, we are only

required to run our experiments once for each scenario, for as long as all four phases last.

To understand the impact of varying the network load, we analyze both homogeneous

and heterogeneous flow scenarios in phases φ3 and φ4 (that is, the phases when the actual

data transmission happens). We define a homogeneous flow scenario as one in which all

nodes generate flows with equal burstiness and message size. A scenario with random

message sizes and burstiness is defined as a heterogeneous flow scenario.

6.5 Evaluation of Traffic Shaping Heuristics 109

We analyze the homogeneous scenario by varying the burstiness β of flows from

phases φ3 and φ4 from 0.02 to 1 by step of 0.02, for different cluster sizes.

The message size σ differs for each phase. For phases φ1 and φ2, a single packet is

generated at the sink and cluster-head (σ = 1). In phase φ3, each node outputs a flow with

message size σ = 4. At the end of φ3, the cluster-head receives in total four packets per

each node on its cluster. Subsequently, each cluster-head outputs a flow with message size

σ , as the sum of all these packets plus 4 packets of its own sensed data, times ⌈1−CR⌉.

The term CR aims at reproducing the effect of data compression by the cluster-head. In

this work we set CR = 80%, which was shown in Section 5.3 to be a reasonable ratio in

relevant air flow scenarios. The number of packets originated by each cluster vary with the

cluster size, whereas the number of clusters is inversely proportional to the cluster size.

This trade-off has a compensatory effect on the overall number of packets transmitted to

the sink.

In the heterogeneous flow scenario, flows generated at phases φ3 and φ4 have random

message sizes. We use a uniform distribution function with σ = rand(0,10) and bursti-

ness β = rand(0.02,1). A message size of zero means that a node does not have an output

flow.

In our analysis, we compare the performance of both heterogeneous and homogeneous

scenarios. In order to do this fairly, we guarantee that for both homogeneous (HO) and

heterogeneous (HE) network load distributions, the sum of burstiness of all flows, as well

as the sum of all message sizes, are equal. That is, ∑β HO = ∑β HE and ∑σHO = ∑σHE .

This guarantees that the total network load remains the same for both scenarios, even if

individual load distributions vary.

For both scenarios, the offset remains the same; equal to their distance from the

sink/cluster-head (since it is meant to model the minimum time required for a node to

reply to a request).

6.5.1 Maximum queue size with homogeneous load distribution

For each of the three heuristics Min-O, Max-S and LQ, we first derive the parameters

(O,σ ,β) of all the traffic shapers in the network. Then we use Equation 6.7 on every

shaper to compute the maximum queue size of the corresponding node and finally, we

retain the maximum queue size of all the nodes in the network.

As we can see in Figures 6.5(a) and 6.5(b), in phase φ3 the queues are smaller for

smaller clusters (nradius). This is expected since smaller clusters contain fewer nodes and

therefore there are less packets exchanged within each cluster, and thus less congestion.

The opposite scenario would be expected for phase φ4, since using smaller clusters means

110 Analytical Model for Real-time Sensing Using Traffic Shaping

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(a) φ3,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(b) φ3,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(c) φ3,nradius = 5

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(d) φ4,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(e) φ4,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze Min-O
Max-S
LQ
BE

(f) φ4,nradius = 5

Figure 6.5: Homogeneous flow scenario: Maximum queue size for traffic shaping heuris-

tics against simulation. Results are for phases φ3 and φ4 and nradius set to 1, 3 and 5.

more clusters in the network, and thus more cluster-heads transmitting packets to the sink.

Yet, this is not observed in Figure 6.5(d) and 6.5(e). That is, smaller clusters do not imply

larger queues. The reason for this counter-intuitive result can be unveiled by looking at

the utilization of the four input links of the sink.

We define the link utilization as the average utilization of a given link of a node during

a given phase. It is calculated as the number of packets sent on that link in a given phase

(here, phase φ4) divided by the time (number of TTS) it takes for all those packets to

traverse it. An utilization of 1 means that the link is never idle during the considered

phase whereas an utilization of 0 means that the link is not used. As seen in Figure 6.7(d),

smaller clusters yield a better utilization of the input links of the sink. This is because

the sum of packets sent to the sink does not depend only on the cluster size. With more

(and smaller) clusters, there will be more clusters and more cluster-heads transmitting to

the sink from shorter distances. Thus, their input links will spend less time idle waiting

for the packets to arrive from longer distances. In other words, with fewer (but bigger)

clusters, cluster-heads are farther from the sink and thus their input links spend more time

idle waiting for the packets to traverse the intermediate hops. Greater utilization, for the

same number of packets received by the sink, shows that there is less congestion in the

6.5 Evaluation of Traffic Shaping Heuristics 111

(a) BE,φ4,nradius = 5 (b) LQ,φ4,nradius = 5

Cluster head

Sink

Cluster

Figure 6.6: Queue size density map of the top-right quadrant of the network (17×7

nodes), for heuristics (a) LQ and (b) BE. X and Y axis are nodes coordinates relative

to the sink.

network and thus smaller queue at individual hops.

It is worth noticing that in some scenarios, the maximum queue size obtained when

using traffic shaping is smaller than the maximum queue size without traffic shaping. This

is experienced for example in φ4 for nradius = 3 and 5, shown in Figures 6.5(e) and 6.5(f),

for β ∈ [0.4,0.6]. In this window, the maximum queue size of Max-S and LQ are smaller

than that of BE. This result is due to the offset O imposed by the traffic shapers in the

initial hops. In these cases, the offsets act on distributing in time the load on the network,

and thus decreasing the maximum congestion.

However, in cases with lower link utilization and burstiness, BE yields shorter queue

sizes. In these cases the network is underutilized, such that BE still does not lead to

excessive load on the network. On the other hand, performing traffic shaping imputes on

unnecessary buffering by nodes, and consequently greater queues.

The aforementioned effect is shown in Figure 6.6. It shows the queue size density

map of the top-right quadrant of the network, with nradius = 5. The sink is located at the

bottom-left corner. Flows are routed using shifted clockwise routing as previously shown

in Figure 6.1; hence, right to left in this map. The left-most nodes in the network are

usually where the bottleneck happens. Using BE for example, in Figure 6.6(a), the node

located at coordinates (x,y) = (0,5) gets up to 18 packets queued, since it is located at a

conjunction of flows coming from cluster-heads on its right and top. Because of the offset

O calculated using LQ, we can see (Figure 6.6(b)) that by shaping and queuing the flows

originating at the right side of the network (by the node located at (6,5)) has the effect

of delaying the reception of those packets by the left most node located at (0,5); thus,

reducing the maximum queue size at the nodes aligned with the sink. Comparatively, the

112 Analytical Model for Real-time Sensing Using Traffic Shaping

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(a) φ3,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(b) φ3,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(c) φ3,nradius = 5

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(d) φ4,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(e) φ4,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(f) φ4,nradius = 5

Figure 6.7: Homogeneous flow scenario: Link utilization for traffic shaping heuristics

against simulation. Results are for phases φ3 and φ4 and nradius set to 1, 3 and 5.

reduction is from 18 packets using BE, to 13 using LQ.

Another interesting observation occurs during φ4 for the method Min-O. The max-

imum queue size gets smaller with increased burstiness. This is very counter-intuitive

since we would expect that by injecting more traffic in the network, the congestion would

increase. However, this phenomena can be easily explained mathematically: it is due to

the way the method Min-O is defined. Looking at Figure 6.3, the flows duration defined

as σ
β

are longer for lower burstiness β and thus for low values of β , the first points ∈ T

(depicted by p1, p2, etc.) are farther from the origin. Since Min-O selects a point close

to the origin as “anchor” point, its slope must be small so that the line remains below the

function S(t). With a low slope, it is likely that the vertical distance between the function

S(t) and the line will be high (in particular if S(t) increases quickly). These phenomena

can be observed, to a limited extent, in Figure 6.3.

6.5.2 Phase execution time for homogeneous load distribution

We compare the execution time of the phases φ3 and φ4 in Figure 6.8, again for the cluster

sizes defined by nradius = 1, 3 and 5 and varying the burstiness of the initial flows from 0.02

to 1 by step of 0.02. The execution times are computed by using Equation 6.9. As seen

6.5 Evaluation of Traffic Shaping Heuristics 113

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104
To

ta
l t

im
e

(T
TS

)
Min-O
Max-S
LQ
BE

(a) φ3,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(b) φ3,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(c) φ3,nradius = 5

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(d) φ4,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(e) φ4,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(f) φ4,nradius = 5

Figure 6.8: Homogeneous flow scenario: Execution time of phases φ3 and φ4 for traffic

shaping heuristics against simulation.

in all graphics of Figure 6.8, increasing the burstiness considerably reduces the execution

time of the phases (note that the plots are in logarithmic scale), which remains constant

after a point. This point is reached only for high burstiness in Figure 6.8(a) whereas

it is reached almost immediately in Figure 6.8(b). This threshold, beyond which the

execution time cannot be further reduced, can be explained by looking at the utilization of

the input link of cluster-heads (for phase φ3) and the sink (for phase φ4). Those thresholds

correspond to specific values of the burstiness for which the links saturate and therefore,

any further increase in burstiness only results in larger queues but not in reduced execution

time.

From the above results, we observe that the LQ heuristic performs better overall. We

vary nradius from 1 to 5, with β varying as before, for both φ3 and φ4. The results are

shown in Figure 6.9. Figures 6.9(b) and 6.9(e) show the inverse relationship with nradius.

In φ3, the smaller the nradius, the smaller the clusters, and hence reduced traffic. In φ4,

there are more clusters transmitting to the sink, and consequently more traffic and link

utilization.

It is also worth noticing that the increase/decrease on the link utilization changes non-

linearly with nradius. This is because the number of nodes in each cluster grows with the

114 Analytical Model for Real-time Sensing Using Traffic Shaping

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

1
2
3
4
5

(a) φ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

1
2
3
4
5

(b) φ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

1
2
3
4
5

(c) φ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

1
2
3
4
5

(d) φ4

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

1
2
3
4
5

(e) φ4

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

1
2
3
4
5

(f) φ4

Figure 6.9: LQ heuristic - (a) link utilization, (b) maximum queue size and (c) total

execution time, with varying burstiness and nradius = [1,2,3,4,5].

square of the nradius.

By looking at Figures 6.9(a) and 6.9(c) we can observe a property of the LQ heuristic

(this also occurs for the other heuristics which are not shown for brevity). For all values

of nradius, both maximum queue size and total execution time remain constant (from β >

0.4). So even when the link utilization is saturated, an increase in burstiness at flows’

sources does not lead to worst queues size and total time. We explained this phenomenon

in Section 6.5.1. The same behavior can mostly be observed also during φ4 (Figures 6.9(d)

and 6.9(f)).

6.5.3 Maximum queue size with heterogeneous load distribution

The results for maximum queue sizes for heterogeneous loads (see Figure 6.10) while

tending to show the same trends as for homogeneous loads, present more chaotic behavior.

BE performance is degraded. This implies that in more scenarios, applying traffic shaping

is enough to reduce queue sizes compared to the case with homogeneous loads.

Also, in Figure 6.11, one can see that the link utilization due to heterogeneous load dis-

tribution, presents similar overall behavior when compared to the homogeneous scenario.

This was expected, since the network load was intentionally designed to be approximately

6.5 Evaluation of Traffic Shaping Heuristics 115

the same. But apart from that, we can see that the Max-S heuristic performs better than

before, specially during phase φ4 (Figures 6.11(d) to 6.11(f)), in which it provides higher

link utilization when compared to LQ (in most cases for β < 0.6), while keeping queue

size and total execution time approximately the same.

116 Analytical Model for Real-time Sensing Using Traffic Shaping

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(a) φ3,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(b) φ3,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(c) φ3,nradius = 5

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(d) φ4,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(e) φ4,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

Min-O
Max-S
LQ
BE

(f) φ4,nradius = 5

Figure 6.10: Heterogeneous flow scenario: Maximum queue size for traffic shaping

heuristics against simulation. Results are for phases φ3 and φ4 and nradius set to 1, 3

and 5.

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(a) φ3,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(b) φ3,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(c) φ3,nradius = 5

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n Min-O
Max-S
LQ
BE

(d) φ4,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(e) φ4,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

Min-O
Max-S
LQ
BE

(f) φ4,nradius = 5

Figure 6.11: Heterogeneous flow scenario: Link utilization for traffic shaping heuristics

against simulation. Results are for phases φ3 and φ4 and nradius set to 1, 2 and 5).

6.5 Evaluation of Traffic Shaping Heuristics 117

6.5.4 Phase execution time for heterogeneous load distribution

The total execution time gives similar results, since the total number of packets and the

average burstiness among the nodes is the same for both scenarios. This is shown in

Figure 6.12.

Once again, we take a closer look at the LQ heuristic alone, to understand the impact

of nradius. The results are shown in Figure 6.13 for phases φ3 and φ4. There is a clear drop

in performance in all metrics for this specific heuristic. The same drop is not observed for

the Max-S heuristic, that outperforms BE for heterogeneous flow sources.

To summarize, the heuristics Max-S and LQ, in both homogeneous and heterogeneous

flow sources, perform close to that of BE that does not use traffic shaping. This means that

by applying our heuristics for traffic shaping we are able to provide timing and resource

usage determinism, and yet impose very little loss in terms of performance as compared

to the best-effort approach.

118 Analytical Model for Real-time Sensing Using Traffic Shaping

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(a) φ3,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(b) φ3,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(c) φ3,nradius = 5

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(d) φ4,nradius = 1

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(e) φ4,nradius = 3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

Min-O
Max-S
LQ
BE

(f) φ4,nradius = 5

Figure 6.12: Heterogeneous flow scenario: Execution time of phases φ3 and φ4 computed

for traffic shaping heuristics against simulation.

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

1
2
3
4
5

(a) φ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

1
2
3
4
5

(b) φ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

1
2
3
4
5

(c) φ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

1
2
3
4
5

(d) φ4

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

ut
iliz

at
io

n

1
2
3
4
5

(e) φ4

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ()

101

102

103

104

To
ta

l t
im

e
(T

TS
)

1
2
3
4
5

(f) φ4

Figure 6.13: Link utilization (a), maximum queue size (b) and total execution time (c)

with varying burstiness, for the LQ heuristic only, for nradius = [1,2,3,4,5].

6.6 Concluding Remarks 119

6.6 Concluding Remarks

The proposed traffic shaping heuristics enable us to endow XDense networks with real-

time capabilities. We showed that on average, the performance of XDense is very similar

with and without traffic shaping. This means that the proposed traffic shaping techniques

allow determining timing and memory requirements while imposing minor performance

overheads. The performance of XDense, in both homogeneous and heterogeneous sce-

narios also showcases its stable performance. However, further experiments exploiting

distributed processing algorithms on CFD input data for AFC need to be performed (as

discussed in Chapter 5).

We believe there are improvements that can be done to the model in many dimensions,

but specially towards making it more accurate to the hardware platform we target. The

model could also be expanded, in order to cover different application scenarios. Other

concluding remarks are further discussed in Chapter 8.

Chapter 7

Hardware Implementation and

Performance Evaluation

7.1 Introduction

We target low-cost and low-complexity hardware, COTS components, coped with com-

munication protocols that should exhibit low overhead. This should enable reasonably

high performance and scalability (in terms of node count and cost) with low cost and low

resource utilization.

Cost is mainly determined by the complexity of the node’s hardware and network

interconnection. This includes the cost of the chosen microcontroller (µC) and the addi-

tional components required, as well as the density and length of interconnections among

the various nodes (for on-board, over cable or wireless communication). Performance

is usually measured in terms of node’s computational power, maximum communication

bandwidth and latency. These parameters are defined both by the microcontroller fre-

quency of operation, and by the network topology, reliability and power constraints [124].

Considering the above, in the next sections we detail the hardware implementation

details and its performance evaluation.

7.2 Hardware Design

We co-designed the simulation model and hardware and embedded firmware, meaning

that for each of the implemented features on the simulator we considered its feasibility on

the targeted hardware. This was done keeping in mind the implementation of XDense as

per specification, but also taking into account the realistic performance achievable with

COTS hardware.

121

122 Hardware Implementation and Performance Evaluation

This is an iterative co-design problem involving software and hardware specifications,

along with simulation. The objective is to converge to a solution that provides the best fit

for the requirements, with the correct balance between performance, processing overhead

and cost of implementation. In the end, we should have a best fit hardware solution

that can be simulated faithfully; that is, performance measurements from the network

implementation and simulation should not differ substantially among each other.

In this chapter we discuss the co-design considerations during the development of the

XDense hardware. We then develop and measure the hardware performance. These mea-

surements can then become a parameterized input to XDenseSim. This allows XDense

hardware performance to then be compared with its simulation results. We also identify

the impact and constraints of alternate implementation approaches.

We specify the internal hardware architecture based on the XDense model defined

in Chapter 4. We first present its implementation using a field programmable gate array

(FPGA) with custom designed circuitry, and later using a COTS solution based on a µC.

The intention is to first measure the performance with the FPGA implementation, and then

use its performance results as a reference when evaluating the µC COTS implementation.

7.3 System Requirements

We establish the three basic requirements that we use in designing the system that will

drive performance and cost requirements.

1) Simplicity of hardware: Nodes (and other components) should be simple in terms

of hardware and software. This requirement is driven by the need for developing building

blocks for extremely dense deployments with miniaturized nodes. Simple nodes with

modular elements allows cost effectiveness and scaling;

2) Application defined performance: The controller should have fast enough commu-

nication links and processing capability, with respect to the application requirements.

3) Communication ports: XDense nodes require at least four serial ports (consider-

ing its architecture). An extra port is practically is useful for debugging purposes or for

providing a link to external supervisory systems;

The hardware may also impose other limitations regarding memory capacity (which

may limit the maximum packet queue sizes in nodes) and internal delays due to commu-

nication overhead. The internal delays are usually small as compared to communication

delay, but they can still influence the overall performance and have an impact on the pre-

dictability of the system.

7.4 Design Decisions 123

We believe a custom designed integrated circuit (IC) would provide the best-fit solu-

tion. However, the design becomes less flexibile and oriented towards a single-application.

Also, the overhead of development and initial costs of production of a custom design IC

is prohibitive for this stage of the development.

Our goal is to have a hardware platform and software framework that is flexible, scal-

able and that allows customization of applications to a variety of scenarios.

7.4 Design Decisions

We take a bottom up approach towards designing the platform; that is, from the physical

and link layers up to the application layer.

We looked into other mesh-grid networks which are seen on many-core general pur-

pose processing units (CPUs) [41], and graphical processing units (GPU) [134]. These

cores are connected point-to-point with four or more of their neighbors. The connection

links are 64 bits (or more) wide full-duplex parallel links, through which transmissions

happen in a single clock cycle [135].

However, it is known that on-chip short-range interconnections costs less than long-

range off-chip connections. To communicate off-chip, one possibility is to use general

purpose input output pins (GPIOs). However, the cost of GPIOs on µCs and FPGAs is

high. Moreover, it usually requires additional logic and circuitry for communications pur-

poses. This is the main reason why inter-devices parallel communication is increasingly

less prevalent nowadays [136].

For off-chip interconnection, the most common design approach is to serialize data

at very high bitrates, using the minimum number of wires possible. There are many

examples that show this trend inside the industry, such as I2C and SPI buses for on-board

master-(multiple) slave communication, and Ethernet, SATA, USB and USART for point-

to-point inter-device communication [137].

As stated in our design model, our decision is to use full-duplex, point-to-point links

for inter-node communication. This avoids (i) the restrictions imposed by master-slave

based communication (as in SPI and I2C), and (ii) the limitations imposed by half-duplex

links (such as in I2C and USB).

This now limits our choices down to Ethernet and UART ports. In the context of

XDense, UART ports have many advantages.: i) they are commonly found on numerous

COTS µCs; ii) they do not require external components and circuitry to establish electrical

interface between nodes; iii) at short distances they present very small bit error rates; and

124 Hardware Implementation and Performance Evaluation

pck in (128)

pck out (128)

baudrate clk

pck transmit

pck received

rx

tx

pck in (128)

pck out (128)

baudrate clk

pck transmit

pck received

rx

tx

NetDevice 0

Router

pck in (128)

pck out (128)

pck transmit

pck received

N
O

R
T
H

NetDevice 3

W
E
S

T

Figure 7.1: Simplified schematic of the XDense node’s Switch and Net-Device imple-

mentation using on a FPGA.

iv) they consume fewer resources in terms of power, chip-area, and protocols overhead.

The authors in [138] comment on the benefits of the UART communication ports.

UART ports also present other advantages for both FPGA and micontroller imple-

mentations. Firstly, UART logic-blocks for FPGAs are open source and widely available.

Secondly, UART ports can be easily accommodated on low-end FPGA chips due to their

small circuit footprint; Finally, worth to mention that low/mid-range low pin count (< 32

pins) µCs can have up to five serial ports, making them a good fit as a low-cost µC COTS

hardware solution.

The main limitation of UART ports is that they can only operate at a fraction of the

main clock frequency, usually 1/16 of the main clock. This leads to maximum bitrates

way below the ones on USB and Ethernet ports. For example, in a µC running at 100

Mhz, communication can only be done at most at 6,2 Mbps.

7.4.1 Composing an FPGA XDense node

As a reference of maximum performance, and to demonstrate the potentials of a custom

IC, we designed a XDense node using FPGA. We compare its performance with the ones

achieved with the COTS implementation.

We model the router and network devices in hardware, while having the application

layer running on a software core. The networking devices are instances of a customized

UART port with controllable input/output queues sizes. The router uses a custom design

circuit that interconnects each UART instance with a dedicated parallel connection. Dedi-

cated connections allow minimum internal delays. It also has signaling bits that allow the

router to monitor and control each networking device individually. The router is packet

7.4 Design Decisions 125

Table 7.1: FPGA implementation: Resource utilization due to XDense’s communication

logic.

Available Utilized Utilized (%)

Registers 5,720 419 3%

Lookup tables (LUTs) 11,440 415 7%

Memory 1,440 16 1%

switched, and therefore can forward packets between ports without the intervention of the

processor.

The width of the bus between the router and networking devices defines how many

bits can be transferred in parallel, and consequently in how many parts a packet has to

be split to be transferred. In order to maximize performance, we make this bus wide

enough to be able to transmit a single packet in one transaction (16 bytes wide). This

is so that a packet can be transferred between networking devices and router in parallel

(in both directions), in a single clock cycle. Figure 7.1 shows the internal architecture of

networking devices and router on a node.

Each router is connected to four networking devices and provides to each a clock

that defines the baudrate. On the right side of the router (in Figure 7.1), there is a fifth

dedicated bus to connect the router to the software core. The software core was not

implemented in this case, as we are interested in measuring only communication delays.

Therefore, it is sufficient to implement the router and the networking devices in order to

generate and/or forward packets. The performance of the software is tested separately

using the software core on a µC implementation. This is discussed in the next section.

We use a Xilinx Spartan 6 FPGA [139] for our implementation. This is a low-end

and low-cost FPGA, which is a programmable alternative to custom ASICs. The resource

utilization is shown in Table 7.1. Although we use a relatively small FPGA (in terms

of resource availability), the logic required for the networking devices and router still

consume very little of the available resources. Even having 16 bytes wide internal buses.

The implementation floor plan is shown in Figure 7.2 with the utilized logic blocks

highlighted. It is an implementation optimised to performance, and therefore it consumes

more logic and space inside the FPGA than necessary. The current implementation is

inefficient in terms of resource utlization, since we only focus on achieving maximum

performance with the available resources.

126 Hardware Implementation and Performance Evaluation

Figure 7.2: FPGA implementation: floor plan of the router and four networking devices.

7.4.2 Microcontroller Based XDense Node

As a lower cost alternative to the FPGA custom design, we have also developed a COTS

prototype of XDense.

Given the requirements, we are restricted to a limited number of candidate µCs. Es-

pecially concerning our requirement of number of available high-speed serial ports. Few

µCs have five or more serial ports and exhibit, at the same time, a low pin count, low size,

and low cost. Availability of direct memory access (DMA) peripherals is also desirable

to reduce the processing time spent on communication.

We chose the Atmel ATSAM4N8A µC, a 32-bit ARM Cortex-M4 RISC [140] pro-

cessor implementation, which is a mid-range general purpose µC. It runs at 100 MHz

and provides a good balance between power consumption and processing power. With

digital signal processing (DSP) extensions and a floating point unit (FPU) co-processor,

it has enough computational power for a relatively high power efficiency. It has a small

48-pin footprint, with five high speed UART ports, each with a dedicated DMA channel

that allows transmission of packets in parallel, without consuming CPU time.

To implement temporal predictability, we use the FreeRTOS [141] real-time opera-

tional system (RTOS) in our nodes. It is a free open source real-time RTOS for 32 bits

µCs. It provides part of the required device drivers, and additional high level abstractions,

such as context switching and multi-tasking.

The schematics and prototype node are shown in Figure 7.3. We placed four different

sensors on the top of the board for sensing. These include a motion sensor with 9 degrees-

of-freedom, a pressure sensor, a temperature sensor, and a visual-range and light color

sensor. Each of the sensors are related to sensing for AFC airflow monitoring. The motion

7.4 Design Decisions 127

Temperature

UART N

JTAG

I2C

µC

Light

9D motion

Pressure

UART E

UART S

UART W

UART DBG

Onboard components
Interfaces

(a) (b) (c)

Figure 7.3: (a) Node’s schematic showing each of the major components of the system.

(b) and (c) show the top and the bottom sides of the PCB, respectively.

sensor can potentially provide information about vibrations on the wing, which may be

related to the airflow characteristics [142].

Pressure and temperature sensors provide direct and indirect measurements about the

characteristics of the airflow. Data from both sensors can be used complementary. The

visual-range light sensor, while having other uses, is meant for testing and debugging dur-

ing development, by using a beamer to project visual data from the phenomena over the

network, to allow studying the behavior of the network when exposed to the (emulated)

expected data. Figure 7.4 shows a 3×3 deployment connected to a computer that shows

the acquired sensed values using color scale. A lantern is pointed to the lower part of the

network, what justifies the measurements.

Four RGB LEDs are used for debugging purposes, to either provide a direct visual

feedback about the sensed data, or to transduce any kind of output values to colors. This

can be used during development to represent actuation actions.

Table 7.2: Resource utilization of the Atmel ATSAM4N8 ARM Cortex M4 running

XDense.

Available Utilized Utilized (%)

RAM 65536 bytes (64 kb) 57792 bytes 88.2%

Flash 524288 bytes (512 kb) 57684 bytes 11.0%

The Table 7.2 shows the memory utilization of the software implementation. Even

though we use an RTOS, the code still consumes few flash memory. In contrast, the RAM

utilization is high. This is caused mainly by the RTOS, that statically allocates memory

for tasks stack for multitasking, for the deepest possible nesting of function calls.

128 Hardware Implementation and Performance Evaluation

Figure 7.4: Deployment of a 3× 3 network connected to a computer that shows the ac-

quired sensed values using color scale.

7.4.2.1 Software Framework

To bring up the XDense abstractions to a functional node hardware we started by porting

the application, communication and routing protocols code from XDenseSim to our µC

firmware. Additionally, we developed the router abstraction to coordinate all the serial

ports using DMA. We also developed device drivers to support the external sensors, and

a middleware that abstracts the hardware specific code to interface with the application

layer ported from XDenseSim.

We implemented multiple independent tasks to realize XDense. These tasks are sched-

uled by the RTOS according to our specifications. There are four different mutual exclu-

sive tasks, each one to read one of the external sensors in the I2C bus, according to their

maximum sampling rate. The router has its own task that handles transmissions from/to

each serial port. It uses each port dedicated DMA channel to receive and/or transmit in

parallel from/to any of the serial ports.

Any node, but at least one, should be connected to a host machine running a supervi-

sory system through any of its communication ports. But notice that the debugging port is

the only extra port available on nodes which are not in the edges of the network, since they

are connected to four neighbors. That is, only the nodes in the edges have unconnected

ports in addition to the debugging port. This allows the host machine to interact with the

node using our protocols, for debugging, firmware writing, performance measurements

and for setting configurations, such as neighborhood size, sampling rate, baudrate, sinks

7.5 Performance Evaluation and Comparison 129

election, sensors thresholds, and other specific configurations of the routing, applications

and communication protocols used. The host machine utilizes the same protocols and

behaves as any other node on the network, that can unicast/multicast/broadcast configu-

rations or any other data once it is connected to the network.

Another important implementation feature we provide it the possibility of performing

in-network programming of firmware. The action is started by the host, which puts the

node it is connected to, into programming mode and programs it. After programmed,

the node starts to propagate its newly received firmware to its neighbors, one by one, by

putting each at a time into programming node, and copying its own FLASH content to

it through one of the communication ports. This process continues node by node, until

the entire network is re-programmed. We use specific routing algorithms to propagate the

firmware through rows and columns, in a way that nodes are programmed only once.

7.5 Performance Evaluation and Comparison

We now setup a controlled experimental scenario to measure the internal delays that affect

the total communication time, and its impact on the network performance on both the

FPGA and the µC implementations. We compare the measurements to the values obtained

with simulation.

We perform two sets of experiments to measure the internal delay: (i) we measure

the time a packet takes to travel through a single hop, on both the FPGA and the µC

implementations; (ii) we measure the time a packet takes to travel through multiple hops

on the µC implementation. For this metric, we vary the hop distances and compare the

delays with the results obtained using XDenseSim. We also measure the packet drop ratio

(PDR) on the µC implementation. Table 7.3 shows the experiment configuration.

Table 7.3: XDense testbed configuration.

Parameter Value

System clock 100 MHz

Baudrate 3 Mbps

Packet size 10 bytes × (8 + 2) = 160 bits

Packet duration (tpck) 53.3 µs

In order to enhance XDenseSim we perform numerous measurements, for a statistical

survey, so we can provide a probabilistic model to allow simulating internal delays.

130 Hardware Implementation and Performance Evaluation

0.30 0.35 0.40 0.45 0.50 0.55 0.60
Internal Delay (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
No

rm
al

ize
d

De
ns

ity

Uniform distribution fit

(a)

220 230 240 250 260
Internal Delay (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d
De

ns
ity

Normal distribution fit

(b)

Figure 7.5: Packet forwarding internal delay on a single hop, using (a) a FPGA-based

node and (b) a µC-based node.

7.5.1 Experiment 1: Single Hop Delay

In this experiment we measure a node’s internal delay, and the variability of it throughout

several measurements.

We connect a single node to a host machine that has a random packet generator. These

packets are received and forwarded by the node, in which we measure the time elapsed

from the time instant the packet is completely received by the node (coming from the host

machine), until the time the packet starts to leave the node. With the aid of an oscilloscope

and an automation script, we performed ten thousand measurements on the same node.

We run this experiment for both the FPGA and the µC implementations.

The histograms and Probability Density Functions (PDF) measurements are shown in

Figure 7.5. The number of bins is selected according to the Freedman Diaconis estimator,

which is a robust estimator (resilient to outliers), that takes into account data variability

7.5 Performance Evaluation and Comparison 131

and data size [143].

Figure 7.5(a) shows the results for the FPGA implementation. It is is an approximate

uniform distribution, centered at 0.44µs. The minimum delay measured is 0.28µs, which

is the intrinsic delay due to signal propagation imposed by the FPGA circuitry. The max-

imum measured delay is 0.62µs, which happens to be 0.34 µs greater than the minimum

intrinsic delays. This value is due to an offset between the host machine and the node’s

clock. Because packets are only processed by the FPGA on the rising edge of the com-

munication ports clock, there is a uniform random delay between the time the starting bit

arrives, until the FPGA actually detects it (since it depends on the next observed rising

edge). The difference between the maximum and minimum delay (0.34 µs) is the pe-

riod of the communication clock. Its inverse gives us the approximate baudrate, which is

2.94≈ 3Mbps.

Notice that the maximum internal delay represents only 0.62÷ 53.3 µs = 1.16% of

the packet duration. This is close to the optimal delay achievable on a node running at

100 MHz, with UART at 3 Mbps communication rate (as shown in Table 7.3).

For the µC implementation, Figure 7.5(b) shows the histogram and PDF of the mea-

surements taken. In this case the distribution is more random. It ranges from 222 to

263 µs, with 246 µs average delay.

The minimum time required by the RTOS to consume, process and serve the packet

is 222µs. This delay is strictly related to the RTOS implementation and configuration

specifics, and how tasks are defined. Even though we configured the RTOS for maximum

performance, without concurrent transmissions, with interrupt based receptions (for better

responsiveness), the processing overhead added by the RTOS is still significant.

The peaks at 233, 246 and 258 µs in the histogram are caused by a concurrent RTOS

task with higher priority that frequently interferes with the reception.

The internal delays obtained with the µC node are much greater when compared to the

FPGA implementation (500×). The maximum internal delay of the µC implementation

is 263µs and therefore = 493% of the packet duration.

Although the PDF is a rough approximation to the histogram, we believe it may still

be a good approximation to model a node’s internal delay. With that, a simple model

with low overhead could be implemented for XDenseSim in order to simulate the internal

delays.

7.5.2 Experiment 2: Multi-hop Delay

With PDFs to model internal delays, we can now implement them in XDenseSim, and

compare with the hardware implementation in a multi-hop scenario. We start by measur-

132 Hardware Implementation and Performance Evaluation

Figure 7.6: 3 × 3 testbed deployment.

ing a single packet traversal time on both implementations. This is the time taken for a

single packet to travel through n hops without any other concurrent workload. We vary n

from 2 to 100 hops and measure the end-to-end delay at each scenario. We perform this

experiment ten thousand times. We use our 9 nodes test-bed to emulate a much larger

network. We do this by connecting nodes from one extreme to the other extreme of the

network so that the packet continues on a virtually bigger network. Figure 7.6 shows the

µC deployment with 9 nodes.

Figure 7.7 shows the comparison between the average end-to-end delay on different

multi-hop scenarios for the µC and the FPGA implementations. We compare the measure

values with the XDenseSim results, with and without internal delay model. The FPGA

implementation represents a very small increase on the theoretical minimum delay, given

by the XDenseSim without the internal delay model.

There is a linear growth on the trip delay as the trip distance increases, for all four

scenarios.

Internal delays represent an approximate five-fold increase in the delay.

When XDenseSim is used with internal delay model, it approaches considerably the

performance of the µC implementation, with a linear increasing error (meaning that the

PDF captured is not an accurate fit to the real values).

Figure 7.8 shows the distribution of the measured delays from our µC implementation

and XDenseSim, on multi-hop transmissions with 2, 20, 60 and 100 hops. For short

trip distances (2 hops), both scenarios show approximate same average value. whereas

simulation present more confined normal distribution (expected according to the PDF),

compared to the more random and wide distribution observed in hardware. As we increase

the trip distance (Figure 7.8(d)), the averages start to diverge, while the distribution for the

hardware tends to get more confined around the average when compared to the simulation.

In Figure 7.9, we compare the packet drop ratio measured for the µC implementation

7.5 Performance Evaluation and Comparison 133

0 20 40 60 80 100

Number of Hops

0

100

200

300

400

500

T
ra

n
s
m

is
s
io

n
 T

im
e
 S

lo
t s

(T
T
S
)

μC

Sim with delay

Sim without delay

FPGA

Figure 7.7: Average trip delay in a multi-hop scenario for varying trip distances.

and XDenseSim. Since we do not implement error models, no packets are dropped in the

simulation. While in hardware, we observe a linear growth on packet drops as the trip

distance grows. At 100 hops trip distance, around 30% of the packets are dropped. Such

high drop rate was due to the overhead having the router implemented in software, and

the overhead of queuing/dequeuing packets at high communication rates. The poor imple-

mentation of the queuing algorithms and operational system overhead also play a role in

this results. We believe this number could be drastically reduced at lower communication

rates and with a more efficient implementation of the router and queuing algorithms, even

though we refrained from doing it in this work.

134 Hardware Implementation and Performance Evaluation

SIM HW
9.0

9.5

10.0

10.5

11.0

11.5

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(a) 2 hops

SIM HW

101

102

103

104

105

106

107

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(b) 20 hops

SIM HW

302.5

305.0

307.5

310.0

312.5

315.0

317.5

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(c) 60 hops

SIM HW

505

510

515

520

525

530

Tr
an

sm
iss

io
n

Ti
m

e
Sl

ot
 (T

TS
)

(d) 100 hops

Figure 7.8: Comparison between simulation and hardware of the packet trip delay distri-

bution, for different number of hops.

0 20 40 60 80 100
Number of Hops

0

5

10

15

20

25

30

Pa
ck

et
 D

ro
p

Ra
te

 (%
)

Hardware
Sim

Figure 7.9: Packet drop ratio in a multi-hop scenario for varying trip distances.

7.5 Performance Evaluation and Comparison 135

7.5.3 Current Limitations

Even though we provide a functional µC implementation, the internal delays measured

exceeded our initial expectations. This could be prohibitive for applications with stringent

temporal requirements.

We have tried a few methods to reduce these internal delays. We first tried to configure

the RTOS for increased responsiveness. We did this by increasing the frequency in which

it performs context switching between the tasks responsible for receiving the packets.

We were able to reduce the internal delays by 20% on average. However, we also made

the system more unpredictable due the increased overhead due to the excessive context

switches.

In addition, we built a second firmware implementation without the RTOS. This im-

plementation uses a interrupt-based reception to immediately process incoming packets.

By doing so, we have been able to drastically reduce the internal delays.

Figure 7.10 shows the histogram and PDF of ten thousand measurements of the inter-

nal delay for the non-RTOS implementation. The internal delay range from around 3.7 to

4.7 µs, with a 4.25µs average, which represents only 9% of the packet duration. This is a

drastic decrease that allows for much more performant nodes. The drawback of not using

the RTOS, lies mostly on lack of certain abstractions and functionalities, such as periodic,

preemptive tasks with guaranteed temporal behavior.

It is also important to notice that, depending on the implementation, there may be a

secondary source of delay due to concurrent transmissions. To investigate that, we setup

a new scenario in which a node receives a single packet, and immediately forwards it to

all its communication ports (including the port it received the packet from).

Figure 7.11(a) shows the waveform of the input and output packets on the FPGA, and

the measured forward delay. We observe that as soon as the topmost waveform ends, the

3.6 3.8 4.0 4.2 4.4 4.6 4.8
Internal Delay (s)

0

1

2

3

4

5

No
rm

al
ize

d
De

ns
ity

Normal distribution fit

Figure 7.10: Packet forwarding internal delay on a single hop without RTOS.

136 Hardware Implementation and Performance Evaluation

(a)

(b)

Figure 7.11: Waveform showing the internal delay due to concurrent transmissions on (a)

FPGA implementation and (b) µC implementation. Note the difference in time scales.

four other ones start and finish simultaneously. In other words, as soon as the incoming

packet is received, it is immediately forwarded in parallel through the four ports.

The same can not be observed in the µC implementation (Figure 7.11(b)). Here there

is an intrinsic delay between the reception and trasnmission of the packet, as well as a

delay between the transmission at each output port. The delays happen due to the time

required by the CPU to configure and activate the DMA transfers from the input port to

the RAM, and from the RAM to each output port individually.

The delays measured for the µC implementation show the challenges related to the

predictability of the software implementations, which also impacts on the accuracy of the

XDenseSim delay model, since we base it on an statistical distribution. These results

also reflect the advantages of having dedicated hardware, capable of handling parallel

transmissions with much superior performance.

7.6 Concluding Remarks 137

7.6 Concluding Remarks

We provide a complete implementation of our network model, that approaches satisfac-

torily the performance observed on real implementation platform. The implementation

proved to be robust, with stable operation, providing access to a diversity of performance

metrics for XDense.

This internal delay model for XDenseSim is still too simplistic. To make it more ac-

curate, we should also account for potential packet drops, and any other source of internal

delays and uncertainty.

Both hardware implementations shown to be feasible, with potentially low internal

delays (very implementation specific), and with the potential to perform various of the

desired XDense functionalities.

Chapter 8

Conclusions and Future Directions

In this chapter we revisit the research objectives and the results obtained with this work as

a whole. We comment on how our contributions fulfilled the original research objectives.

Some guidelines for future research work in the area are also provided.

8.1 Summary of Contributions

We divide our contrbution in mainly three topics:

(a) Efficient data extraction:

In Chapter 5, we evaluate various performance metrics on accuracy of acquired data,

delays and utilization of the network while varying parameters such as the input data,

neighborhood size and feature detection algorithms. We show the resulting trade-offs

in performance. Both the nature of the input data and the feature detection algorithm

utilized strongly affect the performance.

Most importantly, performing in-network data compression, and feature detection and

extraction leads to drastic reductions on the time required to sample the data.

(b) Real-time behavior: We provide traffic shaping heuristics that endow XDense with

real-time capabilities. The proposed traffic shaping techniques allow determining

timing and memory requirements by shaping nodes transmission, while imposing

minor performance overheads.

We believe the proposed framework can be used in other kinds of synchronous multi-

hop networks. The requirements are that the flow sources (the nodes from which the

packets are generated) are known, and can be modeled according to our flow model.

This should allow us to shape every output flows on the network, and provide real-

time guarantees based on calculations. We believe that there are other approaches on

139

140 Conclusions and Future Directions

designing new traffic shaping heuristics that would provide reduced queue sizes and

delays compared to the actual ones.

(c) Scalable infrastructure: It is important to note that the simplicity of the architecture

allowed for practical construction of such networks using currently available technol-

ogy. A prototype test-bed was developed and is operational. The simulations in this

work establishes the competence of XDense and our next step is developing a proto-

type for experimental evaluation. A low-cost solution is being developed with COTS

microcontrollers (see Chapter 7).

We believe to have enough evidences that the XDense sensor network have the poten-

tial to enable real-time dense sensing. Combined with its novel architecture and feature

detection techniques, it is possible to sense the phenomena and extract high level infor-

mation using in-network processing in real-time.

XDense enables dense deployments that fulfill the spatial and temporal granularity re-

quired by AFC applications, by keeping low spatial and temporal complexity (minimally

influenced by the large number of nodes on the network).

8.2 Future Directions

The simulator developed provided the infrastructure required for evaluating XDense net-

work accurately. However, some temporal aspects still have to be more carefully ad-

dressed in the simulation model, such as processing delay, clock asynchronism, concur-

rency issues and other sources of randomness.

Also, the implemented function modules affect performance of the system and depend

closely on the application scenario. In the same direction, the data input should represent

more accurately the real phenomena, both spatially and temporally, from accurate com-

putational models or from real data logs.

Improvements to the model can be made along many dimensions. One would be to

bring in computational fluid dynamics data to analyze the performance of the model vs

synthetic data. The model can also be improved with more accurate portrayal of hardware

(for example, to consider the internal delays). One way to do this is to measure delays

on real hardware and incorporate it. We have already made some progress along these

lines [144].

More experiments on a large test-bed are required for better characterization of the

real system. Next step should include the development of an application oriented node

which meets as close as possible the specific requirements of aviation applications. A real

deployment with several nodes in a wind tunnel should allow validating the real system.

8.2 Future Directions 141

Furthermore, the proposed analysis framework can also serve as a basis to reason

on the dimensioning of the system; in the choice of network size, the clusters size, and

other configuration that may impact on the performance. A framework provided for this

purpose would also be of a valuable future work.

Bibliography

[1] N. Kasagi, Y. Suzuki, and K. Fukagata, “Microelectromechanical systems–based

feedback control of turbulence for skin friction reduction,” Annual Review

of Fluid Mechanics, vol. 41, no. 1, pp. 231–251, 2009. [Online]. Available:

https://doi.org/10.1146/annurev.fluid.010908.165221

[2] U. Buder, L. Henning, A. Neumann, and E. Obermeier, “Aeromems wall hot-

wire sensor arrays on polyimide with through foil vias and bottom side electrical

contacts,” in Solid-State Sensors, Actuators and Microsystems Conference, 2007.

TRANSDUCERS 2007. International. IEEE, 2007, pp. 2333–2336.

[3] F. Kopsaftopoulos, R. Nardari, Y.-H. Li, and F. Chang, “Experimental identification

of structural dynamics and aeroelastic properties of a self-sensing smart composite

wing,” in Proceedings of the 10th International Workshop on Structural Health

Monitoring, Stanford, CA, 2015.

[4] J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS

Biomedical Devices,” Sensors (Basel, Switzerland), vol. 9, no. 11, pp.

9073–9093, Nov. 2009, 00028 PMID: 22291554. [Online]. Available: http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC3260631/

[5] J. Loureiro, M. Rangarajan, Albano, T. Cerqueira, Raghuraman, and E. Tovar, “A

module for the xdense architecture in ns-3,” Workshop on ns-3 (WNS3), 2015.

[6] C. B. da Silva and J. C. Pereira, “Invariants of the velocity-gradient, rate-of-strain,

and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets,”

Physics of Fluids (1994-present), vol. 20, no. 5, p. 055101, 2008.

[7] J. Westerweel, C. Fukushima, J. M. Pedersen, and J. Hunt, “Momentum and scalar

transport at the turbulent/non-turbulent interface of a jet,” Journal of Fluid Me-

chanics, vol. 631, pp. 199–230, 2009.

[8] R. Que and R. Zhu, “Aircraft aerodynamic parameter detection using

micro hot-film flow sensor array and bp neural network identification,”

Sensors, vol. 12, no. 8, pp. 10 920–10 929, 2012. [Online]. Available:

http://www.mdpi.com/1424-8220/12/8/10920

[9] S. L. Ceccio, “Friction drag reduction of external flows with bubble and gas injec-

tion,” Annual Review of Fluid Mechanics, vol. 42, pp. 183–203, 2010.

143

144 BIBLIOGRAPHY

[10] C. Rodrigues, C. Félix, A. Lage, and J. Figueiras, “Development of a long-term

monitoring system based on fbg sensors applied to concrete bridges,” Engineering

Structures, vol. 32, no. 8, pp. 1993 – 2002, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0141029610000866

[11] L. Troy M, G. Joseph T, and F. Daniel P, “How many electrodes are really needed

for eeg-based mobile brain imaging?” Journal of Behavioral and Brain Science,

vol. 2012, 2012.

[12] A. Saudabayev and H. A. Varol, “Sensors for robotic hands: A survey of state of

the art,” IEEE Access, vol. 3, pp. 1765–1782, 2015.

[13] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based sys-

tems for health monitoring and prognosis,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 1, pp. 1–12, 2010.

[14] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of

things: Vision, applications and research challenges,” Ad Hoc Networks,

vol. 10, no. 7, pp. 1497 – 1516, 2012. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1570870512000674

[15] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso, “Pushpin computing system

overview: A platform for distributed, embedded, ubiquitous sensor networks,” in

Pervasive Computing. Springer, 2002, pp. 139–151.

[16] Z. Çelik-Butler, D. Butler, A. Yardanakul, and A. Yildiz, “Infrared sensors on

flexible substrates for smart skin,” in SPIE Annual International Symposium on

Aerospace/Defense Sensing, Simulation, and Controls (AEROSENSE): Infrared

Detectors and Focal Plane Arrays VII, Dereniak EL and Sampson RE (Eds), Or-

lando, FL, SPIE, vol. 4721, 2002, pp. 260–268.

[17] J. Engel, J. Chen, C. Liu, B. R. Flachsbart, J. C. Selby, and M. A. Shannon, “De-

velopment of polyimide-based flexible tactile sensing skin,” in MRS Proceedings,

vol. 736. Cambridge Univ Press, 2002, pp. D4–5.

[18] S. Airbus, “Global market forecast 2016-2035,” Technical report, Tech. Rep., 2016.

[19] S. Anders, W. Sellers, and A. Washburn, “Active flow control activities at nasa

langley,” in 2nd AIAA Flow Control Conference, 2004, p. 2623.

[20] T. Washburn, “Airframe drag/weight reduction technologies,” Green Aviation

Summit-Fuel Burn Reduction, NASA Ames Research Centre, 2010.

[21] J. Reneaux et al., “Overview on drag reduction technologies for civil transport

aircraft,” ONERA: Tire a Part, vol. 153, pp. 1–18, 2004.

[22] S. K. Robinson, “Coherent motions in the turbulent boundary layer,” Annual Re-

view of Fluid Mechanics, vol. 23, no. 1, pp. 601–639, 1991.

BIBLIOGRAPHY 145

[23] W. K. Blake, Mechanics of Flow-Induced Sound and Vibration V2: Complex Flow-

Structure Interactions. Elsevier, 2012, vol. 2.

[24] S. F. Hoerner, Fluid-dynamic drag: practical information on aerodynamic drag

and hydrodynamic resistance. Hoerner Fluid Dynamics, 1965.

[25] C. B. da Silva and R. J. N. dos Reis, “The role of coherent vortices near the

turbulent/non-turbulent interface in a planar jet,” Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no.

1937, pp. 738–753, 2011.

[26] “Fly-by-feel systems represent the next revolution in aircraft controls,” 2011.

[27] A. Berns and E. Obermeier, “Aeromems sensor arrays for time resolved wall pres-

sure and wall shear stress measurements,” in Imaging Measurement Methods for

Flow Analysis. Springer, 2009, pp. 227–236.

[28] C. Bruinink, R. Jaganatharaja, M. De Boer, E. Berenschot, M. Kolster, T. Lam-

merink, R. Wiegerink, and G. Krijnen, “Advancements in technology and design

of biomimetic flow-sensor arrays,” in Micro Electro Mechanical Systems, 2009.

MEMS 2009. IEEE 22nd International Conference on. IEEE, 2009, pp. 152–155.

[29] U. Buder, R. Petz, M. Kittel, W. Nitsche, and E. Obermeier, “Aeromems polyimide

based wall double hot-wire sensors for flow separation detection,” Sensors and

Actuators A: Physical, vol. 142, no. 1, pp. 130–137, 2008.

[30] M. Watson, A. Jaworski, and N. Wood, “Application of synthetic jet actuators for

the modification of the characteristics of separated shear layers on slender wings,”

The Aeronautical Journal, vol. 111, no. 1122, pp. 519–529, 2007.

[31] A. Sofla, S. Meguid, K. Tan, and W. Yeo, “Shape morphing of aircraft wing: Status

and challenges,” Materials & Design, vol. 31, no. 3, pp. 1284–1292, 2010.

[32] L. N. Cattafesta III and M. Sheplak, “Actuators for active flow control,” Annual

Review of Fluid Mechanics, vol. 43, pp. 247–272, 2011.

[33] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tien-

syrja, and A. Hemani, “A network on chip architecture and design methodology,”

in VLSI, 2002. IEEE Computer Society Annual Symposium on. IEEE, 2002, pp.

105–112.

[34] S. Y. Kung, “Vlsi array processors,” Englewood Cliffs, NJ, Prentice Hall, 1988,

685 p. Research supported by the Semiconductor Research Corp., SDIO, NSF, and

US Navy., vol. 1, 1988.

[35] H. T. Kung and P. L. Lehman, “Systolic (vlsi) arrays for relational database

operations,” in Proceedings of the 1980 ACM SIGMOD International Conference

on Management of Data, ser. SIGMOD ’80. New York, NY, USA: ACM, 1980,

pp. 105–116. [Online]. Available: http://doi.acm.org/10.1145/582250.582267

146 BIBLIOGRAPHY

[36] E. Cloud, “The geometric arithmetic parallel processor,” in Frontiers of Massively

Parallel Computation, 1988. Proceedings., 2nd Symposium on the Frontiers of, Oct

1988, pp. 373–381.

[37] B. AMBA, “Arm announces amba 5 chi specification to en-

able high performance, highly scalable system on chip technology,

http://www.arm.com/about/newsroom/arm-announces-amba-5-chi-specification-

to-enable-high-performance-highly-scalable-system-on-chip.php.”

[38] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,” Computer,

vol. 35, no. 1, pp. 70–78, Jan 2002.

[39] G. D. Micheli and L. Benini, “On-chip communication architectures: System on

chip interconnect,” 2008.

[40] A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kickstarting high-performance

energy-efficient manycore architectures with epiphany,” in 2014 48th Asilomar

Conference on Signals, Systems and Computers, Nov 2014, pp. 1719–1726.

[41] A. Olofsson, “Epiphany-v: A 1024 processor 64-bit RISC system-on-chip,” CoRR,

vol. abs/1610.01832, 2016. [Online]. Available: http://arxiv.org/abs/1610.01832

[42] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,

C. C. Miao, J. F. B. III, and A. Agarwal, “On-chip interconnection architecture of

the tile processor,” IEEE Micro, vol. 27, no. 5, p. 15–31, Sep 2007.

[43] S.-C. C. C. Intel, “www.intel.com/content/www/us/en/research/intel-labs-single-

chip-cloud-computer.html.”

[44] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, and Z. Navabi, “Evaluation of

pseudo adaptive xy routing using an object oriented model for noc,” in Micro-

electronics, 2005. ICM 2005. The 17th International Conference on. IEEE, 2005,

pp. 5–pp.

[45] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der

Veen, “Dynoc: A dynamic infrastructure for communication in dynamically re-

confugurable devices,” in Field Programmable Logic and Applications, 2005. In-

ternational Conference on. IEEE, 2005, pp. 153–158.

[46] H. Kariniemi and J. Nurmi, “Arbitration and routing schemes for on-chip packet

networks,” in Interconnect-centric design for advanced SoC and NoC. Springer,

2005, pp. 253–282.

[47] K. Kim, S.-J. Lee, K. Lee, and H.-J. Yoo, “An arbitration look-ahead scheme for

reducing end-to-end latency in networks on chip,” in Circuits and Systems, 2005.

ISCAS 2005. IEEE International Symposium on. IEEE, 2005, pp. 2357–2360.

[48] T. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde, and

R. Lauwereins, “Topology adaptive network-on-chip design and implementation,”

BIBLIOGRAPHY 147

IEE Proceedings-Computers and Digital Techniques, vol. 152, no. 4, pp. 467–472,

2005.

[49] S. Pasricha and N. Dutt, On-chip communication architectures: system on chip

interconnect. Elsevier / Morgan Kaufmann Publishers.

[50] T. E. Anderson, D. E. Culler, and D. Patterson, “A case for now (networks of

workstations),” IEEE Micro, vol. 15, no. 1, pp. 54–64, Feb 1995.

[51] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,

and W.-K. Su, “Myrinet: a gigabit-per-second local area network,” IEEE Micro,

vol. 15, no. 1, pp. 29–36, Feb 1995.

[52] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes,

“The illiac iv computer,” IEEE Transactions on Computers, vol. C-17, no. 8, pp.

746–757, Aug 1968.

[53] K. T. H. Torleiv, Algebraic Coding Theory. American Cancer Society, 1999.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.

W4205

[54] K. Bolding, M. Fulgham, and L. Snyder, “The case for chaotic adaptive routing,”

IEEE Transactions on Computers, vol. 46, no. 12, pp. 1281–1292, Dec 1997.

[55] A. Borodin and J. Hopcroft, “Routing, merging, and sorting on parallel models of

computation,” Journal of Computer and System Sciences, vol. 30, no. 1, pp. 130 –

145, 1985. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

002200008590008X

[56] W. Dally and B. Towles, Principles and Practices of Interconnection Networks.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[57] D. Wiklund and D. Liu, “Socbus: switched network on chip for hard real time em-

bedded systems,” in Parallel and Distributed Processing Symposium, 2003. Pro-

ceedings. International. IEEE, 2003, pp. 8–pp.

[58] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in

direct networks,” Computer, vol. 26, no. 2, pp. 62–76, 1993. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=191995

[59] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on chip: con-

cepts, architectures, and implementations,” IEEE Design Test of Computers,

vol. 22, pp. 414–421.

[60] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-

on-chip,” ACM Computing Surveys (CSUR), vol. 38, no. 1, p. 1, 2006.

[61] L. Löfdahl and M. Gad-el Hak, “Mems applications in turbulence and flow con-

trol,” Progress in Aerospace Sciences, vol. 35, no. 2, pp. 101–203, 1999.

148 BIBLIOGRAPHY

[62] A. Berns, U. Buder, E. Obermeier, A. Wolter, and A. Leder, “Aeromems sensor

array for high-resolution wall pressure measurements,” Sensors and Actuators A:

Physical, vol. 132, no. 1, pp. 104–111, 2006.

[63] A. Berns, H.-D. Ngo, U. Buder, and E. Obermeier, “Aeromems pressure sensor ar-

ray featuring through-wafer vias for high-resolution wall pressure measurements,”

in Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International

Conference on. IEEE, 2008, pp. 896–899.

[64] A. Berns, U. Buder, E. Obermeier, X. Wang, J. Domhardt, J. Leuckert, and

W. Nitsche, “Aeromems pressure sensor with integrated wall hot-wire,” in Sensors,

2008 IEEE. IEEE, 2008, pp. 1560–1563.

[65] M. Schober, E. Obermeier, S. Pirskawetz, and H.-H. Fernholz, “A mems

skin-friction sensor for time resolved measurements in separated flows,”

Experiments in Fluids, vol. 36, no. 4, pp. 593–599, 2004. [Online]. Available:

http://dx.doi.org/10.1007/s00348-003-0728-4

[66] J. Engel, J. Chen, C. Liu, and D. Bullen, “Polyurethane rubber all-polymer artificial

hair cell sensor,” Microelectromechanical Systems, Journal of, vol. 15, no. 4, pp.

729–736, Aug 2006.

[67] N. Chen, C. Tucker, J. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and char-

acterization of artificial haircell sensor for flow sensing with ultrahigh velocity and

angular sensitivity,” Microelectromechanical Systems, Journal of, vol. 16, no. 5,

pp. 999–1014, Oct 2007.

[68] X. CHEN, F. KOPSAFTOPOULOS, H. CAO, and F. CHANG, “Intelligent flight

state identification of a self-sensing wing through neural network modelling,”

Structural Health Monitoring 2017, 2017.

[69] S. Lee, W. Buxton, and K. C. Smith, “A multi-touch three dimensional

touch-sensitive tablet,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, ser. CHI ’85. New York, NY, USA: ACM, 1985,

pp. 21–25. [Online]. Available: http://doi.acm.org/10.1145/317456.317461

[70] N. Salowitz, Z. Guo, S. J. Kim, Y. H. Li, G. Lanzara, and F. K. Chang, “Bio-

inspired intelligent sensing materials for fly-by-feel autonomous vehicles,” in 2012

IEEE Sensors, Oct 2012, pp. 1–3.

[71] N. Salowitz, Z. Guo, Y.-H. Li, K. Kim, G. Lanzara, and F.-K. Chang, “Bio-inspired

stretchable network-based intelligent composites,” Journal of Composite Materi-

als, vol. 47, no. 1, pp. 97–105, 2013.

[72] F. Gen-Kuong and B. Swanson, “Network sensor systems- the pressure belt ap-

plication,” in 19 th Aerospace Testing Seminar, Manhattan Beach, CA, 2000, pp.

379–390.

BIBLIOGRAPHY 149

[73] J. Lifton, M. Broxton, and J. A. Paradiso, “Experiences and directions in pushpin

computing,” in Proceedings of the 4th International Symposium on Information

Processing in Sensor Networks, ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press,

2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1147685.1147753

[74] J. A. Paradiso, J. Lifton, and M. Broxton, “Sensate media—multimodal electronic

skins as dense sensor networks,” BT Technology Journal, vol. 22, no. 4, pp. 32–44,

2004.

[75] B. F. Mistree and J. A. Paradiso, “Chainmail: A configurable multimodal lining

to enable sensate surfaces and interactive objects,” in Proceedings of the Fourth

International Conference on Tangible, Embedded, and Embodied Interaction, ser.

TEI ’10. New York, NY, USA: ACM, 2010, pp. 65–72. [Online]. Available:

http://doi.acm.org/10.1145/1709886.1709899

[76] A. Dementyev, H.-L. C. Kao, and J. A. Paradiso, “Sensortape: Modular and

programmable 3d-aware dense sensor network on a tape,” in Proceedings of the

28th Annual ACM Symposium on User Interface Software & Technology, ser.

UIST ’15. New York, NY, USA: ACM, 2015, pp. 649–658. [Online]. Available:

http://doi.acm.org/10.1145/2807442.2807507

[77] F. Leens, “An introduction to i2c and spi protocols,” IEEE Instrumentation Mea-

surement Magazine, vol. 12, no. 1, pp. 8–13, February 2009.

[78] S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric

elastomer actuators,” Applied Physics A, vol. 110, no. 2, pp. 281–307, Nov. 2012.

[Online]. Available: http://link.springer.com/article/10.1007/s00339-012-7402-8

[79] S. Wagner, S. P. Lacour, J. Jones, P.-h. I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Elec-

tronic skin: architecture and components,” Physica E: Low-dimensional Systems

and Nanostructures, vol. 25, no. 2, pp. 326–334, 2004.

[80] M. L. Hammock, A. Chortos, B. C.-K. Tee, J. B.-H. Tok, and Z. Bao, “25th

Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief

History, Design Considerations, and Recent Progress,” Advanced Materials,

vol. 25, no. 42, pp. 5997–6038, Nov. 2013, 00091. [Online]. Available:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201302240/abstract

[81] Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo, “Conformable and scalable tactile

sensor skin for curved surfaces,” in Robotics and Automation, 2006. ICRA 2006.

Proceedings 2006 IEEE International Conference on. IEEE, 2006, pp. 1348–

1353.

[82] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya,

“A Rubberlike Stretchable Active Matrix Using Elastic Conductors,” Science,

vol. 321, no. 5895, pp. 1468–1472, Sep. 2008, 00499. [Online]. Available:

http://www.sciencemag.org/content/321/5895/1468

150 BIBLIOGRAPHY

[83] R. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing - From Humans to

Humanoids,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, Feb. 2010,

00377.

[84] J. Ohta, T. Tokuda, K. Kagawa, S. Sugitani, M. Taniyama, A. Uehara, Y. Tera-

sawa, K. Nakauchi, T. Fujikado, and Y. Tano, “Laboratory investigation of

microelectronics-based stimulators for large-scale suprachoroidal transretinal stim-

ulation (sts),” Journal of neural engineering, vol. 4, no. 1, p. S85, 2007.

[85] M. Monge, M. Raj, M. Honarvar-Nazari, H.-C. Chang, Y. Zhao, J. Wei-

land, M. Humayun, Y.-C. Tai, and A. Emami-Neyestanak, “A fully intraocu-

lar 0.0169mm2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm

CMOS,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2013 IEEE International, Feb. 2013, pp. 296–297, 00000.

[86] A. Rabbi, K. Ivanca, A. Putnam, A. Musa, C. Thaden, and R. Fazel-Rezai, “Human

performance evaluation based on EEG signal analysis: A prospective review,” in

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, 2009. EMBC 2009, Sep. 2009, pp. 1879–1882.

[87] M. Hassaballah, A. Ali, and H. Alshazly, Image Features Detection, Description

and Matching, 02 2016, vol. 630, pp. 11–45.

[88] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking and

matching in video using programmable graphics hardware,” Machine Vision

and Applications, vol. 22, no. 1, p. 207–217, Jan 2011. [Online]. Available:

https://link.springer.com/article/10.1007/s00138-007-0105-z

[89] C. Tomasi and T. Kanade, “Detection and tracking of point features,” 1991.

[90] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov 2004.

[Online]. Available: https://doi.org/10.1023/B:VISI.0000029664.99615.94

[91] J. A. Ross, D. A. Richie, and S. J. Park, “Implementing image processing al-

gorithms for the epiphany many-core coprocessor with threaded mpi,” in IEEE,

September, 2015.

[92] C. Y. Villalpando, A. E. Johnson, R. Some, J. Oberlin, and S. Goldberg, “Investi-

gation of the tilera processor for real time hazard detection and avoidance on the

altair lunar lander,” in Aerospace Conference, 2010 IEEE. IEEE, 2010, p. 1–9.

[93] S. Srinivasan, S. Dattagupta, P. Kulkarni, and K. Ramamritham, “A survey

of sensory data boundary estimation, covering and tracking techniques using

collaborating sensors,” Pervasive and Mobile Computing, vol. 8, no. 3, p.

358–375, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1574119212000430

BIBLIOGRAPHY 151

[94] K. Chintalapudi and R. Govindan, Localized edge detection in sensor fields.

IEEE, May 2003, p. 59–70. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1203357

[95] M. Li and Y. Liu, “Iso-map: Energy-efficient contour mapping in wireless sensor

networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 5,

p. 699–710, May 2010.

[96] S. Duttagupta, K. Ramamritham, and P. Ramanathan, “Distributed boundary es-

timation using sensor networks,” in Mobile Adhoc and Sensor Systems (MASS),

2006 IEEE International Conference on. IEEE, 2006, pp. 316–325.

[97] X. Meng, T. Nandagopal, L. Li, and S. Lu, “Contour maps: Monitoring

and diagnosis in sensor networks,” Computer Networks, vol. 50, no. 15, p.

2820–2838, Oct 2006. [Online]. Available: http://linkinghub.elsevier.com/retrieve/

pii/S1389128605003841

[98] Y. Xu, W.-C. Lee, and G. Mitchell, CME: A Contour Mapping Engine in

Wireless Sensor Networks. IEEE, Jun 2008, p. 133–140. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4595877

[99] W. Xue, Q. Luo, L. Chen, and Y. Liu, Contour Map Matching for Event Detection

in Sensor Networks, 2006.

[100] K. King and S. Nittel, Efficient Data Collection and Event Boundary Detection in

Wireless Sensor Networks Using Tiny Models, 2010, p. 100–114.

[101] P.-K. Liao, M.-K. Chang, and C.-C. J. Kuo, A Cross-Layer Approach to Contour

Nodes Inference with Data Fusion in Wireless Sensor Networks. IEEE, 2007, p.

2773–2777. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4224760

[102] N. Pereira, B. Andersson, and E. Tovar, “Widom: A dominance protocol for wire-

less medium access,” IEEE Transactions on Industrial Informatics, vol. 3, no. 2,

pp. 120–130, May 2007.

[103] B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F. Pacheco, and N. Cruz, “A

scalable and efficient approach for obtaining measurements in can-based control

systems,” IEEE Transactions on Industrial Informatics, vol. 4, no. 2, pp. 80–91,

May 2008.

[104] M. Vahabi, V. Gupta, M. Albano, R. Rangarajan, and E. Tovar, “Feature extraction

in densely sensed environments: Extensions to multiple broadcast domains,”

International Journal of Distributed Sensor Networks, vol. 11, no. 8, p. 457537,

2015. [Online]. Available: https://doi.org/10.1155/2015/457537

[105] Z. Shi and A. Burns, “Real-time communication analysis for on-chip

networks with wormhole switching,” in Proceedings of the Second ACM/IEEE

International Symposium on Networks-on-Chip, ser. NOCS ’08. Washington,

152 BIBLIOGRAPHY

DC, USA: IEEE Computer Society, 2008, pp. 161–170. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1397757.1397996

[106] L. S. Indrusiak, “End-to-end schedulability tests for multiprocessor embedded

systems based on networks-on-chip with priority-preemptive arbitration,” Journal

of Systems Architecture, vol. 60, no. 7, pp. 553 – 561, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1383762114000800

[107] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. D. Micheli, and H. Sarbazi-

Azad, “Computing accurate performance bounds for best effort networks-on-chip,”

IEEE Transactions on Computers, vol. 62, no. 3, pp. 452–467, March 2013.

[108] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth using

looped containers in temporally disjoint networks within the nostrum network on

chip,” in Design, Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings, vol. 2. IEEE, 2004, pp. 890–895.

[109] T. Bjerregaard and J. Sparso, “A router architecture for connection-oriented service

guarantees in the mango clockless network-on-chip,” in Design, Automation and

Test in Europe, 2005. Proceedings, pp. 1226–1231 Vol. 2.

[110] W.-D. Weber, J. Chou, I. Swarbrick, and D. Wingard, “A quality-of-service

mechanism for interconnection networks in system-on-chips,” in Proceedings of

the Conference on Design, Automation and Test in Europe - Volume 2, ser.

DATE ’05. IEEE Computer Society, 2005, p. 1232–1237. [Online]. Available:

http://dx.doi.org/10.1109/DATE.2005.33

[111] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture and compiler

for scalable on-chip communication,” IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, vol. 12, no. 7, p. 711–726, Jul 2004.

[112] J. Liu, L.-R. Zheng, and H. Tenhunen, “Interconnect intellectual property for

network-on-chip (noc),” Journal of Systems Architecture, vol. 50, no. 2, p. 65–79,

Feb 2004.

[113] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-

man, P. Johnson, J.-W. Lee, W. Lee, and et al., “The raw microprocessor: a compu-

tational fabric for software circuits and general-purpose programs,” IEEE Micro,

vol. 22, no. 2, p. 25–35, Mar 2002.

[114] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, and D. Verkest,

“Spatial division multiplexing: A novel approach for guaranteed throughput

on nocs,” in Proceedings of the 3rd IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS ’05.

ACM, 2005, p. 81–86. [Online]. Available: http://doi.acm.org/10.1145/1084834.

1084858

[115] R. L. Cruz, “A calculus for network delay. i. network elements in isolation,” IEEE

Transactions on Information Theory, vol. 37, no. 1, pp. 114–131, Jan 1991.

BIBLIOGRAPHY 153

[116] M. Fidler, “Survey of deterministic and stochastic service curve models in the net-

work calculus,” IEEE Communications Surveys Tutorials, vol. 12, no. 1, pp. 59–86,

First 2010.

[117] X. Fan, M. Jonsson, and J. Jonsson, “Guaranteed real-time communication in

packet-switched networks with fcfs queuing,” Computer Networks, vol. 53, no. 3,

pp. 400 – 417, 2009. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1389128608003538

[118] V. Sivaraman, F. M. Chiussi, and M. Gerla, “Deterministic end-to-end delay

guarantees with rate controlled {EDF} scheduling,” Performance Evaluation,

vol. 63, no. 4–5, pp. 509 – 519, 2006. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0166531605000507

[119] S. Manolache, P. Eles, and Z. Peng, “Buffer space optimisation with

communication synthesis and traffic shaping for nocs,” in Proceedings of

the Conference on Design, Automation and Test in Europe: Proceedings,

ser. DATE ’06. 3001 Leuven, Belgium, Belgium: European Design and

Automation Association, 2006, pp. 718–723. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1131481.1131683

[120] J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive switched

ethernet networks,” in 2016 28th Euromicro Conference on Real-Time Systems

(ECRTS), July 2016, pp. 75–85.

[121] D. Sigüenza-Tortosa, T. Ahonen, and J. Nurmi, “Issues in the development of a

practical noc: the proteo concept,” Integration, the VLSI Journal, vol. 38, no. 1, p.

95–105, Oct 2004.

[122] D. Andreasson and S. Kumar, “Slack-time aware routing in noc systems,” in 2005

IEEE International Symposium on Circuits and Systems, May 2005, pp. 2353–2356

Vol. 3.

[123] Institute of Electrical and Electronics Engineers, Computer Architecture, 1997.

Conference Proceedings. The 24th Annual International Symposium on.

[124] S. Pasricha and N. Dutt, On-chip communication architectures: system on chip

interconnect. Morgan Kaufmann, 2010.

[125] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based noc

architectures under performance constraints,” in Proceedings of the 2003

Asia and South Pacific Design Automation Conference, ser. ASP-DAC ’03.

New York, NY, USA: ACM, 2003, pp. 233–239. [Online]. Available:

http://doi.acm.org/10.1145/1119772.1119818

[126] J. Loureiro. [Online]. Available: https://github.com/joaofl/noc

[127] G. Riley and T. Henderson, “The ns-3 network simulator,” in Modeling

and Tools for Network Simulation, K. Wehrle, M. Güneş, and J. Gross,

154 BIBLIOGRAPHY

Eds. Springer Berlin Heidelberg, 2010, pp. 15–34. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-12331-3_2

[128] G. Haller and G. Yuan, “Lagrangian coherent structures and mixing in two-

dimensional turbulence,” Physica D: Nonlinear Phenomena, vol. 147, no. 3, pp.

352–370, 2000.

[129] V. Schmitt and F. Charpin, “Pressure distributions on the onera-m6-wing at tran-

sonic mach numbers,” Experimental data base for computer program assessment,

vol. 4, 1979.

[130] F. Palacios, J. Alonso, K. Duraisamy, M. Colonno, J. Hicken, A. Aranake, A. Cam-

pos, S. Copeland, T. Economon, A. Lonkar et al., “Stanford university unstructured

(su 2): An open-source integrated computational environment for multi-physics

simulation and design,” in 51st AIAA Aerospace Sciences Meeting Including the

New Horizons Forum and Aerospace Exposition, 2013, p. 287.

[131] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation in

wireless sensor networks,” in Distributed Computing Systems Workshops, 2002.

Proceedings. 22nd International Conference on, 2002, pp. 575–578.

[132] B. N. Datta, Numerical linear algebra and applications. Siam, 2010.

[133] O. Vincent and O. Folorunso, “A descriptive algorithm for sobel image edge detec-

tion,” in Proceedings of Informing Science & IT Education Conference (InSITE),

2009, pp. 97–107.

[134] C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu, “A survey on parallel comput-

ing and its applications in data-parallel problems using gpu architectures,” Com-

munications in Computational Physics, vol. 15, no. 2, p. 285–329, 2014.

[135] A. Agarwal, C. Iskander, and R. Shankar, “Survey of network on chip (noc) ar-

chitectures & contributions,” Journal of engineering, Computing and Architecture,

vol. 3, no. 1, pp. 21–27, 2009.

[136] W. J. Dally and J. W. Poulton, Digital systems engineering. Cambridge university

press, 2008. [Online]. Available: https://www.google.com/books?hl=pt-PT&lr=

&id=anC_AwAAQBAJ&oi=fnd&pg=PR21&dq=Digital+Systems+Engineering&

ots=ED8vA_i6yp&sig=2GFQgh7JSzE40zdyKEdSfaQWhXc

[137] L. E. Frenzel, Handbook of serial communications interfaces: a comprehensive

compendium of serial digital input/output (I/O) standards. Newnes, 2015.

[138] N. Patel, V. Patel, and V. Patel, “Vhdl implementation of uart with status register,”

in Communication Systems and Network Technologies (CSNT), 2012 International

Conference on. IEEE, 2012, pp. 750–754.

[139] Xilinx, “Spartan-6 family overview,” October 2011, product Specification.

[Online]. Available: https://www.xilinx.com/support/documentation/data_sheets/

ds160.pdf

BIBLIOGRAPHY 155

[140] Atmel, “Atmel smart arm-based mcu datasheet,”

March 2015, product Specification. [Online]. Avail-

able: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11158-32-bit%

20Cortex-M4-Microcontroller-SAM4N16-SAM4N8_Datasheet.pdf

[141] R. Barry et al., “Freertos,” Internet, Oct, 2008.

[142] Z. Hameed, Y. Hong, Y. Cho, S. Ahn, and C. Song, “Condition monitoring and

fault detection of wind turbines and related algorithms: A review,” Renewable and

Sustainable energy reviews, vol. 13, no. 1, pp. 1–39, 2009.

[143] D. Freedman and P. Diaconis, “On the histogram as a density estimator: L 2 the-

ory,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 57,

no. 4, pp. 453–476, 1981.

[144] J. Loureiro, P. Santos, R. Rangarajan, and E. Tovar, “Simulation module and

tools for xdense sensor network,” in Proceedings of the Workshop on Ns-3, ser.

WNS3 ’17. New York, NY, USA: ACM, 2017, pp. 110–117. [Online]. Available:

http://doi.acm.org/10.1145/3067665.3067680

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Thesis Statement
	1.3 System Requirements and Proposed Approach
	1.4 Methodology
	1.5 Thesis Structure

	I Background
	2 Applications and Technology Enablers
	2.1 Introduction
	2.2 Related Network Architectures
	2.2.1 Computation Arrays
	2.2.2 Many-core Systems and Networks on Chip
	2.2.3 Study Case: The Epiphany Processor

	2.3 Dense Deployments of Sensors
	2.3.1 Airflow Sensing
	2.3.2 Other Dense Deployments of Sensor and Actuators

	2.4 Summary

	3 Survey of Distributed Data Processing Techniques for Dense Sensing
	3.1 Introduction
	3.2 Feature Detection and Extraction
	3.2.1 Using Many-core Processors
	3.2.2 Feature Extraction in Sensor Networks

	3.3 Real-time Communication
	3.3.1 Real-time Guarantees for NoCs
	3.3.2 Real-time Guarantees for General Purpose Networks Using Traffic Shaping

	3.4 Summary

	II Proposed Novel Design: XDense
	4 Network Design and Principles of Operation
	4.1 Introduction
	4.2 Network Design
	4.2.1 Networking Device
	4.2.2 Router
	4.2.3 Processor
	4.2.4 Sensor

	4.3 Assumptions and System Definitions
	4.3.1 Network Temporal Behavior
	4.3.2 Packet Structure
	4.3.3 Addressing

	4.4 Networking Protocols
	4.4.1 Routing Protocols
	4.4.2 Communication Protocols
	4.4.3 Application Protocols

	4.5 Example Scenario
	4.6 Concluding Remarks

	5 Simulation Model for Fluid Dynamics Sensing
	5.1 Introduction
	5.2 Simulation Model
	5.2.1 Pre-processing Tools
	5.2.2 Post-processing Tools

	5.3 Performance Evaluation With Airflow Input Data
	5.3.1 Distributed Application Execution
	5.3.2 Experiment I: Sensing Compressed Static CFD Data
	5.3.3 Experiment II: Detecting Transition Region on Static CFD Data
	5.3.4 Experiment III: Detecting Transition Region on Static Image Data
	5.3.5 Experiment IV: Sensing Temporal CFD Data

	5.4 Concluding Remarks

	6 Analytical Model for Real-time Sensing Using Traffic Shaping
	6.1 Introduction
	6.2 Application Execution
	6.2.1 Clustering Nodes
	6.2.2 Temporal Isolation Through Phases
	6.2.3 Spatial Isolation Through Routing Schemes

	6.3 Real-time Networking Model
	6.3.1 Shaping Flows and Traffic Throughout the Network
	6.3.2 Shaping Traffic at a Single Output Port
	6.3.3 Worst-case Per-hop Delays and Maximum Queue Sizes

	6.4 Validation Example
	6.5 Evaluation of Traffic Shaping Heuristics
	6.5.1 Maximum queue size with homogeneous load distribution
	6.5.2 Phase execution time for homogeneous load distribution
	6.5.3 Maximum queue size with heterogeneous load distribution
	6.5.4 Phase execution time for heterogeneous load distribution

	6.6 Concluding Remarks

	7 Hardware Implementation and Performance Evaluation
	7.1 Introduction
	7.2 Hardware Design
	7.3 System Requirements
	7.4 Design Decisions
	7.4.1 Composing an FPGA XDense node
	7.4.2 Microcontroller Based XDense Node

	7.5 Performance Evaluation and Comparison
	7.5.1 Experiment 1: Single Hop Delay
	7.5.2 Experiment 2: Multi-hop Delay
	7.5.3 Current Limitations

	7.6 Concluding Remarks

	8 Conclusions and Future Directions
	8.1 Summary of Contributions
	8.2 Future Directions

	Bibliography
	Index

