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Abstract 
Given that power is one of the biggest concerns of embedded systems, many devices have replaced DRAM with 
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thus their temporalbehavior must be analyzed before deploying them. Moreover, modern systems typically contain 
multiple cores, causing an application to incur significant delays due to the contention for the shared bus and 
shared main memory (PCM in this work). One of the challenges in the timing analysis for PCM main memories is 
the high discrepancy between read and write latencies and the high contention among cores. Finding an upper 
bound on these delays is non-trivial mainly because (i) memory requests may be issued by co-executing 
applications at random times, (ii) it is difficult to determine apriori which applications will be concurrently 
executing, and (iii) the type of requests applications will issue. This work proposes a method to derive upper 
bounds on the increase in execution time of applications executing on such PCM-based multicores. It considers 
the contention on the shared memory and focuses on dealing with the asymmetric read and write latencies of 
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Abstract—Given that power is one of the biggest concerns of
embedded systems, many devices have replaced DRAM with non-
volatile Phase Change Memories (PCM). Some applications need
to adhere to strict timing constraints and thus their temporal
behavior must be analyzed before deploying them. Moreover,
modern systems typically contain multiple cores, causing an
application to incur significant delays due to the contention for
the shared bus and shared main memory (PCM in this work).

One of the challenges in the timing analysis for PCM
main memories is the high discrepancy between read and write
latencies and the high contention among cores. Finding an upper
bound on these delays is non-trivial mainly because (i) memory
requests may be issued by co-executing applications at random
times, (ii) it is difficult to determine apriori which applications
will be concurrently executing, and (iii) the type of requests appli-
cations will issue. This work proposes a method to derive upper
bounds on the increase in execution time of applications executing
on such PCM-based multicores. It considers the contention on the
shared memory and focuses on dealing with the asymmetric read
and write latencies of PCM-based memories, while taking into
account the specific policy applied to schedule requests by the
memory controller.

I. INTRODUCTION
A key development in the embedded systems arena is the

adoption of the multicore technology as their core processing
platform. Another interesting development related to memory
systems has been the promotion of Phase Change Memory
(PCM) as main memory for embedded systems [1], [2], [3],
[4], [5]. PCM has been positioned to complement or replace
existing volatile memories like Dynamic Random Access
Memory (DRAM) as the main memory and as a potential
alternative to FLASH memory. PCM is more power efficient
than DRAM because it is non-volatile (does not need periodic
refreshes).

In spite of the aforementioned benefits, its adoption for
real-time embedded systems is not without its own challenges:
its read latency is acceptable but the write latency is very
high. While DRAM read and write latencies are in the range
of 20-50ns, PCM read latency is of the order of 50ns while
the write latency is of the order of 0.5–1µs [6]. With such
high latencies, from the real-time context, many tasks on
systems with PCM-based memory (without any modifications)
may miss their deadlines or incur unacceptable delays in

This work was partially supported by National Funds through FCT and
ERDF (European Regional Development Fund) through COMPETE (Oper-
ational Programme ’Thematic Factors of Competitiveness’), within project
Ref. FCOMP-01-0124-FEDER-022701; by FCT and COMPETE (ERDF),
within REPOMUC project, ref. FCOMP-01-0124-FEDER-015050; by FCT
and ESF (European Social Fund) through POPH (Portuguese Human Potential
Operational Program), under PhD grant SFRH/BD/71169/2010.

their execution times [7]. To address this issue, researchers
have proposed PCM memory controller scheduling policies
and designs that overcome these challenges, facilitating its
adoption in real-time systems [3], [7]. From the architecture
side, increasing the cache sizes can also mitigate the penalties
associated with the high write latencies. Researchers have
also envisioned and architected a multi-tiered vertical memory
hierarchy which consists of the on-chip caches, an off-chip
DRAM memory and then a PCM main memory as the last
memory level.

Our work focuses on developing a mechanism to aid the
timing analysis of real-time embedded systems hosted on
multicores systems with PCM as the main memory.

A. Problem overview and challenges
To ensure at design time that real-time embedded appli-

cations deliver the required functionality within pre-set time
limits, bounds on key parameters like the worst-case execution
time (WCET) must be established. In this paper, we build on
state of the art methods that compute these WCET estimates,
and address the problem of extending such upper bounds
considering the contention for the PCM memory controller
and the asymmetric read and write latencies. We assume a
multicore system with private caches and a PCM-based main
memory system.

Another problem of PCM is its limited endurance (up to
108 writes), which can be mitigated with a large dedicated
on-chip cache (SRAM or embedded DRAM) that can absorb
most of the write misses – PCM-only memories then become
feasible with the advantage of energy efficiency and density.

Many researchers have dealt with the challenges of re-
source contention in multicores [8], [9], [10]. With the advent
of multicores, architectures are enhanced with various tech-
niques to improve average-case performance (e.g., re-ordering
memory requests from the different cores and memory con-
troller with complex scheduling policies). These techniques
make it extremely challenging to analyze and do not facilitate
time-predictability. Real-time system analysts favor temporal
and spatial isolation but the presence of shared resources gov-
erned by performance-oriented arbitration policies contradicts
this requirement. For example, the shared memory bus in
modern commercially available multicores is designed with
multiple pipeline stages and support for split transactions,
thereby making it extremely complex to analyze [11]. Fur-
thermore, the details of the bus arbitration mechanism are
not specified and interfaces to modify them are typically not
provided by the vendors.

To enhance performance, the memory bus is work conserv-
ing and does not ensure guaranteed time-slots to applications.



As a consequence, the timing parameters (e.g., the WCET) of
a task that runs in isolation on these subsystems are different
from those observed when the task is run in conjunction
with other tasks. The WCET of tasks, for instance is known
to increase significantly due to contention for these shared
resources and thus the designer must be able to determine
tight upper bounds on this value, perform schedulability tests
and ascertain whether the tasks will meet their deadlines at
run time.

B. Main contributions
State-of-the-art analysis techniques to compute the delay

due to contention on the shared memory do not consider the
request handling mechanisms within the memory controller
and treat it as a black box. A fixed latency for servicing read
and write memory requests is typically assumed in the analysis,
which is appropriate for DRAM. A new memory scheduling
policy considering PCM’s read/write timing asymmetries [7]
reduces the number of deadline misses and makes it practical
to deploy real-time applications. This work builds on [7]
and provides the timing analysis for PCM main memories in
multicore systems. We believe that this is the first work to
derive the increased WCET of a task considering asymmetric-
latency based systems and the memory request scheduling
policy within the realm of real-time systems. Although this
particular analysis focuses on PCM, it could be used for other
memory technologies with asymmetric read and write latencies
like Spin Transfer Torque (STT) memories.

In this work, we propose a method to model the timing
of requests in the PCM memory controller considering the
memory scheduling policy. We leverage the model to compute
the increased WCET of a task considering the contention on
the bus and the memory controller. Our method exploits the
memory request profile of the analyzed tasks in order to tighten
the WCET. The analysis is then validated by running our
proposed method on benchmarks from MediaBench [12]. A set
of experiments have been performed to highlight the impact
of other parameters like the nature of co-scheduled tasks and
the task priorities on the WCET.

The rest of the paper is organized as follows: Section II
discusses the related work in the area of timing analysis
and PCM. The system model is described in Section III. An
initial basic approach is proposed in Section IV, followed by
Section V which describes our new method. This method is
validated and the results are presented in Section VI. The paper
finally concludes in Section VII.

II. RELATED WORK
A. Earlier work on PCM

PCM has been proposed as a promising candidate for
energy-efficient main memory systems. Lee et al. [13] propose
area-neutral buffer organizations and partial write techniques
to mitigate the negative impacts of PCM’s long latencies, high
energy and limited endurance. Qureshi et al. [14] propose a
hybrid architecture that uses a DRAM cache to filter accesses
to PCM. The hybrid architecture has the latency benefits of
DRAM and the capacity and scalability advantages of PCM.
Ferreira et al. [15] study page partitioning in the DRAM cache
to reduce the amount of data written back to PCM. Zhou et
al. [16] propose PCM as a direct replacement for DRAM in
main memory without buffer organization. Zhang et al. [17]
present a hybrid PCM/DRAM memory architecture that uses

a small DRAM as write buffer. OS-level paging scheme is
applied to improve PCM write performance and lifetime.

Researchers have also proposed techniques for mitigating
the impact of undesirable PCM characteristics. As mentioned
above, buffer organizations [15], [13], [14], [17] are effective
to hide the impacts of slow PCM writes (compared to DRAM).
Techniques like write cancellation and write pausing [18] have
also been proposed to improve the performance of PCM reads
by delaying the extremely slow write operations.

PCM controller modifications to make it real-time
friendly: Tasks executing on a system with the basic PCM
memory system can experience high deadline misses. To
overcome this issue, the authors of [7] proposed three main
features to be integrated into the PCM memory controller,
which resulted in substantially reducing the number of tasks
that missed their deadlines.
1) Ability to attach external priorities to each memory request,
together with the type of the request (read or write) and its
arrival time. Priorities are assigned to requests based on the
task properties, using algorithms like EDF and RMA.
2) Critical read boosting, which prioritizes critical reads over
non-critical prefetch reads.
3) Preference of Reads over Writes. The rationale is that since
writes can be buffered and the latency due to a write operation
is very high, reads must be prioritized over writes to reduce
the waiting time for read responses.
However, their work did not focus on the timing analysis of
their proposed model which is the main theme of this paper.

B. Earlier work on Timing Analysis in the area of multicores
While timing analysis for unicore processors has been

widely studied (see [19] for a compilation of techniques), the
same cannot be said for multicores. The presence of shared
hardware resources has brought forth new challenges and has
been the focus of ongoing research. In the context of this work,
it is noteworthy to cite the works dealing with shared memory
and shared bus contention. Time Division Multiple Access
(TDMA) based schemes have been proposed in [8], [20], [21],
[9] and [10]. The methods approach the problem in different
ways: precomputing application specific bus schedules, or
analyzing buses with the assumption of separate buses for
memories and data, restricting accesses to the bus in specific
phases of task execution, division of the tasks into superblocks
which execute in specific slots and using FlexRay like ap-
proaches to have fixed and reserved slots. These methods
therefore require a change in either the application behavior
which is not desirable or modification in the hardware which
is not easy to achieve. An analysis of a work conserving bus is
presented in [22] and [23]. The response time analysis of [22]
is pessimistic as it assumes that the analyzed task is blocked
by all the tasks executing on the other cores. Similarly, the
notion of the minimum request distance yields pessimistic
bounds for the methods proposed in [23]. The task-packing
method employed in [24] to maximize the number of requests
generated by the core yielded tighter bounds than that proposed
in [23] and its modified version will be used in this work. Also
of interest are the works of [25] based on timed automata
which is restricted to instruction accesses only and the work
of [26] which again assumes division of tasks into superblocks
which run in statically pre-assigned time slots, which limits the
flexibility, while the pre-allocation of superblocks for all tasks
limits the scalability. The work in this paper is different in that



Fig. 1: Platform model

it takes into account the memory scheduling policy, exploits
the memory profiling information of the analyzed task and
deals with asymmetric read and write times, which was not
considered in these previous works.

III. MODEL OF COMPUTATION
A. Platform model

Figure 1 shows the system we consider, with m processor
cores (⇡1,⇡2, . . . ,⇡m), each of which has one or several
levels of large private cache, as in the MPC8641D processor
from Freescale. The assumption of a private cache is made
for the following reasons (i) to focus on the problem of
memory contention (ii) data cache analysis on modern shared
caches with high set associativity is very difficult [27] or
overly pessimistic (iii) spatial partitioning in hardware [28]
is preferred by certification experts for safety critical systems
and enables composable analysis. All the cores are connected
to the memory controller by a single shared bus, also called the
Front-Side Bus (or FSB)1. All the traffic between the cores and
the memory controller is transmitted over the FSB and memory
requests are scheduled by the PCM controller. Embedded
real-time application designers favor systems which exhibit
predictability and analyzability, have low power consumption,
less weight, and small form factor and this may come at the
cost of performance – the above model is thus typical of such
systems.

B. Workload and memory model
The workload is modeled as a set {⌧ = ⌧1, ⌧2, . . . , ⌧n}

of n tasks, each of which is characterized by three timing
parameters: Ci, Ti and Di  Ti. Each task ⌧i generates a
(potentially infinite) sequence of jobs released at least Ti time
units apart (Ti is referred to as the period or minimum inter-
arrival time) and each such job has to execute for at most Ci

time units within Di time units from its release. The parameter
Di is called the “deadline” of the task and the parameter
Ci denotes an upper bound on its execution time when it
executes uninterrupted and in isolation, i.e., with no contention
on any of the shared low-level hardware resources. Ci is called

1Systems with a large number of (e.g., 64) cores use a network on chip
interconnection for communication which is not the focus of this paper.

the “worst-case execution time”(WCET) of ⌧i and can be
computed by well-known WCET analysis techniques [19].

Besides the three computation parameters, each task is
also characterized by its worst-case memory request profile
that can be computed by measurements or by static analysis
methods [29], [30]. The request profile of a task indicates
the maximum number of read and write requests that it can
generate in any time interval of a given length t. Given the task
memory profiles, the task-to-core assignment, and the timing
parameters of the tasks, the per-core memory profile can be
computed [24]. This “Per Core Request Evaluator”, denoted by
PCREj(t), computes the maximum number of requests that
can be issued from tasks executing on core ⇡j in any time
interval of length t.

C. Scheduler specification
We consider a fully partitioned scheme of task assignment

in which every task is assigned a particular core before run-
time and is not allowed to migrate from one core to another. We
denote by ⇡̄i, the set of all cores, excluding the one on which
⌧i is assigned. The scheduler is assumed to be fixed task-level
priority, non preemptive and non-work-conserving. That is,
each task is assigned a fixed priority at design time and, when
dispatched, it runs to completion without being interrupted
or preempted. If a job completes its execution earlier than
its WCET, the core remains idle until this WCET, no matter
if other jobs are awaiting execution on that core. This is to
ensure that the upper-bound on the number of memory requests
computed for a given interval at design time is not exceeded
at run time by the (early) arrival of the (next) task. Moreover,
non-preemptive scheduling avoids cache related preemption
delays and task switching overheads.

D. Request scheduling in the FSB controller
Generally in a real-time system, tasks are prioritized and

scheduled accordingly so that they all meet their deadlines.
While the task scheduler respects these priorities and gives
preferential access to the core to tasks with a high priority,
in a multicore system with shared main memory, a task
may still miss its deadline due to memory contentions if the
shared bus and the memory controller do not enforce this
prioritization. Therefore, we adopt globally unique external
priorities to manage memory requests of tasks scheduled on
different cores [7]; each memory request inherits the priority of
the task issuing it, ensuring that requests from higher-priority
tasks arrive earlier at the PCM controller.

The bus is thus priority-driven and is work-conserving: if
there is any pending request to be served, the bus cannot
be idle. In addition, we assume that there is no hardware
prefetching (or it is disabled) as untimely and speculative
prefetches can add to the non-determinism, besides adding
to the bus traffic and stalling requests of higher importance
arriving from the currently executing tasks.

E. Request scheduling in the PCM controller
Constraints on the read requests: We assume that there

cannot be multiple outstanding read requests from any core,
i.e., a core cannot issue a new read request before receiving
a response to its previous request. Thus, a core is stalled on
issuing a read request until it receives the required response.
Handling the write requests: Since the write latency is
much higher than the read latency, non-preemptive writes can
considerably increase the task response times. To reduce these



delays and associated task stalls, the PCM controller queues
the write requests in write-buffers so that a task can proceed
without waiting for a write operation to be completed. As long
as the write buffer is not full, the PCM controller schedules the
pending read requests. In the unlikely case that a read request
is issued to an memory address pending in a write queue buffer,
the controller responds with the data in the write buffer. When
the write queue is full, all the pending requests (reads and
writes) are sorted in decreasing order of priority (with the
highest priority request being positioned at the front of the
write queue) and the controller starts serving the reads and
writes based on their respective priorities until the write queue
is non-full again. The PCM controller then switches back to
prioritizing reads over writes. Since the memory controller is
work conserving, the write requests are also served when there
are no pending read requests issued by any of the tasks.

F. Problem Definition
For each task ⌧i 2 ⌧ , given its WCET Ci and the memory

profile in isolation, compute the increase in the WCET C 0
i

when it runs in conjunction with other tasks deployed on a
multicore system with a shared PCM. The problem consists
of finding a tight upper-bound on the cumulative delay that
memory requests may incur in the FSB and PCM controllers.
Let N read

i (Nwrite
i ) denote the maximum number of read

(write, resp.) requests generated by task ⌧i during its execution
time Ci and wrd

i,k (wwr
i,k) denote the waiting time for the kth

read (write, resp.) request of ⌧i. The objective is to find a tight
upper bound on C 0

i.

C0
i

= C
i

+
X

p=1..Nread
i

wrd
i,p

+
X

q=1..Nwrite
i

wwr
i,q

(1)

IV. AN INITIAL APPROACH TO THE PROBLEM
A basic approach to derive C 0

i is to compute an upper
bound on the delay that a single request can incur and then
assign the same delay to each request. That is, if w̄ denotes
the maximum delay for a single request and Ni denotes the
maximum number of requests issued by task ⌧i, the resulting
WCET can be upper-bounded as follows.

C0
i

= C
i

+N
i

⇥ w̄ (2)

The above method clearly leads to an overly pessimistic
estimation of the increased WCET, C 0

i, because it assumes that
all the requests of ⌧i are subjected to the same (bursty phase of)
external task interference from other tasks (which is the worst-
case scenario for a single request). It is very unlikely that this
assumption is valid since the other tasks will keep progressing
in their execution (alternating between computation and mem-
ory fetch phases) and will not keep on congesting the memory
system at all times. However, this concept of assuming the
worst-case scenario for a given parameter and applying it to
all other instances is widely used in the area of timing analysis.
For example, the WCET or the worst-case response time of
a task are typically computed by considering the worst-case
scenario for a single job, and all the jobs are then assigned
the same values in the subsequent schedulability analysis. The
next section proposes an alternative method which will lead to
tighter estimates.

V. UPPER BOUNDS ON THE EXTERNAL INTERFERENCE
A. Overview

Let ⌧i denote the task under analysis and hp(i) denote the
set of all the tasks of higher priority than ⌧i. Also, recall that
⇡̄i represents the set of all the cores, excluding the one on
which task ⌧i is assigned.

During the execution of ⌧i, higher priority tasks running
on the other cores (in ⇡̄i) may generate requests that interfere
with the requests issued by ⌧i. The contiguous intervals of
time during which requests from higher priority tasks are being
served by the memory controller will be referred to as “busy
periods”. Since tasks have alternating phases of computation
and memory fetches, there are some “gaps” during which the
tasks co-executing with ⌧i may not be issuing requests (or
they issue only requests of lower priority) and the memory
controller can thus schedule requests from the analyzed task
⌧i or lower priority tasks (if there are no requests from the
analyzed task at those instants). These gaps in which the
memory controller is not serving requests from higher priority
tasks are referred to as “idle periods”. Note that these concepts
are defined in the context of the analyzed task ⌧i.

An extended timeline can thus be visualized, which models
the schedule of the requests in the controller, consisting
of alternating busy and idle periods. The proposed method
achieves the objective of computing the increased WCET in
two main phases:
1) It determines all the busy and idle periods over an extended
duration [0, Di] where Di is the deadline of the analyzed
task ⌧i.
2) It then schedules the requests of the analyzed task ⌧i in
such a way that its overall execution time is maximized, that
is, determine the latest possible time the task will finish, so that
it can be checked whether there will be a deadline violation.
Towards that goal, we take into account the information on the
busy periods to maximize the waiting time of the requests.

B. Phase 1: Determination of the busy and idle periods
1) Overview and notation: The rationale behind the pro-

posed approach is to compute the busy and idle periods by
analyzing the working of the PCM controller, considering
that the maximum number of requests from the cores in ⇡̄i

are generated. The analysis is carried out for a pre-set time
interval: from task release to deadline (i.e., until Di). The
computation of the alternating sequence of busy and idle
periods is performed by using two automata: the busy and idle
automata. In the busy automaton, the algorithm iterates as long
as interfering higher-priority requests can be generated, with
the aim of maximizing the length of the computed busy period.
When no further higher priority requests can be generated by
the cores in ⇡̄i, the algorithm switches to the idle automaton
wherein it keeps increasing the idle period duration until there
is a new incoming higher-priority request issued by tasks
executing on the other cores, and then switching back to the
busy automaton. The algorithm terminates when the deadline
is exceeded either in the busy or the idle automaton. While the
deadline of the task marks the end of the analysis interval in the
proposed approach, other parameters like a specific threshold
on the number of busy periods may be used to limit this
interval.

Before modeling the working of the PCM controller to
capture the worst-case scenario (in terms of sequence of busy
and idle periods), a pre-requisite is to capture the maximum



(a) Busy period automaton (b) Idle period automaton

Fig. 2: The busy and the idle period automata

Notation Meaning
wqcap the capacity of the write queue
wqlen the number of slots currently used in the write queue
inRd and inWr the number of incoming (high priority) read and write requests, respectively
k and curtime the iteration index and the current time respectively
BP

k the current time after the k

th iteration
StartBusy(w) and EndBusy(w) store the time at which the w

th busy period starts and ends, respectively
StartIdle(w) and EndIdle(w) store the time at which the w

th idle period starts and ends, respectively
LengthBusy(w) and LengthIdle(w) the length of the w

th busy and idle period, respectively
TR and TW upper bounds on the time to serve a read and a write request by the PCM memory module

TABLE I: Notations used in the automata

number of requests that can be issued from the interfering cores
(i.e., the cores in ⇡̄i) in any given time interval. We leverage the
function PCREp(t) [24] to compute the required interference
from tasks of higher priority and compute the lengths of the
busy and idle periods. The notation used is shown in Table I.

Augmenting PCREp(t), two new functions, PCRERq(i, t)
and PCREWq(i, t), denote the upper bounds on the number
of reads and write requests of higher priority (than the requests
of task ⌧i) generated by core ⇡q in a time interval of length
t. Then, for the analyzed task ⌧i we denote by NHR(i, t)
(NHW(i, t), resp.) an upper bound on the cumulative number
of read (write, resp.) requests issued from tasks in hp(i)
executing on the other cores (in ⇡̄i) in a time interval of length
t.

NHR(i, t) =
X

q2⇡̄i

PCRER
q

(i, t) (3)

NHW(i, t) =
X

q2⇡̄i

PCREW
q

(i, t) (4)

For brevity, we will drop the task index i in the automata
and denote the functions as NHR(t) and NHW(t).

2) The busy period automaton: The flowchart in Figure 2a
models the working of the PCM controller when read and/or
write requests are generated by the higher priority tasks
running on the cores in ⇡̄i. To create the scenario leading to
the maximum duration of the busy period, the algorithm begins
with the initial condition that the write queue is full, reflected
by wqlen = wqcap, and that a write request is currently being

served (hence BP0 = TW). Before each iteration in the main
loop, the algorithm checks if there is any new incoming read
or write requests from the higher priority tasks. The incoming
write requests may cause the write queue to overflow.

The PCM controller decides which request to schedule
based on the current write queue occupancy. Note that the
status of the write queue (Full or Non-Full) is decided taking
into account the current occupancy of the write queue and the
number of incoming write requests. Two cases may arise:
Case 1. If the write queue is not full, the algorithm takes the
right branch of the flowchart. Since the incoming writes can
be buffered in the queue (reflected by “wqlen+=inWr”), the
controller serves only the read requests. The delay inRd⇥TR
is thus added to the total busy period length.
Case 2. If the write queue is or will be full, at least one
new incoming write request cannot be buffered and the cores
issuing them are stalled (the algorithm takes the left branch).
The controller then starts serving read and write requests
in priority order until the write queue is non-full again (in
other words, the controller does not have to serve all the
pending write requests). In the worst-case scenario, it has to
serve all the pending read requests plus enough write requests
(including new incoming requests) so that the write queue is
no longer full. For example, suppose that the capacity of the
write queue is 6, 4 slots are currently occupied and there are 2
incoming read requests and 5 incoming write requests. In the
worst case, the controller has to serve the 2 incoming reads
but only inWr� (wqcap�wqlen)+1 = (5� (6�4)+1) = 4
writes, after which 5 slots will be occupied in the write queue



and thus there will be one vacant slot (i.e., the queue is non-full
again).

The variables wqlen and inWr are correspondingly up-
dated to reflect the execution of this procedure and the delay
(inRd⇥TR+inWr⇥TW), computed with the reduced value
of inWr, is added to the total busy period length. When there
are no more read nor write requests issued between BPk and
BPk+1 from higher priority tasks in hp(i) running on cores
in ⇡̄i, the process terminates and the controller is free to serve
requests of other lower priority tasks (including those of ⌧i).
The length of the current (i.e., the wth) busy period is given
by LengthBusy(w) = BPk � BP0. The variable curtime
is updated by a delay of LengthBusy(w) and the algorithm
moves to the idle automaton.

a) Example: A given busy period is computed by an
iterative process. The process initially starts with the notion
that the controller is busy serving a write request which needs
TW units to be completed. Hence, the initial value, BP0, is
set to TW. In the interval [0,TW], assume that there are 3
new incoming read requests from the higher priority tasks.
The memory serves these 3 requests and the length of the
busy period is increased to BP1 = TW+3TR. While serving
these 3 requests, assume that there are 2 incoming high priority
requests, a write and a read requests. If the write queue is not
full, then the write request is buffered and hence the write does
not contribute to the delay; the controller serves the pending
read and the busy period is now BP2 = TW + 4TR. If the
write queue is full, one of the buffered write requests must
be served to prevent the core issuing the incoming write from
being stalled. In that case, one of the write requests plus the
incoming read request are served and BP2 = TW + 4TR +
TW. The write request that was pending is now buffered in
the write queue and the algorithm checks for new incoming
requests in the time interval [BP1,BP2]. If no new requests
were issued in that time interval, it marks the end of the busy
period. Otherwise, the algorithm keeps on iterating through the
main loop until no more higher priority request is generated
(or until the current time exceeds the deadline).

Note: It can be shown that the length of the first busy period
is the maximum waiting time that a single request can incur.
This maximum delay can be used to compute the resulting
WCET for the initial approach described in Section IV by
applying it in Equation (2). By construction, the first busy
period is the longest because the analysis starts with an initial
configuration to maximize the waiting time of any given
request (the write queue is full and a write is being processed).
Also, to compute the worst-case, the NHR and the NHW
functions consider that co-executing (interfering) tasks from
other cores are generating the maximum number of requests.

3) The idle period Automaton: The idle period marks the
phase in which there are no new requests from the higher
priority tasks in hp(i) running on the cores in ⇡̄i. The requests
generated by the analyzed task ⌧i, if issued, may be served by
the memory controller2. The algorithm determines the length
of the idle period by starting from the end of the last busy
period; this time-instant is recorded in curtime. The iteration
index k is initialized to 0 and ID0 is set to curtime. The
central idea of identifying an idle period is to poll at regular
time instants if there are new requests being issued by the

2Note that requests from low-priority tasks can also be serviced, but the
algorithm we are describing is considering only requests from ⌧

i

higher priority tasks. If there are no new requests, then the
algorithm increases the idle period duration by the poll interval
and continues looping in the idle automaton. If there are new
incoming requests, the algorithm switches back to the busy
automaton. Note that at the beginning, we assume that a write
request was issued by a lower priority task in order to initiate
the loop.

An important design issue is determining the ideal poll
interval. A very small poll interval will allow us to capture the
idle periods in small steps, leading to a longer analysis time
if there are no higher priority requests issued during a long
time, whereas a large poll interval will capture the arrival of
new requests faster, but as a consequence overlooks (precious)
idle gaps between two distant polling points. We assume a
polling step of TW in the analysis, (assuming a hypothetical
write request to be issued) as seen in Figure 2b.

There can be two cases depending on the arrival of requests
between two polling instants.
1) No new requests are issued: The algorithm increases the
length of the idle period (IDk+1 = IDk +TW) and proceeds
to the next iteration.
2) New requests are issued: This marks the end of the idle
period. The algorithm updates the current time to IDk, com-
putes the duration of the idle period and switches back to the
busy period automaton.

C. Phase 2: Using the pre-computed busy and idle periods of
the analyzed task to compute its increased WCET

1) Modeling: This section focuses on computing a tight
upper-bound for the cumulative waiting times of all the re-
quests generated by a given task ⌧i by considering the busy
periods computed in Phase 1. The waiting time for a given
request is maximized if it is issued just before the longest
(feasible) busy period (the request is issued but the bus has just
started serving a contiguous stream of requests of higher prior-
ity). The cumulative waiting time is maximized by adding up
the maximum waiting times of each requests (delays incurred
due to the busy periods) which in turn results in an upper bound
of the worst-case execution time of ⌧i. To compute the increase
in WCET, we start by modeling the memory request profile of
the analyzed task ⌧i in isolation. The memory profiling is done
by dividing ⌧i into logical sampling regions and determining
the maximum number of requests issued in each of these
regions. The number of memory requests generated in each
region can be determined by static cache analysis [19] or
by measurements by instrumenting the L2 cache misses [26]
(using performance monitoring counters [31]).

For this analysis, we assume that the analyzed task ⌧i is
sampled in intervals of length lenregion and has NSRi such
sampling regions. That is, the worst-case execution time Ci of
⌧i is split into NSRi regions, each of length lenregion: NSRi⇥
lenregion = Ci. We can also generalize it to different regions
of unequal length lenregionj where {j 2 1 . . .NSRi}, but will
keep it simple at this stage. We denote by Nri,j and Nwi,j the
maximum number of read and write requests (respectively)
that can be generated in the jth sampling region SRi,j of task
⌧i, where 1  j  NSRi.

2) Description of Algorithm CompConDelay(): During the
sampling of ⌧i, the WCET of each region is determined by
considering a finite service time of TR time units for the
read request but a zero waiting time for the write requests.
That is, the memory traces obtained at design time assume



Algorithm 1: CompConDelay(⌧i)
input : ⌧

i

: the task under analysis
output: C0

i

: The increased WCET
/

*

Compute required time for a region

considering its write requests and blocking

write requests from lower priority tasks

*

/

1 for j  1 to NSR

i

do
wcet

i,j

 lenregion + Nw

i,j

⇥ TW + (Nw

i,j

+Nr

i,j

)⇥ TW;
2 for j  1 to NSR

i

do
3 t

start
j

 t

end
j�1;

4 t

end
j

 t

start
j

+wcet

j

;
5 for k  1 to (Nr

i,j

+Nw

i,j

) do
/

*

Compute candidate set of busy periods

that may delay requests in region j

*

/

6 B  {x such that either of the 2 conditions is met}
7 1. tstart

j

 StartBusy(x)  t

end
j

or ;
8 2. StartBusy(x) < t

start
j

^ EndBusy(x) > t

start
j

;
/

*

Do not consider the busy periods that

delayed previous requests

*

/

9 k B  B \
S

k�1
x=1{bx} ;

// Find max. delay among the candidates

10 b

k

 argmax

w2B

{LengthBusy(w)};

// current region is extended due to

extra delay

11 t

end
j

 t

end
j

+ LengthBusy(b

k

) ;

12 return t

end
NSRi

;

that the write queue is never full and all the write requests
are thus buffered in the queue as soon as they are generated.
This implies that the time for servicing every read request
is accounted for in the original WCET Ci (and thus in the
per-region WCET (lenregion) as well), whereas the time for
servicing the write requests must be taken into consideration
in the analysis. To this end, lines 1 and 2 of Algorithm 1 adds
the following to lenregion:
1) Nwi,j ⇥ TW, for the reason mentioned above, and
2) (Nwi,j + Nri,j) ⇥ TW, because every request of ⌧i may
be generated just after the PCM controller starts serving a
lower-priority write request. Since the PCM serves requests in
a non-preemptive manner, every request of ⌧i can potentially
be subjected to an extra delay of TW time units.
For each sampling region of ⌧i, lines 4 and 5 compute the
interval of time [tstartj , tendj ] during which the jth region
executes (in the worst-case scenario): the jth region starts after
the (j � 1)th region completes (assuming tend0 = 0) and ends
wcetj time units later. During this time interval, each request of
⌧i will be assigned the maximum possible delay. The requests
are considered one-by-one (line 6).

For each request k, the algorithm first creates a candidate
set of busy periods, denoted by set B which can potentially
delay it. Specifically, this set B contains all the busy periods
that start within [tstartj , tendj ] (condition 1), plus the busy period
(if any) that overlaps the time-instant tstartj (condition 2). Then,
the algorithm eliminates (k�1) members from set B, that were
already used to delay the previous (k � 1) requests of ⌧i in
the current region j (line 9).

To maximize the waiting time for the given request, the
algorithm determines (at line 10) which of these busy periods
in set B is the longest and assigns the corresponding delay
(assumed to be zero if B is empty) to the current request k.
As the request is delayed, the length of the region is extended,

Busy  
period 

Idle 
period 

time lenb1 

lenb1 

lenb2 

lenb2 

Fig. 3: Visualization of the variables used in Algorithm 1.

which is implicitly reflected by the increase of tendj at line 12.
Finally, the increased WCET C 0

i of ⌧i corresponds to the end
of last region, NSRi and is captured in the variable tendNSRi

,
which is returned at the end of the entire analysis.

Note that if the increased WCET (C 0
i) is less than the

deadline Di does not automatically mean that ⌧i is schedulable
(i.e., will meet its deadline when scheduled with other tasks).
All the tasks parameters (including their increased WCET)
have to be further provided as an input into a schedulability
analysis tool, which will assess the system schedulability by
also considering the on-core interference. The focus of this
work is to compute the increased WCET; the schedulability
analysis should be carried out using existing approaches [32],
[22].

D. Proof of safety of Algorithm CompConDelay()
Next we provide a proof that our method indeed computes

an upper bound, as desired, on the execution time of a task
including the delays due to accesses to PCM.

Lemma 1: The value of C 0
i returned by Algorithm 1 is a

safe upper-bound on the execution time of ⌧i, considering the
contention on the shared memory.
Proof. The proof is obtained step-by-step, by examining the
properties of all the time-instants tendj computed by the algo-
rithm. Recall that j indexes the region being examined.

For the first region (j = 1), the value of tend1 computed at
line 4 is an upper-bound on the completion time of the first
region of ⌧i, assuming that none of the requests (indexed by k)
generated by this region is blocked by higher-priority requests
(see Figure 3). When j = 1 and k = 1, it can be seen that
the value of tend1 (re-computed at line 11) is an upper-bound
on the completion time of this first request since it considers
the maximum blocking for that request. Therefore, during the
second iteration in the inner loop (i.e., when k = 2), the set
B computed at line 6 is guaranteed to contain the maximum
number of busy periods that can potentially be used to block
a second request. This implies in turn that the value of tend1
computed for the third time at line 11 (during this second
iteration when k = 2) is an upper-bound on the completion
time of the first region, assuming that two requests are blocked
by higher-priority requests. The same reasoning can be applied
for every subsequent request until the (Nr1 +Nw1)

th request
and thus, tend1 is guaranteed to eventually provide an upper-
bound on the completion time of the first region when all its
requests can be blocked by higher-priority requests.

Note that during the last iteration (when j = 1 and
k = Nr1 + Nw1), tend1 is increased for the last time at
line 11. Let tend1,last�1 and tend1,last denote the values of tend1
before and after this last increase. To visualize this, let us



assume in Figure 3 that the first region can generate only two
requests. By construction of the algorithm, none of the busy
periods starting within [tend1,last�1, t

end
1,last] can be used to block

any request generated in this first region (since there are no
more requests from the first region to block). Among those
busy periods, some may have their starting and ending times
within this interval [tend1,last�1, t

end
1,last] while at most one busy

period may start within [tend1,last�1, t
end
1,last] and end after tend1,last.

Let us denote by BPlast this last busy period that overlaps
tend1,last. Regarding the busy periods that start and end within
[tend1,last�1, t

end
1,last], it is not interesting (in order to maximize

the WCET) to assume that the first region finishes earlier than
their starting times (i.e., at time tend1,last�1) so that requests from
the second region can “use” these busy periods to increase
the overall delay. Assuming so would imply that: (i) after
tend1,last time units of execution, ⌧i is already progressing in its
second region (while it could still be executing its first region
without this assumption) and, (ii) it uses some requests from
the second region to take advantage of these busy periods (and
these requests could be used later to further increase the overall
delay). However, in order to maximize the cumulative delay,
it might be interesting to consider the busy period BPlast to
block a request of the second region (this will be taken care
of during the next iteration of the outer loop).

During the second iteration of the outer loop (i.e., when
the algorithm goes back to line 3 with j = 2), the algorithm
first computes the interval of time [tend1 , tend1 +wcet2], where
the value of tend2 is an upper-bound on the completion time of
the second region, assuming that all the requests of the first
region have incurred the maximum possible delay but none of
the requests of the second region have been blocked by higher-
priority requests. Then, at line 6, the set B is computed and it
can be seen that the busy period BPlast is included in that set,
thanks to the second condition. By using the same reasoning
as above, we can infer that after the (Nr2 +Nw2)

th iteration
in the inner loop (lines 6–11), tend2 is an upper-bound on the
completion time of the second region of ⌧i. Following this
reasoning, we can see that ultimately tendNSRi

is an upper-bound
on the execution time of ⌧i. ⌅

VI. SUMMARY OF THE EVALUATIONS
A. Details of the Setup

The tasks used for evaluation are benchmarks chosen
from the MediaBench Test Suite [12]. An upper bound on
the number of L2 cache misses and WCET is obtained by
applying the analysis techniques presented in [22] to the
MediaBench tasks. We used Simics, a popular simulator for
multi-core architectures [33], to generate the traces in isolation.
It comprises cores of speed 1GHz, each with a L1 and a L2
cache. The L1 I-cache and D-cache are 4-way, 16KBytes with
a cache line size of 64 bytes. The L2 is an 8-way, 512 KBytes
unified instruction and data cache with a cache line size of
64 bytes. Unless stated otherwise, unique external priorities
are assigned based on the periods of the tasks as in the Rate
Monotonic Algorithm. Lower numbers indicate higher priority.
1) Demonstrating the idle and busy period schedule: Figure 4
shows the time at which idle slots are available to tasks.
The number of slots is restricted to 50 in this figure for
clarity. There are 2 main observations. (i) The first busy period
is the longest of all the busy periods in the schedule. To
ensure maximum interference, the analysis assumes that the
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Fig. 4: Slot Availability for tasks with different priorities

co-executing higher priority tasks generate the highest possible
number of memory requests, while the analyzed task begins
executing, inorder to stall its progress. As seen in Figure 4,
the first idle slot is available at the time 89 to the task with
priority 7. (ii) Tasks with lower priority may have to wait
longer to receive an idle slot, because they are prone to greater
interference. Thus, to avail 50 idle slots, task with priority 7
(lowest priority) needs around 150 time units, while it is around
80 time units for a task with priority 6.
2) Comparison with the naive approach: Figure 5 illustrates
the tightness of our proposed approach over the naive approach
from Section IV. With the naive approach, the WCET of many
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Fig. 5: Comparison with the naive approach (Note: Y-axis is
in log scale and 1 unit corresponds to 20 microseconds)

tasks exceeds the deadlines (in this case the tasks unepic,
jpeg-decode, gsm decode, epic and fractal). Epic and unepic
are highly memory intensive tasks and thus issue a lot of
memory requests and applying the naive approach to these
tasks significantly increases their resulting execution times.
3) Correlation between Task Priorities and the Increase in the
WCET: A counterintuitive result is that the impact of external
interference from other cores cannot be directly co-related
to their priorities, even with priority enforcements. While it
generally holds that for the highest priority tasks, the external
interference is smaller, this is not the case amongst all lower
priority tasks (see Table II). A task of lower priority might
incur a lesser interference on its overall execution time than a
task with a relatively higher priority.
4) Components of the Increase in WCET: As per the Algo-
rithm CompConDelay, the increase in WCET can be attributed
to 3 main components (i) the additional time for each write
(ii) external blocking delay by lower priority non-preemptive
writes (iii) external interference from higher priority tasks. In
Table II we show, for each task, the blocking component and



Benchmark Priority %WCET increase %Blocking Type
adpcm-decode 1 1.17% 35.00% L
adpcm-encode 2 1.90 % 21.47% L
h263-decode 3 15.42% 17.53% H

unepic 4 92.41% 11.05% VH
jpeg-decode 5 34.03% 2.38% M
gsm-decode 6 18.68% 0.43% L

epic 7 60.12 % 1.30% H
fractal 8 18.90 % 0.28% L

TABLE II: Contribution of blocking

the type of task with respect to their memory profiles: Light,
Moderate, Heavy, and Very Heavy. It can be seen that the
blocking delays contribute to a large percentage of increase
in the WCET for the higher priority tasks. The impact on
the lower priority tasks is smaller, especially for less memory
intensive tasks.
5) Impact of varying the number of cores: It has been ob-
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Fig. 6: Tasks spread across 2, 4 and 8 cores

served that while the tasks with higher priorities are impacted
marginally by scaling/increasing the number of cores, low
priority tasks which are memory intensive are significantly
impacted because of the increased external interference. More-
over, the average performance degradation per task increases
as the number of cores accessing the same shared memory bus
increases (and explains why the single FSB model does not
scale and other inter-communication designs are warranted).
In this example task set, the increase is 26%, 30% and 33%
for 2, 4 and 8 cores, respectively.
6) Impact of task mix: As a proof of concept to ensure
that priorities are respected and to study the effect of core
assignments, the analysis with a reference task set was carried
out by removing a task with a medium level priority. As
expected, the higher priority tasks did not see any changes
while the tasks with lower priority suffered less external
interference.
7) Impact of task assignments based on request densities:
To improve responsiveness, a possible intuitive scheduling
algorithm is to prioritize tasks based on their memory request
densities (more requests, higher priority, so that they finish
earlier). With this set of experiments, we demonstrated that
this strategy will lead to the performance degradation for most
of the tasks. The effect is worse when highly memory intensive
tasks with higher priorities arrive more frequently.

Our experiments show that the increase in execution time
for tasks is a complex function of the task profiles (memory
or computation intensive), the task assignments to cores, the

priority enforcement mechanisms, and the temporal character-
istics (the execution time and the period of tasks). For more
in-depth evaluation of the results, please see [34].

VII. CONCLUSIONS AND FUTURE WORK
To ensure safe upper bounds, the impact of shared low-

level resources on the timing behavior of tasks deployed on
multicores must be taken into account while carrying out
the timing analysis. In this work, we presented a method to
compute the increase in the worst-case execution time of a
task considering the contention on the shared Phase Change
Memory. Our proposed method takes into consideration the
different read and write latencies of the PCM controller, the
priorities of the tasks, the request scheduling of the controller,
and the interference arising from the co-executing tasks. Our
results using embedded benchmarks shows that there is a
modest (for most real-time systems) increase in the worst-case
computation time of a task, in comparison when the task is
run in isolation; surprisingly, we noticed that the lower priority
tasks do not always have a higher increase in execution time.
Comparisons against a basic approach shows that the proposed
method provides tight upper bounds. Lastly, our results also
hold for non-embedded benchmarks.

In the future, we will analyze a system consisting of a
multi-tiered memory hierarchy in which DRAM is used as an
off-chip cache and PCM serves as the main memory.
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discussions of the internals of the PCM controller.
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