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Abstract 

Graphics processors were originally developed for rendering graphics but have evolved towards being an 
architecture for general-purpose computations. These processors are well-suited for massively parallel 
computational problems because of the ability to efficiently manage a great number of lightweight threads 
competing for the computational resources of the processor. To day, Graphics Processing Units (GPUs) are widely 
used to unload Central Processing Units (CPUs), liberate other resources of a given computer system, and provide 
an alternative to multiprocessor computers as a means of processing computationally expensive parallel tasks. 
The recent trend of utilizing GPUs in embedded systems necessitates developing timing analysis approaches for 
finding bounds on the execution time of GPU-threads because the approaches developed for CPU timing analysis 
are not applicable. The reason is that we are not interested in how long it takes for any given GPU thread to 
complete, but rather how long it takes for all of the GPU threads to complete in the context of their competition for 
the functional units. We developed both theoretical and practical approaches for GPU timing analysis that could 
provide exact values and tight upper bounds, marginally optimistic lower bounds or probabilistic upper bounds on 
the worst-case temporal behavior of GPU processing. We call these approaches optimization-based, 
metaheuristic-based and statistical measurement-based respectively. We formulate them subject to the hardware 
features, tractability constraints and some simplifying assumptions. First, we proposed a model of a single 
streaming multiprocessor – a computationally independent module of a GPU. The optimization-based and 
metaheuristic-based approaches are formulated in the context of that theoretical model and related assumptions. 
The measurement-based approach is targeting the real GPU hardware and is ready for practical usage. The 
optimization-based approach is built up on a simple but very pessimistic technique for finding an upper bound on 
the worst-case makespan – the longest possible time interval between the moment when the “earliest” GPU 
thread starts its execution, and the moment when the “latest” thread finishes. The outcome of this technique is 
used for the formulation of a combinatorial optimization problem for finding an exact value of the worst-case 
execution requirement. Addressing the issue of tractability, we also proposed a marginally pessimistic estimation 
technique for finding a tight upper-bound on the worst-case makespan. This approach was implemented in a 
timing analysis software tool applicable to the problem instance under consideration subject to the configuration 
of the streaming multiprocessor. Pursuing an objective of discovering computationally fast approaches we 
addressed the problem of finding the worst-case makespan from the metaheuristic view point. We experimentally 
demonstrated that the metaheuristic-based approach is able to find a tight lower bound and in combination with 
the optimization-based approach proposes a complete framework for bounding the respective solution from both, 
the top and the bottom. This aspect is of paramount importance for the cases when an exact worst-case 
makespan of the problem under consideration cannot be tractably computed. On the other hand, the simplicity, 
flexibility and ability for massive parallelization of the metaheuristic-based approach determine a potential of its 
usage for soft real-time systems. Aiming to bring our research closer to the industry, in order to overcome some 
limiting assumptions of memory subsystem, we addressed the problem of GPU timing analysis from the 
probabilistic and measurement-based perspectives. Our statistical measurement-based approach includes a 
marginally invasive technique for obtaining the GPU execution time measurements. For analyzing these 
measurements, the approach introduced a probabilistic characterization of the worst-case temporal behavior of 
GPU applications. We formulated our approach based on a solid statistical background of Extreme Value Theory 
(EVT) and the “Block Maxima” paradigm. The applicability of EVT was extended to less constraining hypotheses 
than independence. We also provided a way for obtaining accurate estimates on the worst-case execution 
requirement for the desired confidence level. 
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Internal Referee: Dr. José Alfredo Ribeiro da Silva Matos

Internal Referee: Dr. Pedro Alexandre Guimarães Lobo Ferreira Souto
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Shashi Prabh, Sónia Amorim, Maria do Carmo Lopes, Jorge Porto, Helena Fernan-

des, Artur Carvalho and Anatolii Doroshenko for their fun classes and interesting

assignments.

Addressing bureaucratic issues turned out to be a demanding task for me. I am

grateful to Inês Almeida, Cristiana Barros and Sandra Almeida for their help.

I was lucky to get many useful advices from Pedro Souto, Luis Lino Ferreira, Filipe

Pacheco, Michele Albano, Per Lindgren, Vincent Nlis, Geoffrey Nelissen, António

Barros, Matthias Becker, Davide Compagnin, Arvind Easwaran and Andrea Baldovin.

Working with hardware was an interesting part of my work. I would like to thank
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Resumo

Originalmente, os GPUs (Graphics Processing Units) foram desenvolvidos especifi-

camente para acelerar a renderização gráfica. Hoje em dia, esta tecnologia suporta

o processamento das mais diversas operações computacionais, o que faz com que

seja amplamente usada de forma a retirar carga ao CPU (Central Processing Unit) e

libertar outros recursos do sistema. Em particular, os GPUs são adequados para solu-

cionar problemas computacionais massivamente paralelos, uma vez que gerem com

eficiência a interação entre uma grande quantidade de threads de curta duração e as

unidades de processamento.

A utilização de GPUs, em sistemas embebidos, implica o desenvolvimento de

análises que permitam calcular os limites no tempo de execução das GPU-threads,

já que as análises existentes para CPUs não são aplicáveis. O que é fundamental

neste caso, não é saber quanto tempo demora a computação de cada uma das GPU-

threads, mas sim quanto tempo demora para que todas concluam a execução, tendo

em consideração a competição que se verifica no acesso aos recursos do GPU.

Nesta dissertação, nós desenvolvemos abordagens teóricas e práticas para a análise

temporal de tarefas paralelas a serem processadas por GPUs. Mais propriamente,

o objectivo é fornecer valores exactos ou limites susperiores próximos do exacto,

limites superiores probabiĺısticos, e limites inferiores marginalmente otimistas, em

relação àquilo que é o pior comportamento temporal na sequência de execução das

tarefas no GPU. Estas abordagens são designadas optimization-based, probabilistic

measurement-based e metaheuristic-based, respectivamente. A sua formulação tem em

conta as caracteŕıstica do hardware, restrições de tratabilidade e algumas suposições

convenientes.
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Abstract

Graphics processors were originally developed for rendering graphics but have evolved

towards being an architecture for general-purpose computations. These processors

are well-suited for massively parallel computational problems because of the abil-

ity to efficiently manage a great number of lightweight threads competing for the

computational resources of the processor. Today, Graphics Processing Units (GPUs)

are widely used to unload Central Processing Units (CPUs), liberate other resources

of a given computer system, and provide an alternative to multiprocessor comput-

ers as a means of processing computationally expensive parallel tasks. The recent

trend of utilizing GPUs in embedded systems necessitates developing timing analysis

approaches for finding bounds on the execution time of GPU-threads because the

approaches developed for CPU timing analysis are not applicable. The reason is that

we are not interested in how long it takes for any given GPU thread to complete, but

rather how long it takes for all of the GPU threads to complete in the context of their

competition for the functional units.

We developed both theoretical and practical approaches for GPU timing analy-

sis that could provide exact values and tight upper bounds, marginally optimistic

lower bounds or probabilistic upper bounds on the worst-case temporal behavior of

GPU processing. We call these approaches optimization-based, metaheuristic-based

and statistical measurement-based respectively. We formulate them subject to the

hardware features, tractability constraints and some simplifying assumptions.

First, we proposed a model of a single streaming multiprocessor – a computation-

ally independent module of a GPU. The optimization-based and metaheuristic-based

approaches are formulated in the context of that theoretical model and related as-

sumptions. The measurement-based approach is targeting the real GPU hardware

and is ready for practical usage.

The optimization-based approach is built upon a simple but very pessimistic tech-
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nique for finding an upper bound on the worst-case makespan – the longest possible

time interval between the moment when the “earliest” GPU thread starts its ex-

ecution, and the moment when the “latest” thread finishes. The outcome of this

technique is used for the formulation of a combinatorial optimization problem for

finding an exact value of the worst-case execution requirement. Addressing the issue

of tractability, we also proposed a marginally pessimistic estimation technique for

finding a tight upper-bound on the worst-case makespan. This approach was imple-

mented in a timing analysis software tool applicable to the problem instance under

consideration subject to the configuration of the streaming multiprocessor.

Pursuing an objective of discovering computationally fast approaches we addressed

the problem of finding the worst-case makespan from the metaheuristic viewpoint. We

experimentally demonstrated that the metaheuristic-based approach is able to find a

tight lower bound and in combination with the optimization-based approach proposes

a complete framework for bounding the respective solution from both, the top and the

bottom. This aspect is of paramount importance for the cases when an exact worst-

case makespan of the problem under consideration cannot be tractably computed.

On the other hand, the simplicity, flexibility and ability for massive parallelization of

the metaheuristic-based approach determine a potential of its usage for soft real-time

systems.

Aiming to bring our research closer to the industry, in order to overcome some

limiting assumptions of memory subsystem, we addressed the problem of GPU timing

analysis from the probabilistic and measurement-based perspectives. Our statistical

measurement-based approach includes a marginally invasive technique for obtaining

the GPU execution time measurements. For analyzing these measurements, the ap-

proach introduced a probabilistic characterization of the worst-case temporal behavior

of GPU applications. We formulated our approach based on a solid statistical back-

ground of Extreme Value Theory (EVT) and the “Block Maxima” paradigm. The
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applicability of EVT was extended to less constraining hypotheses than independence.

We also provided a way for obtaining accurate estimates on the worst-case execution

requirement for the desired confidence level.
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1 Introduction

The massive computational power of Graphics Processing Units (GPUs), combined

with novel programming models such as CUDA [156], makes them attractive platforms

for many parallel applications. For example, for signal processing applications, a

GPU is a good choice for a platform due to their availability and highly developed

software ecosystem. This also includes embedded and real-time applications, which,

however, also have temporal constraints: computations must not only be correct

but also completed on time. This poses a challenge because the characterization of

the worst-case temporal behavior of parallel applications on GPUs is still an open

problem.

1.1 Problem Statement

To provide temporal guarantees for GPU-accelerated applications, we need approaches

for upper-bounding their execution time on the GPU. Traditional Worst-Case Execu-

tion Time (WCET) [182] analyses for Central Processing Units (CPUs) are inappli-

cable because they focus on the WCET of a single entity of execution (i.e., a thread).

Yet, on GPUs the result is pieced together from thousands of threads, competing for

GPU resources, and we are not interested in the WCET of any single thread in par-

ticular. Rather, we seek to bound the time, from when the earliest GPU thread starts

executing until all of them have completed. On the other hand, the evidence shows

that the timing analysis techniques developed for CPUs cannot even be considered as

applicable to graphics processors because of the crucial differences of CPU and GPU

architectures. The need for GPU timing analysis, that real-time embedded system

community faces these days, is reflected in the novel research topic of this disserta-

tion: “Timing Analysis of General Purpose Graphics Processor Units for Real-Time

Systems”.
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1.2 Research Approach

Given that today‘s GPU architectures are subject to substantial changes in between

revisions to the hardware, many of their important features (e.g., internal scheduling

policy) are left undocumented. This gives to the chip-makers the freedom of taking

different technological paths and making experimental designs, but on the other hand

it poses a challenge for the researchers and engineers who make timing analysis for

these hardware architectures and target meeting the timing requirements of the real-

time systems powered by the GPUs. Our way of addressing this problem could be

briefly described via the following two research directions:

❼ developing static approaches for finding upper and lower bounds on the kernel

execution time;

❼ formulating and validating a Measurement-Based Probabilistic Timing Analysis

approach (MBPTA) based on Extreme Value Theory (EVT).

The process of developing static approaches is subject to the following high-level

steps:

❼ creating models of the GPU hardware by giving the preference to pessimistic

rather than optimistic assumptions;

❼ developing and implementing the techniques for obtaining the bounds on the

worst-case execution timings of GPU kernels subject to the models under con-

sideration.

Unlike the approaches mentioned above, probabilistic measurement-based approaches

target directly the hardware, rather than its models. A worst-case execution require-

ment estimate, provided by an approach of such kind, is subject to a probability that

the respective estimate will not be exceeded. These approaches are based on the

following two stages:
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❼ creating techniques for profiling GPU kernel execution on real hardware with the

least possible measurement overhead and collecting the corresponding timings;

❼ applying Extreme Value Theory (EVT) to the measurements collected during

the previous stage for the sake of providing an accurate probabilistic worst-case

estimate.

1.3 Thesis Statement

Elliott demonstrated [56] that the use of GPUs is beneficial for real-time systems

and such an integration is expected to be effective in real-life scenarios. We use

the statement of his dissertation as a basis for our motivation, which allows us to

concentrate on addressing a timing analysis problem which is required for a successful

application of GPUs in the real-time domain. Therefore, the statement of this thesis

is the following:

The problem of GPU timing analysis can be successfully addressed in

the context of real-time systems. The resulting approaches represent the

range of modern timing analysis research: from static to measurement-

based, subject to the strictness of timeliness guarantees of the respective

real-time application. These techniques have a potential to satisfy the

future industrial needs.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 introduces computing

systems. Chapter 3 presents the literature review. Chapter 4 introduces the model

of GPU chip architecture and the GPU programming model. Chapter 5 discusses

an approach based on optimization problems. Chapter 6 introduces a metaheuristic-

based approach. Chapter 7 presents a probabilistic approach based on measurements,
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Chapter 8 discusses future work directions and concludes.
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2 Background on computing systems

Let us consider a signal as a transmitted energy from which some information can

be obtained. An information is that which informs and from which data can be

derived. Data refers to some information that is coded or represented in some form

being amenable for processing or usage. An information processing system is a system

which takes information in one form and processes it into another form by deriving

data and organizing it according to some logic. In this thesis we consider a computing

system to be an electrical information processing system organized as a combination

of two subsytems: hardware and software.

Hardware is the collection of physical components. It includes both, essential

components that are necessary for the computing system to function, and auxiliary

components that provide additional functionalities. All these components process

instructions, where each instruction is an atomic operation supported by the hardware

(subject to the respective functional requirements implemented).

Sequences of instructions, grouped together according to some logic, form soft-

ware. It is the software that specifies the workload to be performed by the hardware.

Therefore, hardware and software have to work together for the sake of forming a

usable computing system.

Among computing systems there is a distinction between two broad categories:

embedded systems and general-purpose systems.

2.1 Embedded and general-purpose computing systems

An embedded system is designed to be a subsystem of a more complex system that

includes other electrical parts, mechanical parts, etc. Therefore, such a computing

system is embedded as part of larger host system1 [181]. Usually, embedded systems

1In this thesis, we use the term host system for a bigger system that includes the embedded
system under consideration. Note, that this is a different meaning comparing to end system from
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are characterized by a fixed set of dedicated tasks to be performed. In this sense,

an embedded system is custom-made for a specific application domain subject to

concerns regarding functional and non-functional requirements of the host system.

The concept of an embedded system is tightly related to the concept of a con-

troller – a device that monitors and controls the operation of a given dynamical

system, e.g., maintaining settings for liquid flow, temperature, pressure, etc. His-

torically, controllers were implemented by combining mechanical, pneumatic and hy-

draulic components. However, rapid development in electronic science and technology

has brought a huge variety of electronic controllers. Although the term controller can

be used to refer to a stand-alone controlling device, more often a controller is im-

plemented as an electronic circuit assembled of electronic components connected by

wires or traces that provide conductivity for electric current flows. In this case, the

controller is in the “heart” of the embedded system, managing and interfacing with

other its parts.

A general-purpose computing system, as opposed to an embedded one, is designed

to be stand-alone. It has to be configurable and suitable for a broad range of work-

loads. The hardware of such systems has potential for augmented functionality while

the software often needs to be frequently updated or even replaced. Unlike embed-

ded systems, general-purpose systems do not usually have so strict requirements on

power consumption, size and price per unit. Usually, they are not expected to be

used in harsh operational conditions, therefore, in the average case, the level of re-

liability of a general-purpose system can be significantly lower. Because of all such

aspects, designers of general-purpose systems often have more freedom in trying new

approaches and experimenting with altering configurations. This is the reason of a

rapid progress in general-purpose hardware and software which also leads to migration

of many general-purpose features to embedded systems domain.

the networking domain of computer engineering, that is sometimes referred to as host system in
networking jargon.

6



Kostiantyn Berezovskyi Dissertation Thesis

The “heart” of general-purpose hardware is the processor – a component able

to carry out a set of supported arithmetic, logical or control operations. Unlike a

controller in embedded systems, a processor has to be suitable for a much broader

range of operations, hence, its design is often more complex.

Both embedded and general-purpose computing systems development is greatly

influence by two competing hardware architectures: Princeton design and Harvard

design.

2.2 Princeton and Harvard architectures

The Princeton hardware architecture [54] also known as the von Neumann com-

puter [178] was dominant in the early years of computer engineering. The basic

scheme of that architecture is presented in Figure 1. It consists of: a processing unit,

memory, peripherals and buses.

Memory
Bus

Processing Unit
Bus

Periferals

Figure 1: Basic scheme of the Princeton hardware achitecture.

A processing unit is dedicated to executing instructions – operations that given an

input and produce an output (that could also be an input to another instruction later

on). A sequence of instructions that are grouped logically, for the sake of performing

some more or less distinct piece of work, form a program, which is a single element

of the whole software of the computing system. Potentially, the same program could

have alternative representations, e.g., being in a form understandable by machine

(machine code) or being represented in a form that is more suitable for humans

(high-level abstraction code), expressed with the help of a programming language.

The memory is usually represented as an array of cells each of which is able to

store one of two possible states. These binary alternatives could be represented by
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“0” and “1”, or by any other way to be distinguished, and form a binary digit (bit),

of information. All the bits in memory are logically grouped into words of some fixed

length, that is dependent on the implementation of the hardware architecture. Each

word has a unique address, for the purpose of being accessed by the processing unit.

While the memory/processing unit combination is pivotal for a computing system

to function, the peripherals provide auxiliary means that make a computer system

useful for interfacing with the outside world. Therefore, thanks to the peripherals, a

computer system is not a “thing-in-itself”, but a tool for solving real-life problems.

The peripherals could be classified as storage, input output components.

Whilst the memory stores the data during an operation phase, the storage compo-

nents should be able to hold the data that were successfully processed by the comput-

ing system even after it will be turned off. Through the input/output components, a

computing system receives/sends signals or data from/to the outside world.

All the hardware components mentioned above are connected by the bus wiring –

communication pathways that provide signal and data transfers.

The processing unit in the Princeton architecture introduced a generic design

that is highly influential in computer engineering. Being a general-purpose circuitry, a

processing unit needs to be able to interpret properly the data on which the particular

instruction operates. Such information should be specified by the instruction itself,

therefore, the Princeton architecture implies distinct subsets of instructions for every

type of data e.g., one instruction type for discrete mathematical objects (integers)

and another one for continuous mathematical objects (floats). This example of having

both integer and floating-point arithmetic implemented in the hardware, makes the

processing unit circuitry more complex. As a result, the memory and the peripherals

were not incorporated into the same circuit with the processing unit.

One of the key aspects of the Princeton design is the memory model. Any memory

location is uniquely identifiable and accessible via its address. Additionally, each
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memory location may hold instructions, data of arbitrary types or even addresses of

other memory locations. It is up to the software running on the processing unit to

keep track of/interpret appropriately the contents of each memory location accessed

by it. On the other hand, in program representations the addresses potentially can

be manipulated using the instructions designed for data processing. Both features

described above, not only provide the flexibility in creating complex dynamically

changing data structures, but also open a way for a program potentially misbehaving

and unauthorized memory accesses. This requires attention in software and hardware

design.

However, in Princeton architecture, where there are no separate memories for in-

structions and data, the bus input/output for instructions and the bus input/output

for data intefere with each other. This may be detrimental for performance in sce-

narios where the processor has to perform a small amount of work on each element

of a huge data. This effect (known as the von Neumann bottleneck [8]) does not exist

in Harvard architcture [180] where the memories and buses for instructions and data

are separate.

The Harvard memory model is represented as a combination of an Instruction

memory and a Data memory (see Figure 2).

Instruction Memory

Data Memory

Bu
s

Bus

Processing Unit
Bus

Periferals

Figure 2: Basic scheme of the Harvard hardware achitecture.

These two memories are independent and do not have to share characteristics,

e.g., the implementation technology, the memory address structure, the width of the
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word, etc. For example, if it is known that the kind of target application requires

lots of processing over small data arrays, a system designer would introduce a larger

instruction memory and a smaller data memory – therefore, it might be reasonable

to make instruction addresses wider compared to data addresses. A strict distinction

between the instruction address space and the data address space requires the data

embedded in the code (e.g., the constant values) to be copied to the data memory,

which is an obvious performance drawback. On the other hand, the separation be-

tween these two memories greatly reduces the potential security hazards for the stored

instructions in terms of an inappropriate access.

Such a heterogeneous memory model allows to tweak the hardware for a particular

application domain, hence, the Harvard architecture gained a strong popularity for

the embedded systems implementations. Even though having a less generic memory

model, the Harvard design has some strengths that are important also from a general-

purpose viewpoint. Given that the instruction traffic and the data traffic do not have

to share the same pathway, an instruction read and a data access can be performed

in parallel. Thus, due to the absence of the von Neumann bottleneck, a computing

system based on the Harvard architecture can potentially be faster compared to a

Princeton-based system for a given circuit complexity.

Let us consider the circuit design principles in more detail.

2.3 Circuit organization

An electronic circuit can be categorized as being analog, digital or analog-digital.

An analog circuit is an electronic circuit that deals with continuously changing

analog signals. This type of signals corresponds to continuous aspects of classical

physics phenomena observed in the nature, e.g., electromagnetic field that is con-

sidered to extend continuously throughout space. A continuous variability of signal

values is proportional to the change in electrical current or voltage that represents
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the corresponding signal [2].

Digital signals originate from discretization of analog signals – a simplification

made by splitting the range of the analog signal in bounded intervals and abstracting

away from every part of the signal by representing it just by a single value from the

corresponding part. Such a discretization of an analog signal range allows, to some

extent, tolerate noise, interference with other signals, etc., and was utilized in digital

circuits. Since, in many cases, it turned to be more reliable to work with digital

signals, digital circuits gained a tremendous popularity. Particularly, an approach of

dealing with just two valid voltage areas – the lowest possible (marked as “0”) and

the highest possible (marked as “1”), is widely accepted by the electronic industry

which rely on Boolean logic [86].

Typically, most of the electronic components inside a digital circuit, are spent

to form the logic gates. In a logic gate, the components are arranged in a way to

implement some specific boolean function that for a number of binary inputs produces

a single binary output. In the voltage range the area between the two extreme areas

“0” and “1” is called “forbidden”, thus, the corresponding signals are considered to

be invalid. The forbidden zone is used to avoid confusing “0” with “1” in a realistic

operating conditions where every signal experiences a noise. To tolerate its harmful

influence, the voltage bounds for the output signals are more strict when compared to

input signals. This is done to anticipate the room for noise by accepting marginally

valid input signals, but provide output signals with solid validity.

The analog-digital circuits combine analog and digital approaches. They are very

popular for signal amplification, signal conversion from analog form to digital form

and vice versa.

The parts of digital circuits can be synchronized or they can work asynchronously.

A synchronous circuit has a notion of time by including a part that generates a

clock signal for coordinating all the actions performed by the circuit. This implemen-
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tation of the notion of time is based on the propagation delay of the circuit – the

time interval between the moment when the input of the logic gate gets stable, and

the moment when the output of that gate becomes stable.

Asynchronous circuits do not have central clock. To coordinate the correct se-

quence of actions they utilize special signals which indicate that the corresponding

action was completed. Such an approach of circuit design not only liberates the per-

formance from the bound imposed by the worst-case scenario, but may also bring

power efficiency and allow adaptability to operation conditions (e.g., adaptation of

the performance subject to temperature change). Although asynchronous circuits

are an active topic of research and development, commercial-off-the-shelf circuits are

mostly synchronous so far.

From now on in this thesis, by mentioning a circuit, we assume it to be digital

and synchronous if the opposite is not explicitly stated.

2.4 Microarchitectures

In the early days of computing systems, electronic circuits were built of independent

electronic components. Therefore, such discrete circuits were characterized by huge

size, wasteful energy consumption and high direct materials cost. Later, theoretical

and practical advancements in semiconductor electronics made it possible to inte-

grate numerous electronic components into a single circuit placed on a small plate

(“chip”) of semiconductor material. Such integrated circuits, called chips, have re-

placed discrete circuits in many fields of electrical and computer engineering due to

the rapid growth of functional characteristics, lower cost and lower power consump-

tion. Integrated circuits gained tremendous performance boost and popularity to

both embedded and general-purpose computing systems bringing front-edge technol-

ogy advancements to tiny microcontrollers and microprocessors.

Although having revolutionized the world of electronics, semiconductor compo-
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nents did not change immediately the high-level principles of general-purpose systems.

In microprocessors the main memory remained to be placed on separate chips.

However, in the case of embedded-systems hardware, integrated circuits allowed

to take an opposite approach. In microcontrollers the processor, the memory and the

peripherals are all placed on a single semiconductor plate. This design principle is

very suitable for those embedded systems that had minimal requirements for program

length and memory size, since there is no need to implement high-end integrated

circuits. Also, this allows to make microcontrollers being attractive by cost and

energy consumption.

Although taking a lion’s share of processing units market for embedded sys-

tems [36], microcontrollers were not able to provide enough performance for the

systems (e.g., smartphone hardware) that emerged on the frontier between general-

purpose and embedded domains. Such systems require a decent computational power

while being able to fit into a relatively small energy budget and pocket-size form-

factor. Such requirements motivated a technical direction of implementing a higher

system integration in so-called system in package, package on package and system on

chip.

System in package includes a number of chips assembled into a single chip carrier

(“package”). In package on package, chips are stacked vertically during board assem-

bly. System on chip (SoC) integrates in a single chip a number of components, that

were traditionally implemented in stand-alone integrated circuits. However, some

parts of such systems are still placed off-chip, e.g., the main memory.

Another possible example of merging of general-purpose and embedded domains

could be a Graphics Processing Unit (GPU) – originally an input/output component

designed for rendering graphics, that has recently evolved towards being an architec-

ture for general-purpose computations.
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2.5 Graphics Processing Unit

The term “Graphics Processing Unit” (GPU) was coined [157] by NVIDIA, and nat-

urally, in this thesis we target GPUs designed by this chip-maker. However, the pro-

posed timing analysis approaches can be applied to graphics processors from other

vendors as well.

Novel parallel programming models developed for the GPUs brought us to the

General-Purpose GPU (GPGPU) [76] computing: the use of GPUs as accelerators

for computationally intensive (non-graphics) workloads. The GPUs are widely used

to unload the traditional Central Processing Units (CPUs), liberate other resources

of a given computing system, and provide an alternative to multiprocessor computers

for processing computationally heavy parallel tasks.

Modern GPUs are immensely parallel architectures. NVIDIA GPU (Figure 3)

contains several “Streaming Multiprocessors” (SMs).

Figure 3: A simplified scheme of the NVIDIA Kepler GPU chip.

Each streaming multiprocessor is a complex manycore in itself, as it includes many

❼ CUDA cores, for integer and floating-point arithmetic;

❼ “load/store” units that load data from/store data to the memory subsystem;
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❼ special function units, implementing sine, cosine, square root etc., in hardware;

❼ double precision (64-bit) units.

The big number of cores is determined by the fact that the GPUs leverage an

important aspect of typical graphics workload: data in huge arrays does not have

dependency, and therefore, can be processed in parallel. Such data-parallel workloads

are processed by the GPUs achieving high performance not due to the low processing

latency of every single core, but due to the high throughput provided by the whole

chip. In this sense the microarchitectures discussed earlier in this chapter can be

considered as latency-oriented processors while the GPUs are throughput-oriented.

Nevertheless, despite the substantial differences in their architectures, computing

systems based on any of the microarchitectures discussed in this chapter have a similar

operational cycle.

2.6 Operational cycle

Considering program processing at a high abstraction level, a computing system op-

erates in the following way: the code of the program, that contains a series of logical,

arithmetic, control, input/output instructions and associated data, is loaded into the

memory and the processor performs each instruction in turn. Although most of the

software these days is written in high-level programming languages, eventually, all

these high-level codes are translated to machine codes – low-level representations of

the instructions encoded in binary form processable by computing system circuitry.

Upon receiving the machine code of the instruction, the processor has to recog-

nize from it what kind of actions that instruction requires from its pre-determined

functionality to be able to carry out these actions. All the instructions that are sup-

ported by the processor form an instruction set, which is often processor/architecture-

specific. Each instruction in the instruction set has a unique code, that serves as an
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identifier of the instruction and is an obligatory component of any machine code. To-

gether with the instruction identifier field (also known as the “opcode”), the machine

code holds an instruction operands field that specifies where the data read/written by

the instruction are stored and how this data could be accessed (an addressing mode).

The instructions are processed in an instruction cycle – an operational cycle that is

continuously repeated from boot-up until shut down of the computing system. Simply

speaking, the instruction cycle consists of three phases (see in Figure 4): fetch, decode

and execute.

Execute instruction

Fetch instruction

Decode instruction

Figure 4: A simplified scheme of an operational cycle.

During the fetch phase, the corresponding machine code is retrieved from the

memory and stored in an instruction register of the processor – a temporary storage

for the instruction to be executed soon. Additionally, other registers of the processor

are updated, e.g., the one (also known as program counter) that stores the memory

address of the instruction to be executed next.

The decode phase stands for the interpretation of the machine code stored inside

the instruction register. This is done by examining the instruction identifier field

of the machine code for the sake of matching the corresponding instruction from

the instruction set of the processor which would allow it to “understand” what kind

of actions should be performed to execute that instruction. Then, the instruction

operands field should be analyzed in order to get what is the data to process and

where it is stored.
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During the execute phase, the actual function of the instruction is performed.

The decoded instruction is passed as a sequence of control signals to the relevant

functional units of the processor. Here, for the sake of simplification, we assume that

the execute phase includes accessing the data required for the execution and storing

the result of the instruction to the memory – also known as “memory access” and

“write back” respectively.

Further, we rely on the essencial terminology and the conventions introduced in

this chapter to present the review of the literature in the context of the topic of this

thesis.
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3 Literature Review

The current state-of-the-art offers a few methods for GPU timing analysis, however,

the research literature offers several results for solving related problems. This chapter

serves as a brief review of those works.

3.1 Introduction to real-time systems

Real-time computing is usually defined as a study of hardware and software aspects

of systems that have time constraints (e.g., a computer that controls an autonomous

driving vehicle). In this work we pay attention to software programs that must execute

and give response during a particular time window. On the other hand, a non-real-

time system is one that has no deadline, even if fast response or good performance is

appreciated.

A number of definitions of real-time systems cover a broad spectrum of computing

systems. A definition of Randell et al. [166] is the following: “A real-time system is

a system that is required to react to stimuli from the environment (including the

passage of physical time) within time intervals dictated by the environment.”

Young defines [185] a real-time system as “any information processing activity or

system which has to respond to externally generated input stimuli within a finite and

specified period.”

The Oxford Dictionary of Computing states [164] that “Any system in which the

time at which output is produced is significant. This is usually because the input

corresponds to some movement in the physical world, and the output has to relate to

that same movement. The lag from input time to output time must be sufficiently

small for acceptable timeliness.”

Burns et al. emphasize [34] a pivotal aspect that distinguishes real-time systems

from other systems: “the correctness of a real-time system depends not only on
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the logical result of the computation, but also on the time at which the results are

produced.”

Real-time computation is said to be failed if it is not completed before its dead-

line, regardless of the amount of work that a computer system performed during the

corresponding period of time. If the system in consideration tolerates no missed dead-

lines at all (e.g., possibly because of catastrophic consequences), then it is called hard

real-time. Otherwise, the term soft real-time for the system is used. Where to put the

borderline between hard real-time systems and soft real-time systems greatly depends

on the applications domain, but for system development, being hard real-time means

satisfying much stricter timeliness guarantees.

The purpose of real-time computing is to execute tasks in a timely manner. A

task is an abstract entity of execution that can be substituted by those of “real-

world” computer systems (e.g., a process, a thread, etc.). Each task has resource

requirements. All tasks require some execution time on a processor and also a task

may require a certain amount of memory, access to a bus, etc. Sometimes, a resource

is only used by one task, but in other cases, resources are shared, which may require

some control over the access to the resource. The same resource may be exclusively

or non-exclusively accessed, depending on the operation to be performed on it, e.g.,

memory object (writing is exclusive but reading is non-exclusive).

The release time of a task is the time at which all the data, that are required to

begin executing the task, are available and the deadline is the time by which the task

must complete its execution. If a time-critical task does not successfully complete by

its deadline, a timing fault occurs. In such situation the result of the task execution

becomes of little or even no use.

In real-life systems, the goal of meeting all the deadlines is challenging because

of dynamic factors (e.g., variations in processing times) that occur because of the

system indeterminism imposed by sophisticated hardware and software components.
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One way to deal with these difficulties is presented in an approach that trades off result

quality to meet execution requirements via imprecise computation [42]. The basic idea

underneath the imprecise computation is to process first a mandatory workload and

only then catch up with less important work. This principle of prioritizing important

part of work at a price of leaving non-mandatory part to be potentially unfinished is

implemented via augmenting traditional task model that was presented above. The

system designer has to structure a time-critical task to contain a mandatory subtask

and an optional subtask. To get an acceptable result of a task, its mandatory subtask

has to be processed before the task‘s deadline. The further execution of the optional

subtask is supposed to refine the intermediate result obtained by the mandatory

subtask. If the optional subtask will complete successfully, the refined result is called

precise and is assumed to have a zero-error. Otherwise, the imprecise intermediate

result is promoted to be the final result of the task and is usually associated with

some degree of error.

Thus, imprecise computation prevents timing faults by providing an approximate

result of a reasonable quality whenever obtaining an exact result in time is not pos-

sible. This approach is suitable for applications featuring monotonicity – a property

which requires that the quality of the intermediate result does not decrease with in-

creasing processing time. This property is common for many algorithms in the areas

of sorting, heuristic search, numerical computations, database query processing, etc.

In real-time systems domain, task is described by a piece of code that is executed

in a repetitive manner. Every distinct execution of that code, say of some task

τi, corresponds to one more task instance called job Ji,j (a job j of a task τi) being

released. In terms of repeatability, tasks may be categorized in three different families:

periodic, sporadic or aperiodic.

According to the periodic task model [126] a task τi is periodic if it is released

periodically, let us say every Ti time units (the respective period of the task τi). The
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periodicity constraint requires the task to run exactly once every period, but it does

not require that the task be run exactly one period apart. Quite commonly, the period

of a task is also its deadline. Task invocations usually are also called job releases or

job arrivals. The worst-case execution requirements Ci is the maximum amount of

time needed for execution of each job that was generated by τi.

The task is sporadic if it is not periodic, but may be invoked at irregular inter-

vals [146]. In this context, Ti denotes the respective minimum inter-arrival time.

Sporadic tasks are characterized by an upper bound on the rate at which they may

be invoked.

Aperiodic tasks are defined to be not periodic and have no upper bound on their

invocation rate.

To measure how the collection of n tasks assigned to a single processor utilize this

processor, the system utilization U is defined as:

U =
n∑

i=1

Ci

Ti

This definition of the uniprocessor utilization is made subject to an assumption that

the processor is allowed to execute at most a single task at a time, and a task (as

well as its jobs) cannot execute on two or more processors simultaneously. For the

case of multiprocessor system that includes m identical processors, the definition of

the computing system utilization can be extended as follows:

U =
1

m
·

n∑

i=1

Ci

Ti

The scientific discipline of real-time systems considers two problems (i) schedula-

bility analysis and (ii) Worst-Case Execution Time (WCET) analysis.

An objective of WCET analysis is to derive the values of the worst-case execution

times Ci for every task τi of a task set under consideration. Then, these values of Ci
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are submitted to the schedulability analysis as an input. The goal of the schedulability

analysis is to find out whether the task set is schedulable.

A collection of tasks is schedulable by a scheduling algorithm SA if this algorithm

ensures that the timing constraints of all tasks are met.

A task schedule is said to be feasible if all the tasks start after their release times

and complete before their deadlines.

The utilization bound UBSA of an algorithm SA is the maximum number such

that if U ≤ UBSA, then all tasks meet their deadlines when scheduled by SA.

A schedule may be prepared before (offline scheduling), or obtained dynamically

(online scheduling). Offline scheduling involves scheduling in advance of the opera-

tion, with specification of when the periodic tasks will be run and slots for sporadic

or aperiodic tasks in the event that they are invoked. In online scheduling the tasks

are scheduled as they arrive in the system. The corresponding algorithm should be

as fast as is necessary to leave sufficient time for tasks to meet their deadlines.

The schedule of tasks may be preemptive or non-preemptive. A schedule is pre-

emptive if tasks can be interrupted by other tasks and then resumed. This allows

higher-priority tasks to preempt lower-priority tasks (whether these priorities are

static or dynamic), in order to meet deadlines. Preemption allows the flexibility of

not committing the processor to run a task through to completion once we start ex-

ecuting it. By contrast, once a task is begun in a non-preemptive schedule, it must

be run to completion or until it gets blocked over a resource.

Examples of scheduling algorithms with a rich literature of associated schedulabil-

ity analyses include Rate-Monotonic (RM), Earliest-Deadline-First (EDF) [126] for

uniprocessor systems. On the other hand, the majority of scheduling problems on

systems with more than two processors are NP-complete [43], thus for their solving

some heuristics are usually utilized. A lot of them are based on uniprocessor schedul-

ing. In such cases the problem of developing a multiprocessor schedule consists of
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two subproblems. The first one is about assigning tasks to a processor. The second

subproblem is about running uniprocessor scheduling algorithm for each processor

and the corresponding task subset, in order to meet the respective deadlines. Often,

in engineering practice multiple iterations of these two steps (in a loop) are performed

until a feasible schedule is found.

The scheduling approach described above is termed partitioned. Its main strengths

are the simplicity (stemming from the decomposition to multiple uniprocessor schedul-

ing problems) and the ability to use the state-of-the-art uniprocessor scheduling al-

gorithms known for their efficiency. The main weakness of partitioning is that the

utilization bound of such approaches is inherently limited to 50% or less [159].

At the other end of the classification spectrum from partitioning, lies global

scheduling [120], [51]. Algorithms of this category employ a single run-queue for

all ready tasks. At any time instant, the highest-priority ready tasks execute, each

on a different processor. This implies that task migration is allowed: each task may

execute on any processor and in fact, it may migrate to another processor halfway

through its execution.

Policies familiar from uniprocessor scheduling have been extended to global schedul-

ing as well (global EDF, global RM) but their respective utilization bounds are much

lower than even 50 % of their partitioned versions. Some other global scheduling

algorithms (such as those from the proportionate fair (Pfair) [13] family) have a uti-

lization bound of 100% [3], but are impractical from an implementation perspective

because of the high number of preemptions.

Consequently, researchers have turned to semi-partitioned schemes, which try to

combine the best of partitioned and migrative scheduling. Under such schemes (e.g.,

EDF-WM [100], EDDP [106], NPS-F [29]), only a few tasks migrate, in a very con-

trolled manner. This allow efficient processor utilization (and utilization bounds

above 50%) without the overheads of global scheduling.
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The scheduling algorithms mentioned above were proposed in the context of the

traditional task model described in this section. However, a principal factor that

influences the success of one or another scheduling theory to a particular real-life

application, is whether the underlying task model fits to the corresponding application

domain. Naturally, the traditional task model, briefly described above, is not a “silver

bullet”. Hence, the real-time research community proposed other models, which we

are going to discuss next.

3.2 Rate-Based Execution model

Jeffay et al. presented [97] a generalization of the sporadic task model [146] and the

periodic task model [126]. Unlike these two models that characterize a task under

consideration using an exact value or a lower bound on the inter-arrival time of its

jobs respectively, the authors considered an expected arrival rate of the jobs. In other

words, the researchers do not make assumptions about the time instants at which the

jobs arrive. Instead, they assume that the jobs arrive at a given average rate, while

the corresponding distribution of the arrival time instances is arbitrary. Thus, they

called this approach Rate-Based Execution (RBE) model. The motivation of RBE is

supported by an observation that in many applications with timing constraints (e.g.,

digital signal processing or multimedia systems) the arrival of the events does not

match well enough neither periodic nor sporadic task models. For instance, the video

streaming applications are usually characterized by arbitrary instantaneous reception

rates of video frames, while the respective average rates are kept pre-defined.

Therefore, the RBE task is defined through the following parameters:

❼ the length of the time interval that was chosen for the rate characterization;

❼ the maximum number of task instances (jobs) arrived per time interval specified

above;
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❼ the relative deadline of the task instance;

❼ the worst-case execution requirement of the task instance.

The authors observed that in the context of EDF-based scheduling, the feasibility

of RBE task sets is a function of the distribution in time of the respective deadlines.

Taking into account, that applications usually have some level of control over the

deadlines (e.g., the deadline assignment is done by the operating system), the re-

searchers argued that the real-time system designer is supposed to have more control

over the operating systems rather than over the external processes that provide the

system with the workload. Thus, the deadline-based scheduling is more appropriate

to the RBE task sets when compared to priority-based scheduling where the feasibility

of RBE task sets is a function of the rate at which the respective jobs arrive.

Focusing on the event-driven real-time systems, the applicability of the RBE model

to the signal processing workloads was demonstrated [71] by Goddard et al. Earlier,

Jeffay et al. have motivated [96] the use of the RBE model for the multimedia

computing.

The above approaches consider non-parallel (i.e., sequential as in Section 3.1)

tasks. Although the sequential task models simplify the complexitiy of the timing

analysis and the scheduling, these models are restrictive for the most of the mod-

ern commercial-off-the-shelf hardware since they do not allow to exploit underlying

parallelism properly. Thus, to take an advantage of the potential parallelism, the

community was developing more adequate models of the tasks.

3.3 Parallel task models

Parallel hardware architectures allow to decrease the execution time of the tasks and

improve the utilization of the processors by splitting the tasks into smaller entities

of computation (e.g., threads) that can be executed in parallel on different computa-
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tional units (e.g., cores). Although, this led to shorter response times and improved

schedulability, the problems of timing analysis and scheduling are getting one more

dimension in terms of complexity. To handle this execution paradigm, the litera-

ture offers techniques and models for parallel tasks, implemented as multiple parallel

threads. In this context, there are two common scenarios:

❼ the threads are organized in a “gang”, where all the threads execute or become

idle all together in parallel on different computational units (the gang model);

❼ the threads tend to perform execution independently and synchronize at the

beginning and at the finishing of the execution (the independent thread model).

3.3.1 Gang model

Ousterhout et al. introduced [161] the gang model for executing multiple threads

that frequently interact with the help of a message passing interface (implicit syn-

chronization) or synchronization barriers. Rather than schedule individual threads,

this model considers a gang to be the schedulable entity. The idea behind the gang

scheduling is to make the threads within a gang start and stop simultaneously for the

sake of reducing processor idling and context switching overheads.

Usually, in real-time systems the tasks are recurrent. Each single launch of the

corresponding code leads to the release of one more job of respective task. In other

words, job is a logical abstraction that corresponds to a single launching.

For the parallel tasks, Goossens et al. presented [74] a categorization of parallel

jobs, according to the variance over time of the degree of intra-task parallelism, that

includes three types: rigid jobs, moldable jobs and malleable jobs.

Definition 1. (Rigid job)

A job Ji,j is said to be rigid if the number of parallel threads of Ji,j that must be

executed synchronously is task-static and defined externally to the scheduler, a priori
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and does not change throughout the execution.

Definition 2. (Moldable job)

A job Ji,j is said to be moldable if the number of parallel threads of Ji,j that must

be executed synchronously is defined by the scheduler and does not change throughout

the execution of the job (job-static). Therefore, the scheduler may take decision on

the number of created threads regarding, for instance, the current workload on the

platform.

Definition 3. (Malleable job)

A job Ji,j is said to be malleable if the number of parallel threads of Ji,j that must

be executed synchronously can be modified by the scheduler during the execution of

Ji,j.

In the literature review of this thesis we rely on this terminology to describe the

related work.

Kato et al. applied [99] the Earliest-Deadline-First (EDF) [126] scheduling policy

to the gang scheduling scheme. The authors presented schedulability analysis of Gang

EDF by identifying the interference bound for the deadline miss and by deriving the

schedulability test based on the one for the Global EDF [14]. For this integration

of the gang scheduling and the Global EDF, the authors assumed that the number

of threads, and therefore, the number of processors needed for the execution of any

job Ji,j, is set by the system designer beforehand. This assumption complies with

the definition of rigid job2 [74], which poses difficulties in applying state-of-the-art

single-threaded scheduling schemes. The problem is the following: for its execution,

the rigid job Ji,j needs exactly nj processors available, where nj is set a priori. Hence,

this principle of specifying nj statically, can lead to some form of the priority inversion

that will happen when the higher-priority rigid job does not have enough processors

available to run, while the lower-priority rigid job does.

2Note, that Kato et al. used some different terminology and called [99] their jobs “moldable”.
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Goossens et al. extended [74] the definition of rigid job to rigid task, that is such

that it holds rigid jobs only, but all these jobs do not necessarily require the same

number of processors to execute. The authors extended four fixed-priority scheduling

schemes to be applicable for rigid jobs and rigid tasks, namely: Parallelism Monotonic,

Idling, Limited Gang, and Limited Slack Reclaiming. Considering a fixed task priority

assignment which specifies the priority of every task (and all its jobs) beforehand, they

provided exact schedulability tests for these scheduling policies.

Although rigid task model causes more deterministic behaviour, it hurts the

schedulability. Hence, the real-time community demonstrated an interest in an idea

of giving to the scheduler the freedom to decide how many threads will be used for

the execution of the parallel job under consideration. Although for such moldable

jobs [74] the scheduler can adjust the number of threads to the number of processors

available, this degree of parallelism [136](the number of threads) has to be kept un-

changed throughout the execution of the job. The interest in moldable jobs is present

in the community for a long time. Han et al. provided [82] an off-line method for

deriving the number of threads for each job from a finite set. The authors considered

the preemptive fixed-priority scheduling and proved that for such a task model it is

NP-hard. Hence, they proposed a heuristic-based algorithm for the task-partitioning

on two processors.

Liu et al. also considered [136] static scheduling, but they did not put any con-

straints on the number of processors in the system. The authors also addressed the

fact that the parallel execution causes some processor time being wasted on inter-

processor communication and synchronization. Their model considers independent

jobs, where each one requires some amount of processing time that can be spent by

available processors via executing that job in parallel subject to the upper-bound on

the respective degree of parallelism. Hence, every job is characterized by a number

of parameters including the ready time, the deadline, the maximum degree of paral-
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lelism and the multiprocessor overhead factor. The authors divided the time between

the earliest job ready time and the latest job deadline into the time intervals with

the help of intermediate ready times and intermediate deadlines used as simple pre-

emption points. Then, the authors considered the processor time allocation problem

subject to an assumption that the parallel processing overhead has to be a linear

function of the degree of parallelism. This assumption allowed them to formulate the

processor time allocation problem as a linear programming optimization problem.

Even though preemptive scheduling is more flexible, Manimaran et al. argued [143]

that the schedulers of such kind usually suffer from a serious overhead that occurs be-

cause of the context switching triggered by every preemption. Thus, they considered

a non-preemptive dynamic scheduling in a way to keep the overheads under check.

Their EDF-based approach consists of an off-line stage – where the tasks with known

periodicities are parallelized and analyzed in terms of schedulability; and an on-line

stage – where those tasks are scheduled together with the aperiodic tasks. The au-

thors pointed to the potential timing anomaly for the case when some job executes

faster than in its worst-case scenario and provided a circular queue-based mechanism

to partially mitigate this issue.

The gang scheduling would demonstrate improved schedulability if the scheduler

could adjust the job‘s degree of parallelism at run time during the execution of that

job. Such malleable jobs being released by sporadic tasks were investigated by Collette

et al. [45]. The authors considered sporadic implicit-deadline tasks on an identical

multiprocessor platform. In their model the tasks are scheduled globally subject

to an assumption of work-limited job-parallelism which is another form of parallelism

restriction also discussed by Liu et al. [136] and Manimaran et al. [143]. The intuition

behind this assumption is that even though increasing the number of processors from p

to p′ will provide a faster execution of a parallel job, this job will not run p′

p
times faster

than it runs on p processors. Additionally, the returns are diminishing with every
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additional processor. Subject to these assumptions, the researchers presented [46] a

proof which states that analyzing the feasibility of the task set has a linear time-

complexity with regards to the number of tasks. Based on that proof, the authors

proposed an optimal scheduling algorithm, an exact feasibility utilization bound and

a technique for limiting the number of migrations and preemptions.

Although malleable jobs provide the most flexible way of gang scheduling, they

pose a serious challenge in terms of implementation. Modifying the number of the

threads allocated to a job at run-time is not that straightforward and would also

require a substantial overhead. Berten et al. proposed [27] a sufficient schedulability

test for a special kind of parallel tasks. In their model, each task is supposed to be

represented as a sequence of segments with a precedence constraint, thus the segment

s + 1 cannot start its execution until the segment s will finish. The scheduler is

supposed to make the decision on how many threads the segment should be executed

subject to the maximum degree of parallelism of that segment. The idea of the

approach is to use the time-instants between the consecutive segments for deciding

the number of threads for the execution of the following segment, but also to forbid

the scheduler to change this number during the execution of the respective segment.

The characterization of rigid, moldable and malleable jobs presented above is

applicable to the case of gang scheduling because it is required to schedule threads

synchronously. For the case when there is a need only for a coarse-grain interactions

between threads, the following models were invented.

3.3.2 Independent thread models

Lupu et al. presented [140] a constrained deadline model of periodic parallel tasks

processed on an identical multiprocessing platform. The parallelism in this model is

expressed in the following way: a task includes a set of “subprograms” that can be

executed in parallel. Consequently, the task has the potential to progress in execution

31



Kostiantyn Berezovskyi Dissertation Thesis

upon several processors concurrently. While the period and a relative deadline are

the features of the task, the worst-case execution time is determined via a set of exe-

cution requirements – each one for a respective subprogram. Studying the schedula-

bility of such a model, the authors distinguish between offline entities of computation

(tasks, subprograms) and their runtime instances (processes, threads respectively)

that should be actually managed by the priority-driven preemptive scheduler. The

possible schedulers are assumed to fall in one of the categories: hierarchical and global

thread schedulers. The hierarchical schedulers should firstly deal with the process and

only after that schedule the threads within each process. The global thread sched-

ulers are supposed to grant individual priorities to every single thread regardless of

its process or the respective offline instances. Furthermore, each one of these two

categories includes multiple schedulers that are representing different scenarios re-

garding whether the priority of a runtime instance is based (or is not based) on the

corresponding offline entity. The authors developed an exact schedulability test for

each category.

In the case of the model discussed above, the runtime instances are implicitly

synchronized by release time. Other than that, the only explicit synchronization could

be the common deadline. However, the fork-join model [47] provides more control, in

this sense. This model allows the designer to set up a parallel application by defining

the points in the corresponding code where execution may branch off in parallel (fork).

After that, these multiple parallel executions has to be merged at a subsequent point

that was set up by the designer to resume sequential execution (join). By combining

this model with a traditional model of real-time recurrent tasks [126], the real-time

job can be considered as a sequence of code segments, each one representing either

sequential or parallel stage of execution. A sequential segment of code is executed by

a single thread (master thread). Then, this thread spawns multiple parallel threads

to run the parallel code segment. All these threads synchronize at the end of the
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segment and the master thread resumes its execution.

Lakshmanan et al. considered [112] a fork-join model subject to the following

restrictive assumptions:

❼ the execution of each task has to be characterized by a strict alternation between

the sequential segments of the code and the parallel segments of the code;

❼ all the parallel segments of the code are designed for the same constant number

of threads to be spawned;

❼ this number should not exceed the number of processors in an identical multi-

processing platform;

❼ an execution requirement is a feature of the code segment, thus, all the threads

that belong to the same parallel segment have equal worst-case execution times.

For each task, the researchers introduced a “master string” that initially holds

the elements (threads) of all code segments with respect to their precedence. If the

segment under consideration is sequential, the master string will include the respective

master thread. In the case that the segment is parallel – the master string will initially

hold just one of the spawned threads (e.g., a thread that has the “lowest” identifier).

The construction of the master string has to be done with respect to the deadline of the

task. Therefore, this deadline should be greater than or equal to the total execution

requirement of the master string. The approach presented by the authors is based on

an idea that the interference of every single task with other tasks from the task system

should be as low as possible. To achieve this goal, the researchers consider whether

the execution requirement of the master string is strictly less than the deadline of the

task, and if it is the case, they “stretch” the master string. The process of stretching

is done by “inflating” the master string with the threads performing parallel sections.

This is done, until the execution requirement of the master string would be equal to
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the deadline of the task. The equality is achieved by permitting a split of the thread

between the processors subject to the restriction that the parts of the split thread

cannot be processed in parallel.

Therefore, thanks to the stretching, the master string occupies a single proces-

sor, and correspondingly, the threads of the master string do not interfere with the

other threads of the parallel code segments. Those remaining threads are assigned

to available processors and have to be executed before the “artificial deadline”. This

deadline is determined by the precedence constraint of the code segments in the mas-

ter string. It is caused by the artificially stretched parallel segment in a master string

that imposes execution time restriction on the other threads of that segment. The

authors proposed to partition these threads among available processors according to

the algorithm presented [62] by Fisher et al. Then, locally on every processor, the

threads are scheduled according to the Deadline Monotonic algorithm [120].

The approach presented above decreases the interference at a cost of limiting the

parallelism by achieving 100% utilization of the processor that executes the master

string. However, in general case, it forces thread migration, which poses difficulties

for the practical implementation of the approach, especially on the general-purpose

platforms where the migration is allowed only on the level of “heavyweight” threads

or OS processes. Fauberteau et al. proposed [58] to eliminate thread migrations for

the same restricted fork-join model of parallel real-time tasks. Thus, they fill the

master string only with the complete (integer number) parallel threads.

The approach presented [169] by Saifullah et al. is based on the model described

above. The authors relaxed the assumption about the equal number of threads for all

parallel segments. Thus, every parallel segment is allowed to spawn an arbitrary num-

ber of threads regardless of the number of available processors. Still, all threads, of a

given segment, have to be characterized by equal worst-case execution requirement,

as each other. The researchers also dropped the assumption about the obligatory al-
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ternation between sequential and parallel segments. Thus in their model, subsequent

parallel segments are allowed, subject to the requirement that all the threads of each

segment are synchronized at the end of the segment.

Similarly to the work [112] discussed above, the researchers utilized the concept

of artificial deadlines introduced [173] by Sun et al.3 Saifullah et al. proposed to

decompose every implicit-deadline parallel task into a chain of constrained-deadline

sequential subtasks. In particular, an artificial deadline is derived for every code

segment, and is assigned to every thread that executes that segment in the following

way.

Every segment of the task has to be classified to be either a “light segment” or

a “heavy segment”. This is done by comparing the respective number of threads

against the following ratio:

❼ the worst-case execution requirement of the task with regards to

❼ the difference between the period and the sum of the execution requirements

over all segments of the task.

If there is no heavy segment in the task under consideration, the slack should

be distributed among all the segments proportionally to the respective worst-case

execution requirements.

For a task that has some heavy segments, the distribution of the slack should be

done as follows. The light segments are assigned no slack, thus, their relative deadlines

are equal to the respective worst-case execution times. Therefore, the whole available

slack is distributed among the heavy segments such that, all these segments should

have an equal density (the ratio between the worst-case execution requirement and

the deadline).

3In this work, the authors presented synchronization protocols for distributed real-time systems
composed of periodic tasks. The tasks under consideration were supposed to be the chains of subtasks
with precedence constraints. The artificial deadlines were used to manage the release of subtasks
being executed on different processors and ensure that the precedence would be satisfied.
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The decomposition strategy discussed above, allowed the researchers to apply

an established schedulability analysis of independent sequential sporadic tasks on a

multiprocessor to the model of periodic parallel real-time tasks presented above. This

was done for the sake of proving the resource augmentation bounds for the global EDF

and partitioned Deadline Monotonic scheduling algorithms subject to an assumption

about zero-cost preemptions.

Nelissen et al. modified the Multi-Threaded Segment model [169] developed by

Saifullah et al. In the modified model, every parallel task is represented as a sequence

of segments. Every segment consists of parallel threads, each one characterized by a

thread-specific worst-case execution requirement. The researchers proposed a greedy

algorithm that at each iteration assigns an offset and a deadline of a segment under

consideration. The algorithm is aimed at minimizing the number of processors needed,

by maximizing the number of segments with at leas the average density of the task.

Once changed, from the initially assigned default value which is calculated based on

a rough heuristic, the intermediate deadline is not allowed to be updated any more.

This provides computational tractability to the approach, but also makes the order

in which the segments are analyzed crucial. The authors motivated their work, by

showing that their approach dominates the decomposition algorithm [169] of Saifullah

et al., by providing a smaller requirement on the number of processors. The proofs of

the effectiveness of the proposed solution, with respect to the number of processors

needed, are also presented.

Based on the synchronization intensity of the workload under consideration, Fei-

telson et al. discussed [59] pros and cons of the independent thread model and the

gang model. If the time between the synchronization points is relatively long when

compared to the overall execution time, the independent thread model is favorable.

Otherwise, the gang model is more suitable.

Even though the independent thread model is usually considered to be a good
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fit for the mainstream computing, it requires a propper support for the inter-task

dependencies. Thus, the community was considering more generic approaches.

3.4 Graph-based models

The real-life workloads often cannot be adequately described by the models based on

the independent threads only. The reason is that the scenario where the input of a

job of one task (τ) is dependent on the output of a job of another task (τ ′) is very

common. The inter-task dependencies can be considered from the producer/consumer

perspective, such that a job of task τ ′ produces the data which are then consumed

by the job of task τ . These producer/consumer relationships can be described in

the form of graphs, where every single data dependency is expressed as a directed

edge going from the vertex representing a producer entity to the vertex representing

a consumer entity.

3.4.1 Processing Graph Method

One of the models expressing data dependencies is the Processing Graph Method

(PGM) [98]. In PGM, the data production and the data consumption are modeled

through the tokens that are traveling through the graph in the direction from the

producer-vertex to the consumer-vertex. The corresponding edge is characterized by

the following parameters:

❼ the number of tokens produced for the given consumer every time the job of

the specific producer completes;

❼ the overall number of tokens consumed for every single execution of the job of

the specific consumer;

❼ the lower bound on the number of tokens available on a specific edge before the

job of the respective consumer may start its execution.
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These parameters are used for the implementation of the following high-level principle.

When the entity of execution (represented by the vertex) consumes sufficient data,

it executes the respective job from start to end, without synchronizing with other

nodes. Upon completing it produces the data for the next consumer.

Goddard developed [72] an approach for the transformation of PGM graphs into

rate-based tasks by combining the signal processing graphs and the real-time systems

domains. The author characterized the real-time properties of the signal processing

graphs introducing the notion of latency – the time interval between the moment when

a signal sample is received from the sensors as an input, until the moment when the

graph outputs the processed signal. The researcher distinguished between the latency

caused by the topology of the vertexes in the graph and the latency imposed by the

scheduling/execution of the respective jobs. The author argued that representing a

PGM vertex as a task in the RBE model is more practical when compared to the

modeling of the respective vertex as a periodic or sporadic task. This statement is

motivated by the analysis showing that for the given signal processing scenarios, the

execution of the job according to its rate specification imposes less latency compared

to the interpretation of its execution in the context of the classical sporadic model.

This required the development of the techniques for mapping the graph vertexes to the

RBE tasks, computing execution rates for every task and formulating the conditions

for the verification of the EDF-schedulability for the produced RBE task set.

The approach discussed above is focused on uniprocessor computer systems. Based

on this work, Liu et al. addressed [132] the globally scheduled multiprocessing scenario

extending the previous approach in the following way. The authors assumed an

acyclic PGM graph as an input and posed a problem to output a corresponding

sporadic task system. This was done through the intermediate step of representing

the PGM graph as the RBE task system that is based on the work of Goddard [72].

In these two works, the sophisticated notion of precedence between the graph vertexes
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is addressed in different ways. Goddard used [72] a ready queue to store the jobs in

the earliest deadline first order. Instead, Liu et al. redefined [132] the releases and

the deadlines. Afterwards, the researchers transform RBE tasks to sporadic tasks

and derive the global schedulability condition. The authors showed that the acyclic

graph precedence can be ensured under Global EDF scheduling on multiprocessors

without utilization loss for the ordinary sporadic task system.

Next, we are going to discuss models of parallelism that have the absence of cycles

in the corresponding graphs as a central assumption.

3.4.2 Directed Acyclic Graph (DAG) model

A DAG task is structured as a set of execution portions (subtasks) that are rep-

resented as the graph vertexes. The precedence constraints between the subtasks

determine the task execution flow and are expressed with the help of the directed

edges. Although the precedence may be relatively sophisticated (i.e., multiple input

or multiple output edges for a single vertex) a cyclic precedence is not allowed. The

subtasks are classified according to their inputs and outputs. A source subtask has no

input edges. Accordingly, the sink subtask has no output. The execution of a DAG

task starts from the activation of its source subtasks. The task terminates when the

execution flow reaches a sink subtasks.

Similarly to a sequential task, a DAG task has a relative deadline and a period.

The task is supposed to generate an unbounded number of task instances (task jobs)

that are separated by a minimum or an exact inter-arrival time. Each such task

instance consists of a set of jobs of the subtasks subject to the inter-subtask precedence

constraints of the respective DAG. Every subtask has a specific worst-case execution

requirement, while an execution of the whole task instance has to satisfy the relative

deadline of the task. Although a DAG task allows parallel execution, the inter-

subtask parallelism is not obligatory. The decision on whether the DAG has to be
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executed concurrently or sequentially as a chain, is supposed to be taken by the

scheduler. Hence, the WCET of the DAG task is the sum of the worst-case execution

requirements of all its subtasks.

Typically, the topology of the DAG allows the scheduler to choose among many

options on the scheduling order of the subtasks, however, in the real-time community,

the most popular approaches are based on the concept of the critical path. This

critical path for a given DAG task is the path from the source subtask to the sink

subtask which requires the longest sequential execution assuming that there is no

restriction on the hardware resources of the computer system that is responsible for

the processing. Based on this concept, one can consider the DAG task as a chain

of the subtasks (critical subtasks) that belong to the critical path. These critical

subtasks have to be executed sequentially, while the other non-critical subtasks can

be executed in parallel with the critical subtasks.

The problem of scheduling DAG tasks on multiprocessors was considered [18]

by Baruah et al. The authors assumed that all the subtasks in a sporadic arbitrary-

deadline DAG task are released simultaneously to execute according to the precedence

constraints until a given relative deadline. The task was assumed to be characterized,

among other things, by two timing characteristics:

❼ the length of the critical path;

❼ the total worst-case execution requirement.

The researchers pointed that for the case when the inter-arrival time of the task is

greater than or equal to the deadline, the problem of scheduling the respective sub-

tasks reduces to the makespan minimization problem [78]. Thus, list scheduling [77]

– the polynomial approximation algorithm that bounds deviations from the optimal

solution, can be applied. Considering the hardness result [174] presented by Svens-

son, that stated that improving the previous algorithm is NP-hard, Baruah et al.
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concentrated on the case when the deadline is greater than the inter-arrival time of

a DAG task. Therefore, more than a single instance of the same task may be ac-

tive in runtime at a moment. For such case, the authors argued that the efficient

state-of-the-art algorithms and schedulability tests are not applicable in general case.

The researchers proved that the scenario when the instances of the DAG task

are released strictly periodically (“synchronous arrival sequence”) does not guarantee

an occurrence of the worst case. Therefore, studying this scenario is not enough for

discovering schedulability properties. The authors considered EDF scheduling and

presented two tests for checking whether the corresponding algorithm would be able

to schedule the sporadic task under consideration on identical multiprocessors subject

to all the deadlines. One of these sufficient schedulability tests has a polynomial run-

time complexity, while another one is pseudo-polynomial.

Li et al. extended [121] the work discussed above for the case of multiple spo-

radic DAG tasks under the Global EDF scheduling policy. At each time instant the

algorithm is supposed to schedule the vertexes from the task instances with the earli-

est deadlines subject to the requirement that the predecessors of these vertexes have

finished their execution. The authors provided performance guarantees in the form

of a resource augmentation bound: a scheduling algorithm SA provides a resource

augmentation bound b if SA can schedule a task set on m processors of speed b given

that a feasible schedule exists, provided by some hypothetical optimal scheduler, for

m unit-speed processors. However, Fisher et al. have showed [63] that for two or

more processors a feasible sporadic task system may be found such that it cannot be

scheduled correctly by any online deterministic algorithm. The impossibility of the

optimal online scheduling implies that for any task model that generalizes the spo-

radic task model, an optimal multiprocessor scheduling is impossible. Therefore, if it

is not possible to claim that a task set under consideration can be potentially sched-

uled by some “ideal” algorithm, an existence of the resource augmentation bound

41



Kostiantyn Berezovskyi Dissertation Thesis

does not mean the schedulability. Thus, Li et al. also introduced a capacity augmen-

tation bound – a resource augmentation bound that provides a schedulability test. A

scheduling algorithm SA with a capacity augmentation bound b can schedule a task

set on m processors of speed b subject to the requirement that the total utilization of

the task set is less then or equal to m and the critical path of every task is less then

the respective deadline. Based on this distinguishing between the resource augmen-

tation bound and the capacity augmentation bound, the authors proved two bounds

for Global EDF scheduling of sporadic DAG tasks on an identical multiprocessor:

❼ a resource augmentation bound for arbitrary-deadline tasks;

❼ a capacity augmentation bound for implicit-deadline tasks.

Bonifaci et al. considered [32] the same model as the work discussed above, but

without the restriction on the deadlines. In other words, the authors do not require

that all the jobs of an instance of a DAG task should finish before the next instance

of that DAG task can be released. Considering the Global EDF and the Dead-

line Monotonic scheduling, the authors proved the resource augmentation bounds4

for these algorithms. They also presented polynomial and pseudo-polynomial time

complexity tests for determining whether a DAG task set can be scheduled by the

algorithms under consideration.

In terms of timing characteristics, the works already discussed in this subsection

did not take into account the internal structure of DAG tasks under consideration.

The vertexes of the DAG are characterized by their WCETs and the timing param-

eters inherited from the DAG task, such as an offset, a deadline and an inter-arrival

time. Thus, while the precedence between the vertexes is respected, all of them never-

theless share the same deadline of the corresponding DAG task. Intuitively, it would

be easier to avoid the DAG task deadline miss, by introducing the concept of sub-

task deadline – the intermediate deadline that corresponds to the respective vertex of

4In this work, the researchers used a term “speedup bound”.
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the DAG. Even though a subtask deadline should be earlier than the task deadline,

missing of this intermediate deadline means a deadline miss of the whole DAG task.

On the other hand, the scheduling of DAG tasks poses more challenges compared

to the scheduling of sequential tasks. A release of a DAG task instance activates only

a job of the source vertex, while the jobs of other vertexes are kept in a ready state

waiting for the activation. A ready job can be activated only after all its predeces-

sors’ jobs complete. Therefore, the scheduling of the predecessor jobs determine the

activation time of a ready job. This dynamic feature of the DAG scheduling imposes

that at a given moment in time the scheduler is not aware about the activation times

of the jobs of the successors’ subtasks.

One of the approaches to deal with such complexities is to convert the DAG task

set into a task set that conforms to one of the sequential real-time task models. In

particular, this means a transformation of every DAG task into a set of independent

sequential subtasks. To satisfy the precedence constraints imposed by the original

DAG topology, the sequential subtasks are assigned intermediate offsets and dead-

lines. Based on these timing attributes, the independence between the jobs of the

subtasks is ensured and the scheduling decisions can take these attributes into ac-

count. Unfortunately, the simplification gained by using this approach comes at a

price of losing the generality provided by the DAG. Adding timing characteristics to

the sequential subtasks restricts the schedulability and increases the level of pessimism

of the model.

Qamhieh et al. extended [165] the stretching algorithm, presented by Lakshmanan

et al. in the context of fork-join tasks, for the case of periodic DAG tasks running

on a homogeneous multiprocessor system. Similarly to the original stretching algo-

rithm [112], the authors followed an idea to decrease the amount of parallel executions

by serializing them as much as possible. Thus, the dependencies between the subtasks

of a DAG task are replaced by intermediate offsets and deadlines. This is done for
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the sake of transforming the DAG task to a set of independent constrained deadline-

sequential tasks with the corresponding timing attributes. The researchers proposed

to construct a master thread by stretching the critical path of the DAG until the

deadline of the task. In the case that there would be more than a single critical path,

only one of them is chosen arbitrarily, and then it is executed by a single processor.

The subtasks that do not belong to this path are executed by the independent parallel

threads on the rest of the processors. In particular, the authors applied the Global

EDF algorithm to shedule this workload and derived a resource augmentation bound.

Nevertheless, the stretching algorithm is considered to be a preparatory phase for the

scheduling process. Thus, it can be combined with other scheduling algorithms as

well.

All the works on DAG tasks discussed so far implicitly share a common assump-

tion, that every time when an instance of a DAG task is released, all the subtasks

of a respective DAG will be eventually activated. Therefore, the control flow infor-

mation is not presented in the DAG. Fonseca et al. proposed [64] an approach to

incorporate such information into a DAG task model. The authors represented a

control-flow powered DAG task as a collection of the ordinary DAGs, each one pro-

viding a different execution flow. The authors proposed an algorithm for combining

these DAGs into a synchronous parallel task preserving the original timing attributes

and precedence constraints. This approach benefits from a potential for utilizing ex-

isting approaches for DAG schedulability analysis. Unfortunately, the approach does

not scale with respect to the number of subtasks, given that the number of possible

flows has a potential for drastic increase.

Melani et al. [144] and Baruah et al. [17] addressed the scenario of control-flow

divergence in DAGs from a different angle. The authors introduced to a DAG task

model a notion of conditional vertex pair – a pair of vertexes representing a conditional

segment of a code . The first vertex in the pair represents a point in the code where the
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conditional statement has to be evaluated and the control-flow diverges into several

possible branches. The second vertex represents a point of convergence where all

the respective branches have to meet. Except these two vertexes there should be no

other vertex that the branches can share. Moreover, there should not be any edge

that connects a vertex of a branch to the vertex in the DAG that does not belong

to that branch. The total number of the alternative branches which correspond to

a single pair of conditional vertexes is referred as a branching factor. The authors

assumed that if the control-flow passed through the first vertex of the conditional

pair, it has to reach the second vertex of the pair. Hence, this assumptions would

require additional programming model restrictions or coding conventions when when

applying the conditional DAG model to the state-of-the-art parallel programming

frameworks, e.g., OpenMP, CilkPlus, TBB, etc.

The researchers considered a problem of the global scheduling of parallel tasks on a

platform composed of identical processors. The tasks are characterized by a sporadic

arrival pattern and constrained relative deadlines. Every task is expressed as a DAG

supporting conditional vertexes. Each vertex within every DAG is characterized by

a specific worst-case execution requirement.

Melani et al. introduced [144] the notion of the worst-case workload of a con-

ditional DAG-task – the maximum (among all possible conditional branches) time

required to execute that task on a dedicated uniprocessor. The authors used this no-

tion to generalize a parameter to the non-conditional DAGs, called volume – the sum

of the WCETs of all the vertexes. This generalization allowed them to reduce the level

of pessimism, since in the general case not all the subtasks are necessarily required

to execute. The researchers used the worst-case workload to find the upper-bounds

on inter-task and intra-task interfereces and presented an algorithm of polynomial

complexity to compute this parameter. Based on it, a sufficient pseudo-polynomial

schedulability test was derived.
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Baruah et al. [17] proposed to transform conditional sporadic DAG tasks to non-

conditional sporadic DAG tasks. The approach is based on the notion of work –

the amount of execution that can be generated by a collection of jobs of the task

under consideration. The authors utilized the concept of the work function [32] that

returns the amount of work generated during the time interval of a specific length.

The researchers presented a proof that states that for any conditional sporadic DAG

task there exists a non-conditional sporadic DAG task with an equal work function.

The authors proposed an iterative transformation algorithm, where each iteration

can be briefly described as follows:

1. Identifying an inner-most conditional construct – the one that does not contain

any nested conditional constructs.

2. Creating a non-conditional construct “equivalent” to the one identified during

the previous step.

3. Replacing the construct identified on the first step with the construct created

on the second step.

The non-conditional analog and the original conditional construct should be charac-

terized by equal values of the following parameters: the work function, the length of

the longest path, the workload, the relative deadline and the minimum inter-arrival

time.

This transformation strategy is exploited for the sake of applying the schedulability

analysis of non-conditional DAGs [32], and then to draw a conclusion about the

original conditional DAG. The authors presented a proof stating that the conditional

task set is schedulable by global EDF if and only if the corresponding non-conditional

task set is schedulable by the corresponding algorithm.

Li et al. presented [122] a generalization of the concept of partitioned scheduling

in the context of constrained-deadline parallel sporadic DAG tasks called federated
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scheduling. The authors considered a task to be heavy if its utilization exceeds 100%.

In federated, scheduling each heavy task gets an exclusive access to a set of processors.

Hence, all the processors available in a system are partitioned into n + 1 “clusters”

where n is the number of heavy tasks. An extra cluster is dedicated to the light tasks

– those, whose utilization is less than 100%. Although the light tasks in this shared

cluster run sequentially, the authors allowed these tasks to execute on more than a

single processor. Thus, the cluster for light tasks does not gain the benefits of simpler

analysis and implementation traditionally afforded by the partitioned approach. The

researchers presented a proof of a capacity augmentation bound for this model.

Baruah introduced [15] an analysis of federated scheduling for the case of arbitrary-

deadline sporadic parallel DAG tasks and presented a proof that by moving to a

more general deadline-model there is no loss in terms of speed-up metric. Baruah

extended [16] the definition of federated scheduling by adding a restriction that the

light tasks in the respective cluster are partitioned among the respective processors

at DAG granularity. Therefore, light tasks cannot migrate.

The approaches discussed above, as the schedulability analysis in general, rely on

the task attributes to be input by the designer. It is the Worst-Case Execution Time

analysis (WCET) analysis which provides the Ci for each task.

3.5 Worst-case execution time analysis

Solid timing analysis is a principal stage in real-time systems design. It is needed

to ensure that the tasks meet their timing requirements and the interrupt latencies

are bounded by respective limits. For hard real-time systems obtaining the worst-

case execution time (WCET) of each real-time task is of paramount importance.

In some cases, for a single task it is possible to obtain the worst-case input, but a

general approach to finding WCET is through using WCET analysis. Developing such

an analysis is subject to some fundamental hurdles. Namely, developing precise and
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accurate model of hardware execution latency (i), determining the timing behaviour of

the task which depends on the history of previously executed instructions that exerted

influence on the hardware state (ii), developing approaches for characterization of

the worst-case temporal behaviour and proving that it has specific mathematical

properties to ascertain confidence bounds for the real-time system (iii). All of these

challenges are subject to extensive research efforts led by academia and industry, to

be described in the following sections.

3.5.1 Sources of performance and unpredictability

Originated from one-off government-funded developments characterized by enormous

cost, embedded systems emphatically move towards cheaper commercial off-the-shelf

components. As a well-known acknowledgement of such a trend could be a usage of

general purpose processors in real-time industry domain. Being attractive not only by

price but also by rapidly growing computational capabilities, low power consumption

and compact form factor, mass product processors have a tough drawback for real-

time embedded system designers. Strong focus on average case performance, that

naturally is the most important concern for general-purpose hardware, makes it very

unpredictable from the real-time viewpoint. Therefore, here we would like to highlight

hardware optimizations that are known to cause problem of unpredictability of such

processors.

Today, memory technology does not seem to be able to catch up with processor

speed. Therefore, in modern computer systems, there is a huge gap between proces-

sor clocks and memory access times also known as memory gap. When the processor

has to access off-chip memory it means that the data will come tens, hundreds (or

even more) clock cycles later, hence the processor needs to wait until it will be able

to resume processing. Such scenarios are usually referred as wait states and cause

waste of performance and energy. They may even lead to unnecessary overheating

48



Kostiantyn Berezovskyi Dissertation Thesis

if no energy conservation strategy is applied to prevent the processor from spinning

uselessly waiting for data. To diminish negative effects of wait states several proces-

sor hardware optimization techniques were introduced, namely: caching, instruction

pipelining, instructions prefetching, branch prediction, simultaneous multithreading.

All together, these techniques show tremendous achievements in reducing the prob-

lem in the average case, however from the real-time system timing analysis viewpoint,

they make computer hardware too complex, much less deterministic and, therefore,

poorly suitable for the worst-case timing analysis.

Probably, one of the most natural solution to the problem of reducing the number

of wait states should be diminishing the off-chip data traffic. Hence, hardware design-

ers do much effort to keep data as close to the processor as possible. Unfortunately,

making low-latency memory for processors that run at high clock rate is a big chal-

lenge, therefore, chip manufacturers opt for a design that includes multiple levels of

memory subsystem to combine cost and performance. Ordering these memory levels

from the smaller but faster to the bigger but slower, the resulting sequence is the

following: register file, cache memory, main memory.

Very common principle of processor design that is known to be dramatically ben-

eficial for average-case workload, is to exploit execution history of the program based

on temporal and spatial locality. This principle is the essence of an idea behind the

cache memory which on one hand has significantly more storage comparing to regis-

ters, and on the other hand, is much tiny and faster accessible comparing to the main

memory.

Caches substantially improve the average application performance reducing data

access time of a general-purpose processor by one or even two orders of magnitude.

However, for the timing analysis cache memory introduces a tremendous complexity:

the execution time of the program becomes extremely dependent on the execution

history. Even assuming that cache characteristics like size, associativity, etc., would
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be documented by the chip-makers in every detail, which is often far from being

the case, potential option to model cache behavior in software do not help much

in real-time systems perspective. Unfortunately, cache simulation usually does not

provide safe enough results to determine worst-case timing behavior. The reason is

that claiming simulation to be safe, one needs to cover all possible program paths

which would require an exponential number of input data to be analyzed and in most

of the cases is not tractable subject to the problem size and computational capacities

available.

Many works [182], [163], [87], [172], [123], [160] on WCET analysis have been

done for single-core processor, however, due to high complexity features of general-

purpose CPUs namely pipelines, caches, branch prediction, speculative execution and

out-of-order execution, still it is very hard to obtain accurate WCET [24].

For preemptive multitasking environment cache analysis is way more difficult,

given that cache state depends on the history of the execution. The essence of the

problem is that any cache line potentially can be influenced by an instruction which

is placed in the same piece of code or another module or even another program.

This challenge of inter-task cache interference was approached by “footprint-based”

methods [19], [35], [116], where task footprint is a part of cache memory used by a

corresponding task. Footprints overlapping demonstrates how tasks compete for the

same cache area, and therefore, determinates cache related task switching overhead.

For example, Busquets et al. [35] incorporated instruction cache support into fixed

priority schedulability analysis. In their simulations the authors compared cached

Response Time Schedulability Analysis with cache partitioning (single cache partition

per task) and with cached Rate Monotonic Schedulability Analysis. The authors

assumed a processor with one level on-chip instruction cache (no data cache present)

that is entirely refilled every time when task context switch occurs and therefore

experience cold start. The authors consider such refilling feature of their processor
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model as a pessimistic assumption, however, this is true only in case we consider cache

as an isolated resource disregarding the big picture of the system. As it was later

shown by Lundqvist et al. [139], such local worst-case assumptions lead to a common

pitfall. The reason is, modern processors include multiple factors that influence each

other at runtime.

Let us consider pipelines that accelerate processing by overlapping execution if

there are enough instructions to keep the pipeline full. Choosing the pipeline state

that will cause the longest overall execution time of the program would be impossible

without knowing the complete instruction sequence. Another aspect of the prob-

lem is that all state-of-art processors are dynamically scheduled – the instructions

could be executed out-of-program-order. With the help of simplified model, inspired

by PowerPC processor, that includes integer unit (for ADD instruction), multiple

cycle integer unit (for MUL instruction), load/store unit – all supported by reser-

vation stations, Lundqvist et al. considered series of possible scheduling scenarios.

Taking into account instruction sequence, dependency between instructions, instruc-

tion dispatching time, the authors demonstrated [139] how out-of-order scheduling

of arithmetic instructions may lead to timing anomalies – scenarios where the local

worst-case hardware behavior does not lead to the longest overall program timing.

Particularly, simply assuming a cache miss in a dynamically scheduled processor is

not safe enough given that in some cases it may result in shorter overall timing com-

paring to cache hit scenario. The authors presented code modification techniques

for restricting out-of-order execution, however, their approach would become practi-

cal only in case of architectural support for cache states control. Also, it prohibits

fully preemptive scheduling and similar to cache there is a need of explicit control

on pipeline stages. Given that the model of the processor was greatly simplified,

for more realistic hardware model there is a need of accounting on the effects of the

following factors that are usually considered as primary sources of unpredictability
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and performance. Those are: speculative execution (performing instructions before

being sure if the result will be needed); branch prediction (proceeding with further

instructions without waiting for the result of a branch); prefetching (getting data

earlier then there is a demand); out-of-order scheduling of load/store instructions;

memory contention between instruction and data.

Wilhelm et al. showed [183] how detrimental such hardware optimizations could

be for predictability of real-time system.

Methods of WCET analysis are divided in two classes: static methods and mea-

surement based methods.

3.5.2 Static methods

Methods of static WCET analysis use abstractions to cover possible paths of exe-

cution and processor behavior at the cost of the need to create processor-specific

models. Static methods do not require running the program under analysis, and

therefore, complex and expensive equipment to simulate the target computer system

is not needed. However, static analysis methods require a deep knowledge of the tar-

get hardware as well as and the ability to reason about its state. Unfortunately, an

increase in complexity at hardware and software levels of conventional real-time em-

bedded systems makes these methods very challenging in terms of tractability, even

subject to an assumption that all the hardware features are documented in every

detail. This is due to an extreme number of possible states of the state-of-the-art

hardware which leads to a combinatorial explosion when enumerating those even for

a relatively simple code snippet. Thus, given that current static methods do not scale

up to the increase of complexity, alternative approaches are needed to keep pace with

the hardware evolving fast.

Another common problem of static WCET analysis is overestimating the real

value of the WCET drastically. The overestimation of WCET can be tolerated by
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decreasing the degree of safety of the estimate. The corresponding methods use

program execution measurements instead of analyzing the processor behavior subject

to the processor model (like the static methods do) and therefore, are classified as

measurement-based.

3.5.3 Measurement-based methods

Unlike static program analysis which is used to obtain dynamic context and charac-

teristics of the computational entity without its execution, measurements require that

the respective program code should be run either on the hardware or on its software

simulator. Since, in most of the cases, running experiments for all possible control

flows (code paths and inputs) is intractable, measurements can only demonstrate

typical dynamic behavior of the program, rather than the execution time bounds.

Even though being potentially unsafe, measurement-based techniques are widely

accepted in the industry thanks to their practical feasibility. The general scheme of

such industrial techniques includes [182] three steps:

❼ preparing high-coverage input data;

❼ conducting extensive experiments on the program initialized with that data

and recording the longest execution time that was observed (high watermark

execution time);

❼ adding a constant (called an engineering margin) to the value of the longest

execution time, subject to the assumption that the margin is big enough to cover

any unanticipated worst-case timing scenario of real-time system behavior.

Although these end-to-end measurements are used in the industry, the produced

results may underestimate the real worst case. However, they give an idea about

the execution in the average case and the probability of the worst-case occurrence.

An attempt to replace empirical techniques of determining engineering margin with
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scientific approaches based on a proper theoretical background, led to multiple efforts

in applying results that have been developed by the probabilistic and statistic research

communities to real-time systems domain.

3.6 Probabilistic real-time systems

The idea behind probabilistic analysis is to estimate the chances of the scenarios in

the future based on some model of probability. For example, when tossing a coin one

can consider that the probability of it falling on a head or a tail is equal to 1
2
subject

to the assumptions that the coin is “fair”, it will not disappear before falling, etc. The

use of probabilistic approaches in real-time systems in the context of timing analysis

is based on an idea that an exceedance of the WCET of the software can be modeled

as a failure of the system. In this sense, the mechanical parts, electrical hardware

and eventually a software have a common aspect in their reliability behavior – all of

them have some probability of failure.

The application of the probabilistic analysis to real-time systems is done through

the introduction of some system parameters characterized by random behavior. In

the context of our research, we are interested in works that extend this approach to

the timing of the execution. Thus, we briefly present the works that deal with the

randomized worst-case execution requirements.

3.6.1 Probabilistic response time analysis

Liu et al. showed [126] that in the context of a set of independent preemptive periodic

tasks with fixed priority, the most unfavorable scenario for uniprocessor scheduling of

a particular task occurs when it releases its task-instance together with all the other

tasks of an equal or higher priority at the same time instant (also known as critical

time instant). In other words, to bound the worst-case response time of a particular

task, one should look at the scenario, when that task releases its job at the critical
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instant. Based on this observation, Lehoczky et al. introduced [117] the concept of

time demand function – a function of time which returns the cumulative demand on

the processor resource for the time period started from the critical instance. Based on

this concept the authors presented an exact characterization of the Rate Monotonic

algorithm [126] in terms of its scheduling ability. Moreover, the researchers applied

the probabilistic analysis to characterize a corresponding scheduling bound in the

average case. The authors considered randomly generated task sets by introducing the

cumulative distribution functions for both the periods and the execution requirements

of the tasks. Their simulations demonstrated the gap between the worst case and the

average case in the context of the uniform distribution.

Tia et al. based their work [176] on the Time Demand Analysis [117] discussed

above. The authors considered a constrained-deadline task system with periodic

releases, variable execution times and fixed priorities executing on a uniprocessor

computer system. The authors modeled the execution times of the tasks as random

variables and presented an analysis that derives the probability of missing the dead-

line for every task. For a task under consideration, the analysis provides a bound on

the total amount of the execution time of the higher priority tasks. The respective

probabilistic time-demand method is an extension of an exact Rate Monotonic schedu-

lability test [117]. Assuming that the distributions of the execution times of the tasks

are known, the researchers substituted sums of the execution requirements with the

convolutions – mathematical operations that return the area overlap of the input

probability distribution functions. Thus, for every task, the probability distribution

function of the corresponding response time is derived, assuming the worst-case re-

lease time. The proposed algorithm tractably performs convolutions for at most ten

higher priority tasks. In case there is a need to account for the effects of more tasks,

it uses the Central Limit Theorem [167] for the sake of approximation, abstracting

away from the respective distributions.

55



Kostiantyn Berezovskyi Dissertation Thesis

Lehoczky observed [119] that the classical definition [126] of a real-time task set

is not well suited for some of the application domains that require timing guarantees.

Specifically, the author pointed out that the basic assumption about the static task set

and the deterministic worst-case execution requirements do not fit the applications

of real-time communication on automatic teller machine networks and multimedia

processing. The researcher proposed to express randomness in job releases and their

execution times with the help of queueing theory, considering a real-time job as a

customer in the queueing terminology. The model is based on the following assump-

tions:

❼ There is a queue of customers waiting for a single processor operating at a

specified rate;

❼ The arrival of the customers is described as a Poisson process with a specified

rate;

❼ The mean of the execution requirements required for processing the customers

is given;

❼ Each customer has a variable relative deadline described by a given cumulative

distribution function;

❼ The customers in a queue are processed according to a defined queueing disci-

pline;

❼ The processing of the customer can be preempted at zero cost.

Since the classical queueing theory does not have a concept to be used for expressing

the execution requirement of every particular job, extending the model to account

for execution requirements is complicated. The difficulty appears because the state

variables of an extended model get an unbounded dimension. Therefore, the author

proposed to add a heavy traffic assumption – the average utilization of the processor
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has to be almost full. This allows to apply additional probabilistic methodology that

simplifies the analysis of the model. However, for the scenarios when the system does

not experience the heavy workload, the model becomes too pessimistic. Nevertheless,

for such scenarios, the author suggested to use the model for deriving the worst-

case bound on system performance. Another source of possible shortcoming of the

model is that all the customers are forced to have equal probabilistic characteristics(as

stated in the assumptions above) which would not necessarily be the case in a real-life

workload.

Atlas et al. pointed out [4] to the soft real-time applications where the miss of the

deadline is acceptable subject to the requirement that for the overall system the num-

ber of the deadlines met is higher than some threshold specified by the designers. As

the work discussed above, the researchers also considered preemptive Rate Monotonic

scheduling of periodic tasks with variable execution times. Similarly to the classical

Rate Monotonic analysis [126], this approach also consists of a feasibility test and a

scheduling algorithm. Both are linked to the concept of the quality-of-service. The

authors defined the quality-of-service of the task as a probability of a job (selected

randomly) of that task meeting its deadline, considering an infinitely long history of

system operation. The feasibility test ensures whether for a given task set it is possi-

ble to satisfy its quality-of-service requirements. The proposed scheduling algorithm

consists of an admission controller and a scheduler. At the release of every job, the

admission controller has to admit or reject this job to be considered for scheduling.

This decision is taken based on the likelihood of the job to meet its deadline. The

admitted jobs are scheduled according to the respective priorities.

Gardner et al. presented an analysis based on General Time Demand Analysis of

Lehoczky et al. [118]. Their Stochastic Time Demand Analysis [67] derives the lower

bound on the probability that the jobs of the task system under consideration will

meet their deadlines. Similarly to Probabilistic Time Demand Analysis [176] of Tia
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et al., the proposed analysis makes a simplifying assumption that every particular

task releases its instance together with all the higher priority tasks. This critical

instant assumption allowed the authors to compute an upper bound on the probability

of deadline miss. Gardner et al. succeeded in relaxing the constrained-deadline

assumption made by Tia et al. Another novel aspect presented is that the researchers

considered the time demand from the perspective of the task instance being analyzed,

rather than the entire busy period. Thus, the probability that the job meets its

deadline is equal to the probability of the time interval between its release and its

deadline being sufficient to meet the time demand of the system. However, both

Stochastic Time Demand Analysis [67] and Probabilistic Time Demand Analysis [176]

focus on uniprocessors.

Bernat et al. introduced [26] the concept of an execution profile – a characteri-

zation of a code segment using the frequencies of the occurrences of possible events

caused by that code. Although an idea behind the execution profile can be applied

to characterize different aspects of the computer system‘s behavior (e.g., possible

memory layout, cache accesses, etc.), the authors concentrated on the execution time

profiles (ETPs). The authors proposed to define an execution time of a code segment

with the help of marking some stage of the instruction pipeline of the processor under

consideration to be a point of reference. Then, the execution time of a code segment is

defined as a time interval from the moment when the first instruction of that segment

enters the marked pipeline stage, until the moment when the last instruction of the

segment leaves that stage. Assuming that the frequencies of possible execution times

of the code segment under consideration are collected (e.g., using analytical methods,

simulations or measurements), the researchers represented the respective execution

time profile using a probability distribution. The authors proposed mathematical

representations of the cumulative execution time profiles for different scenarios of the

code segment executions: conditional statements, loops, sequential execution. For

58



Kostiantyn Berezovskyi Dissertation Thesis

the latter, the researchers considered the following three cases:

❼ the code segments are independent;

❼ the code segments are dependent, and the dependency information is known;

❼ the code segments are dependent, but the dependency information is not known.

Based on the concept of convolution, for each of the cases presented above, the authors

presented a separate operation for combining execution time profiles of the code

segments. Thus, the ETPs of the code segments that belong to the same execution

path can be combined to the ETP of a whole path, and therefore, the model of

the longest execution of the code is derived. The usefulness of the algebra of ETPs

developed by the researchers is also motivated by an idea of combining the execution

time profiles with the analytical methods for deriving the worst-case program paths.

This idea made it possible to develop methodologies that utilize the techniques from

static, measurement-based and hybrid timing analyses. For example, the path derived

with the help of the deterministic control-flow analysis can be augmented with the

execution time profiles obtained by using measurements.

Such techniques, combining a probabilistic view on system‘s behavior with well-

established timing analysis approaches, form Probabilistic Timing Analysis (PTA).

3.6.2 Probabilistic timing analysis

The objective of this analysis is to provide such bounds on the execution time behavior

of the system‘s software that the probability of timing failure of the whole real-

time system will be kept below the acceptance threshold specified by certification or

quality-of-service requirements. The worst-case timing behavior of the software is no

longer considered as a single value of an execution time, as it is done in the traditional

WCET analysis approaches. The PTA introduces the notion of probabilistic Worst-

Case Execution Time (pWCET) – the probability distribution of possible execution
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times such that it bounds the probability that the execution time may exceed a value

(timing) given in a distribution. Therefore, the analysis is mainly utilized to obtain

the timing that has a probability of occurrence that is less than or equal to the

acceptance threshold.

Based on how the probabilities of possible execution times are derived, two branches

of PTA are under active development:

❼ Static Probabilistic Timing Analysis (SPTA) – the a-priori probabilities are

derived statically from the model of the system;

❼ Measurement-Based Probabilistic Timing Analysis (MBPTA) – the probabili-

ties are derived a-posteriori from the end-to-end runs.

3.6.2.1 Static Probabilistic Timing Analysis Cazorla et al. proposed [37]

Static Probabilistic Timing Analysis whose principal stages can be briefly outlined in

the following way:

❼ Obtaining a-priori probabilities for the timings of the execution entities (e.g.,

individual instructions or code segments);

❼ Deriving discrete probability distributions for the respective execution entities;

❼ Combining these distributions into a single one, subject to a given worst-case

sequence of the execution entities and an assumption that the execution times

of the entities are statistically independent;

❼ Applying Extreme Value Theory assuming that the input data are independent

and identically distributed.

The assumption about statistically independent execution entities does not fit the

vast majority of computing systems available, therefore, the authors presented a dif-

ferent paradigm. The researchers proposed to tackle the problem of non-deterministic
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timing behavior of modern computing systems by getting rid of the execution history

in such systems. The authors suggested to introduce the randomization in the timing

behavior of such systems being the candidates for an adoption in the real-time domain.

In other words, the timing of an arbitrary instruction under consideration must be

independent of the previous executions in the computing system, even though there

might be a logical dependence between the current instruction and some instructions

executed previously.

Considering which components of a computing system should (or need not) be

randomized, the researchers presented the following classification:

1. Fixed-latency components;

2. Components that have latencies with low variability;

3. Predictable components that have significant variability;

4. Unpredictable (or intractably predictable) components that have significantly

variable latency.

The analysis of the components that belong to the first class can be done in a straight-

forward way by accounting for the fixed latency. For the second class of components

which are characterized by a small difference between the worst-case latency and the

best-case latency, a reasonable way would be to account always for the worst-case.

This would be acceptable subject to an assumption that the pessimism added by such

a simple approach is negligible when compared to the overall worst-case execution re-

quirement. The definition of the third class of components imposes that there exist

tractable methods that are able to accurately predict the respective latency. While

the analysis of the components that belong to any one from the first three classes

can be done by performing affordable cost/effort activities, the fourth class is the one

that the authors suggest to be a right fit for the randomization idea.
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The researchers argued that the typical example of such components is a cache

memory, which inherently depends on the execution history. Instead of using a de-

terministic replacement policy, the authors proposed to randomly select the cache

line to be evicted from the cache set. Hence, the eviction of the cache line under

consideration becomes independent of previous accesses. This random replacement

policy brought the authors to the idea to characterize the behavior of the cache prob-

abilistically based on the reuse distance of the memory location under consideration,

that shows how recent the previous access to this location was. More formally, the

reuse distance is the number of accesses to distinct memory addresses that have hap-

pened between the two most recent accesses to the memory location of interest. For

the fully-associative caches with random replacement policy, the use of the reuse dis-

tances liberates the analysis from the dependency on the memory layout, since the

data from the memory location can be put into an arbitrary cache line.

However, in case of set-associative or direct-mapped caches, the address of the

respective memory location determines the set, in which the data will be stored.

Therefore, for such cases the researchers proposed to randomize both, the placement

and the replacement policies. The authors pointed that the randomization of the

placement policy does not need to be explicit. Given that the placement directly

depends on the mapping of the data in memory, the randomization can be implicitly

implemented on the side of runtime systems by doing random memory allocation

(e.g., the memory manager presented [25] by Berger et al.).

Cazorla et al. considered [37] a theoretical model of the computing system powered

by a CPU with a pipeline, an instruction cache and a data cache. The in-order pipeline

under consideration is characterized by a-priori known latencies of the instructions.

These latencies are fixed for all types of instructions except the memory accesses.

The latencies of the memory instructions depend on the data cache subject to an

assumption about permanent hits to the instruction cache. Thus, the latency of a
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memory instruction has two possible values, corresponding to the data-cache hit and

to the data-cache miss.

Therefore, the computing system under consideration includes a single source of

timing variability – a data cache. This cache is supposed to be fully-associative and

every access to it causes an eviction of a random cache line from the cache. Thus, this

evict-on-access replacement policy is enough to make the cache under consideration

be time-randomized.

The researchers assumed programs with a single possible path and a fixed input

data. Thanks to these assumptions, there was no need to perform path analysis and

loop bound analysis. The authors argued that the benefit of their static probabilistic

timing analysis is based on the use of the reuse distances, since there is no need

to have runtime information about how the data is mapped to the memory as it is

required in traditional static timing analysis approaches.

In a probabilistic timing analysis presented by the authors, the probability dis-

tributions of the individual instructions are determined statically from the model of

the computing system discussed above. The model of the randomized cache allowed

the researchers to consider these individual instructions as independent random vari-

ables. This is an implementation of a principle of time-randomized hardware design

promoted by this work. Hence, the convolution operation could be applied to com-

bine the respective discrete distributions into a single distribution of the execution

time of a sequence of instructions. The further analysis is based on the respective

inverse cumulative distribution function also known as the exceedance function. It

is analyzed for which estimation of the worst-case execution requirements the value

of the exceedance function falls below the required acceptance threshold. Hence,

the respective execution time is considered to be not exceeded with a given level of

confidence.

In terms of the experiments, the computing system discussed above was simulated
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to process a synthetic benchmark characterized by a single control path consisting of

a fixed number of distinct memory accesses.

The authors compared the models of time-randomized cache and a few configura-

tions of LRU caches, in the contexts when some of the memory accesses are unknown

and consequently the LRU cache has to be flushed. These experiments showed how

the estimation of the worst-case execution requirement increases with the increasing

of the number of the unknown accesses.

The further experiments demonstrated the sensitivity of the time-randomized

cache to the size of the cache and to the acceptance threshold for the scenarios with

different amount of unknown memory accesses.

The work discussed above estimates the pWCET of the entity of execution (e.g.,

task) that runs in isolation. However, the more realistic scenario should account for

preemptions, when the execution of the instructions that belong to different tasks

may be interleaved on the processor. In such cases, the instructions of the preempt-

ing task affect the context of the execution of the preempted task, for instance the

probabilities of the required data being in cache. The effect of cache misses affecting

the worst-case execution requirement is usually referred to as Cache Related Pre-

emption Delay (CRPD) that is applicable to the computing systems running under

preemptive scheduling.

Davis et al. extended [50] the static probabilistic timing analysis presented [37] by

Cazorla et al. to account on probabilistic Cache Related Preemption Delay (pCRPD).

Their analysis provided an upper bound on the inverse cumulative distribution func-

tion of pWCET for the case of the following computing system.

The authors considered a uniprocessor system, however, in terms of caches they

assume an instruction cache only. The instructions executed by the processor are

stored in memory blocks, such that multiple instructions may belong to the same

block. The researchers assumed that the instructions are characterized by two fixed
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values: an execution time in case of cache-hit and in case of cache-miss. Moreover,

to simplify the analysis the authors assumed that all the instructions share the same

cache-hit latencies and the same cache-miss latencies.

The authors considered evict-on-miss random replacement policy, according to

which every time a cache-miss occurs, some randomly selected cache line gets evicted,

while the block (that contains the instruction under consideration) fetched from the

memory is loaded into the instruction cache.

In their experiments researchers simulated the given computer system running

a suite of real-time benchmarks [81] that contains both single-path and multi-path

programs. The authors compared the performances of the systems powered with the

evict-on-miss and the evict-on-access instruction caches and drew the conclusion that

the evict-on-miss is more suitable.

Similarly to the work of Cazorla et al. [37], this approach is based on the reuse dis-

tances. Davis et al. assumed that a deterministic reuse distance for each instruction

is given as an input to the analysis. The authors argued that this aspect provides a

significant margin of safety when compared to the option of using probabilistic reuse

distances.

The works discussed above implicitly shared a common assumption: all of them

assume hardware that is functioning correctly. However, a fine-grained fabrication

of the state-of-the-art integrated circuits imposes a drastic increase in probability of

failure among the corresponding silicon primitives [147]. Motivated by the reasoning

that such probabilities increase exponentially with the decrease of the distance be-

tween the transistors, Hardy at al. addressed [85] this phenomena in the context of

static probabilistic timing analysis research.

The authors considered a uniprocessor computing system equipped with a single-

level instruction cache subject to an assumption about the absence of timing anoma-

lies. Thus, the worst-case behavior is assumed to be imposed by the cache misses.
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The cache is characterized by an LRU replacement policy and some level of non-

determinism that comes from its fault bits. The researchers assumed such bits to be

free from the effects of transient faults, thus, if the bit fails, this fault is permanent.

The instruction cache is assumed to be the only component of the computing

system that may experience failures which are detected using post-manufacturing

tests, Error Control Correction, etc. While the LRU-stack bits are assumed to be

reliable, the ordinary bits are considered to have an equal probability of failure,

which is supposed to be given as an input to the analysis. If a bit experiences a

fault, the corresponding cache block is marked as disabled and the size of the cache is

reduced. The decrease of the cache capacity leads to additional fault-induced cache

misses which are considered in the analysis.

The approach proposed by the researchers is partly based on static timing analysis,

particularly, path and cache analyses that are combined with the analysis of proba-

bilistic aspect of the computing system that is imposed by the instruction cache. In

terms of low-level analysis, subject to the given cache configuration, the worst-case

behavior of each memory reference is classified using the approach presented [175]

by Theiling et al. On the other hand, in terms of high-level analysis, from a given

program, the worst-case execution path is derived. Then, an upper bound on the

WCET is computed using Implicit Path Enumeration Technique [182] that is based

on Integer Linear Programming. Then, the obtained knowledge is augmented by the

probabilistic analysis that for a given probability of bit failure, evaluates the addi-

tional fault-induced cache misses that may happen. Based on the distribution of the

latencies that occurred because of such faults, the overall pWCET can be obtained,

that is supposed to be used to ensure that the timing requirements to the computing

system under consideration are met.

In terms of the experiments, the authors also developed a brute-force method

that for a relatively small problem instant performs an exhaustive enumeration of all
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potential fault bits. This method that gives the worst-case timing penalty imposed by

the instruction cache failures is used to demonstrate the quality of the probabilistic

analysis discussed above.

The work [37] by Cazorla et al., that we were discussing at the beginning of this

subsection, also provided an intuition for another variant of PTA, Measurement-Based

Probabilistic Timing Analysis.

3.6.2.2 Measurement-Based Probabilistic Timing Analysis MBPTA is based

on the traces of the analyzed program running on the target platform. Thus, it has a

very strong practical benefit, especially, in the scenario when the details of the hard-

ware/software organization of the system are kept secret (which is often the case).

However, in terms of timing profile, the execution time measurements provide not the

probability distribution, but only the frequency distribution observed within a finite

interval of time during which the experiments were conducted. This fact provides a

serious limitation for the systems with a low acceptance threshold that would require

high precision on the assigned probabilities, and therefore, an extremely large number

of traces.

The considerations presented above have a paramount importance because of the

following reasons:

❼ Providing a huge number of traces might not be feasible for many real-life

applications;

❼ The occurrence of the worst case can be considered as a “rare event”.

Even though the rare events can be considered as “improbable” they are also char-

acterized by their drastic impacts, and hence, attract serious attention by the statistic

research community. Rare event theories focus on the tails of probability distribu-

tions that correspond to “low probabilities”, to analyze how the random variable

under consideration deviates from its expected value.
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Cazorla et al. considered [37] two rare event theories to be applicable to the

problem of estimating pWCET: Large Deviations Theory (LDT) [177] and Extreme

Value Theory (EVT) [70].

Originally, these theories extend the Law of Large Numbers and the Central Limit

Theorem [167]. According to these results, for a sample that contains a sufficiently

large number of observations of a random variable under consideration:

❼ The arithmetic mean of the observed values converges to the respective expected

value;

❼ That arithmetic mean is approximately normally distributed;

❼ The (tail) probability of that arithmetic mean being greater than a given value

(specified beforehand) can be approximated.

Unfortunately, the latter approximation derived using the Central Limit Theorem

might not be accurate for the cases when the value specified for the computation of

the tail probability is relatively far from the expectation value of the corresponding

variable. Another drawback is known when the number of observations grows to the

infinity, since the Central Limit Theorem does not provide the information about the

convergence of the tail probability.

Large Deviations Theory tackles these problems by focusing on tail probabilities,

however, LDT analyzes the sum of random variables. Thus, Cazorla et al. argued [37]

that it could be potentially applied to the combination of execution traces (e.g., each

trace for a different module of the software).

For a single trace represented by many measurements, an established idea is to

apply Extreme Value Theory. EVT is a branch of statistics that for a large enough

sample of a random variable, estimates the probability of exceeding all its values ob-

served previously. In other words, this discipline studies the extreme deviations from

the median of the probability distribution of the random variable under consideration.
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The traditional EVT is based on two assumptions about the observations:

❼ The observations are independent in a sense that the outcome of the observation

under consideration is not correlated with an outcome of any other observation

that has already happened.

❼ The observations are identically distributed meaning that the probability of

the observation under consideration is identical to the probability of the same

observation but from another sample.

Therefore, an application of such flavor of EVT to the traces of measurements

requires these execution traces to be mutually independent and to have the same

probability distribution function.

Edgar et al. proposed [53] to estimate the worst-case execution time of the real-

time tasks using EVT. Based on the sampled execution timings, the authors com-

puted the scale and the location parameters for deriving the probability distribution

function. The researchers opted for the Gumbel distribution [80] from the family

of continuous probability distributions, also known as Generalized Extreme Value

(GEV) distribution. However, contrary to EVT that considers [21] only those ran-

dom values that are maximum or minimum from sufficiently big sets of other random

values, the researchers fit all the observed measurements to the Gumbel distribution.

Hansen et al. improved [84] the approach discussed above by suggesting to analyze

only maximum values derived according to some principle from a given sample of

the measured execution times. First, the authors grouped the measurements into

blocks of an equal length. Then, from each block the maximum value was taken for

construction of a new set of “block maximum” values. Thus, instead of fitting the raw

execution timings to the Gumbel distribution, the researchers used the Block Maxima

method [21] that provided the maximum random values.

Griffin et al. noticed [79] that in computing systems the notion of time is discrete,
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therefore, a program, as an object of timing analysis, cannot terminate at an arbitrary

point of some continuous time interval. This is an important observation in the

context of previously discussed timing analysis works that apply traditional EVT to

the estimation of the worst-case execution requirement. The authors warned that

fitting a continuous distribution (e.g., Gumbel) to discrete execution times might be

unsafe in cases when the distribution function would not bound the observed execution

time from above. For such cases, the researchers proposed to use the following options:

1: Add a safe offset to the distribution;

2: Overestimate the respective discrete exceedance distribution function by fitting

its upper bound by a continuous function.

The first option is applicable only for the scenarios when such an offset can be safely

derived. The second option is more realistic, however, it is likely to add a significant

pessimism.

Cazorla et al. argued [37] that alternatively to the Block Maxima method [21],

the unsafeness from applying EVT to a set of discrete values can be eliminated by

using Peaks-Over-Threshold method. Unlike Block Maxima, this method does not

compare the value under consideration against the extreme value within the block,

but against a specified threshold. Thus, only the values that are more extreme than

the threshold will be taken into account.

Block Maxima and Peaks-Over-Threshold help EVT to provide bounds on the

probabilistic worst-case execution requirement, however, the difficulty of their proper

usage comes from the determination of the block size and the value of the threshold

respectively. The choice on the values of these parameters determines the portion

of the original distribution that will be considered when fitting the continuous GEV

distribution and is usually a result of significant empirical efforts.

Griffin et al. also pointed out [79] that the assumption about the independence
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of the observations is a limitation of such works that apply traditional EVT to the

estimation of the worst-case execution requirement. The authors argued that the

real-life computing systems do not satisfy this assumption. Especially, this is true

for the hardware that was designed with the focus on optimizing the average-case

performance.

To satisfy the independence requirement, Lu et al. proposed [138] to transform

the original sequence of observations using sampling techniques. The output of their

sampling mechanism can be an input to the EVT without raising a problem of de-

pendent observations. However, this approach does not provide a guarantee that the

resulting sequence of observations has the same statistical properties as the original

one.

Cucu-Grosjean et al. addressed [48] the independence requirement by relying on

the model of the computing system powered with time-randomized hardware. In

this sense, the authors extended the approach presented by Cazorla et al. [37] who

suggested to upper-bound the timing behavior of the hardware when that allows

an acceptable level of pessimism and to randomize those hardware resources whose

upper-bounds on the worst-case timings would be too high. Cucu-Grosjean et al.

provided modeling of fully-associative data and instruction caches featuring a random-

replacement policy. The time randomized hardware allowed the authors to satisfy the

independence hypothesis required for the application of the traditional EVT.

The researchers assumed that the latencies of the processor pipeline stages in the

instruction cycle are fixed except the fetch stage, which is characterized by only two

possible options for the case of cache hit and the case of cache miss respectively. The

authors used this assumption for the data cache as well, thus, the latency of the fetch

stage of a memory instruction would depend on both instruction and data caches.

In terms of the code under analysis, the authors assumed that it is supposed to

run in isolation and contains no system calls. These assumptions are very common
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in the WCET research community.

The scheme of the EVT application proposed by those researchers is based on

empirical set-up of the following parameters:

❼ Ncurrent – the initial number of runs of the analyzed code;

❼ Ndelta – the size of a step for increasing the number of runs;

❼ P – the number of distinct paths in the control-flow graph of the code under

analysis;

❼ difference threshold – the parameter for estimating the difference between the

EVT distribution that corresponds to Ncurrent runs and the EVT distribution

that was constructed for Ncurrent+Ndelta runs;

❼ consecutive iterations counter – the parameter for incrementing the number of

consecutive iterations that satisfy some requirement specified below.

❼ iteration threshold – the parameter for taking a decision whether the process of

searching for a safe EVT distribution can be stopped.

As a pre-processing phase of that scheme, the authors proposed to perform P×Ncurrent

runs (Ncurrent runs per each path) of the analyzed code and set the value of the

variable that holds Ncurrent to be equal to P ×Ncurrent. Then, the high-level outline

of the process of applying the EVT can be considered as a loop that executes until

the initially null consecutive iterations counter is less than or equal to the iteration

threshold. Every iteration of this loop includes a sequence of the following phases:

Phase 1. Running the analyzed code for P ×Ndelta times (Ndelta additional runs per each

distinct path);

Phase 2. Constructing two probability distribution tail projections: for Ncurrent runs and

for Ncurrent+P ×Ndelta runs;
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Phase 3. Comparing the difference between the two EVT distributions constructed during

the previous phase against the threshold (difference threshold). If the difference

does not exceed the threshold – the consecutive iterations counter should be

incremented by 1. Otherwise, the consecutive iterations counter should be set

to 0. In any case, at the end of this phase the variable that holds Ncurrent should

be set to Ncurrent+P ×Ndelta.

The intermediate Phase 2 can in its turn can be represented by the following two

sequential steps:

Grouping converts the frequency distribution measured during the runs into the worst-case

distribution. Such conversion, is needed because of the fact that the continuous

distribution function is going to be applied to discrete values of the execution

time. In their work, the researchers opted for the Block Maxima method.

Fitting derives the parameters of the Generalized Extreme Value distribution, namely:

the shape, the scale and the location. In their work, the authors used the

parameters estimation [68] of the Gumbel distribution.

For finding the difference between the EVT distribution functions in Phase 3,

the researchers used the continuous rank probability score – the probabilistic scoring

rule that evaluates cumulative distribution functions operating on the same value

domain [33].

When the last iteration of Phases 1-3 is performed and the corresponding loop

is left behind, the authors proposed to perform the inverse cumulative distribution

function‘s tail extension – the computation of the pWCET estimates that correspond

to the given exceedance probabilities subject to the GEV distribution function with

the final values of the parameters derived during the process discussed above.

The researchers highlighted that the resulting pWCET estimates are valid only

for those P paths that were considered in the analysis. This fact links the presented
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scheme to the classical path coverage problem. In other words, for complex codes,

characterized by a huge number of possible paths, the tractability issues of applying

this scheme might arise.

So far, we discussed timing analysis and parallelism in the context of uniprocessors

or identical multiprocessors. However, often, systems with general-purpose processors

also employ co-processors, on which it is possible to run specific tasks or portions of

code much faster.

3.7 Timing analysis of architectures with co-processors

In such heterogeneous systems, certain work is still done on the main processor(s)

while other work is delegated to the specialized co-processor that is dedicated to that

particular type of computations. This setup is of particular interest to us because it

often corresponds to how graphics processors are used.

A software task executing on a CPU that launches a remote operation on a co-

processor can either (i) busy-wait for the duration of the operation or (ii) self-suspend

and only resume its execution on the CPU after the results of remote operation become

available. Many designers opt for the second arrangement, because it is more efficient,

in that it allows the processor to be used for other ready tasks, in parallel with the

co-processor operation. Unfortunately, this has the side effect of violating on of the

key assumptions of the “Liu and Layland” computational model, which explicitly

assumes that tasks may not voluntarily self-suspend [126]. This has necessitates new

worst-case response time analysis techniques for systems with self-suspending tasks,

some of which we briefly discuss below.

As mentioned earlier, in GPU computing, the GPUs are often used as co-processors.

Thus, our work ties in to the real-time research that depends on the latencies of

co-processor operations as input – which is what the work described in this thesis

computes.
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3.7.1 Suspension-oblivious approach

A simple approach which manages to remain compatible with the “Liu and Layland”

model is to disregard self-suspensions and treat them as execution on the processor.

For example, a task that executes for X ′ time units on the processor, then self-

suspends for G time units, and subsequently executes for another X ′′ time units on

the processor is modelled as a task that executes for X ′ +G+X ′′ time units entirely

on the processor. This is simple, but potentially too pessimistic. Note also that it

still requires upper bounds on the length of the self-suspending regions to be known.

3.7.2 Suspension-aware approaches

To improve on the suspension-oblivious approach, over the years, many researchers

have attempted to account for the self-suspensions in the analysis. However, this has

proven quite tricky, as it has recently been realized that much of the state-of-the-art is

plagued by errors. This has to be borne in mind throughout the rest of this discussion

and we will next point to both the original works and the corresponding fixes, where

applicable. Additionally, we are aware of the fact that many researchers working on

the timing analysis of self-suspending tasks are currently working on a survey, soon to

be submitted for peer-review, which among other things aims to summarize problems

in the state-of-the-art in the area [40].

In dissertation [110] the limited parallel model was introduced. This model

considers a single general-purpose processor that delegates workloads to multiple

application-specific co-processors (possibly implemented in reconfigurable hardware).

The effects of bus contention are ignored and it is additionally assumed that a co-

processor is not shared by different tasks. The entities of computation in the limited

parallel model are software/hardware processes. The “mixed” nature of the soft-

ware/hardware process is reflected by the ability of being scheduled (according to

fixed-priority scheme) on the general-purpose processor, but also to issue the hard-
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ware operations to the specialized co-processor. During the time that a hardware

instruction is performed, the general-purpose processor may be used to execute an-

other pending process. Hence, some process under this model may be executed by

general-purpose processor in parallel with multiple processes that are executed by

available co-processors.

In [5] the worst-case response time analysis of Liu and Layland [126] was general-

ized to be applicable to such systems. Unlike the suspension-oblivious approach, the

execution of tasks on a co-processor is subtracted from the overall execution time of

a task for a tighter estimation of the worst-case interference. However, this means

that the worst-case scenario is no longer a critical instant (e.g., all tasks arriving at

the same time). The corresponding worst-case scenario is identified in [5] and it is

analogous to modelling each interfering task as having a release jitter. This accounts

for the potential variability in the location of processor execution and co-processor

operations inside a job activation. However, much later, it was identified, via counter-

examples, that the jitter terms uses were in fact unsafe, so a fix was published [31].

In [30] the same authors published tighter analysis for linear tasks that consist of

a known fixed interleaved sequence of local processor executions and self-suspending

regions. The same flaw was present, inherited from [5]. It is also fixed in [31].

Jane Liu [135] analyzed tasks with self-suspensions by treating the remote oper-

ations as blocking. Recently, Chen et al. [39] provided definitive, rigorous proof for

that result.

Cong Liu et al. studied self-suspensions in the context of multiprocessors with

global scheduling policies, mainly for soft [130, 131, 133, 134, 129] but also for

hard [127] real-time systems. To account for the temporal variability in the initiation

of self-suspensions, the authors mostly rely in the concept of carry-in interference

in this line of work. Carry-in interference is defined as interference by jobs released

earlier than the job under analysis, but whose absolute deadlines are earlier than that
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of the latter. Recently an errata [128] was filed for [127] by its authors.

Lakshmanan et al. also worked on the scheduling and schedulability analysis of

tasks with self-suspensions [111, 113], treating the latter as blocking; some open issues

with the safety of those results are discussed in [40].

Among more recent works in the area, Kim et al. [108] target the same task model

as [30]. Nelissen et al. [148] identify the exact worst-case scenario for a uniprocessor

system with a single self-suspending task, executing at the lowest priority. Huang et

al. study fixed-priority systems [93, 94] with both linear tasks (as in [30]) and floating

self-suspending regions (as in [5]).

Note that this discussion of works on self-suspending tasks is by no means exhaus-

tive. That would have been beyond the scope of this thesis. For a fuller overview, we

refer the reader to [40]. Still it becomes clear, from the works mentioned, that there is

a multitude of techniques that require as input what the approaches developed under

this PhD output, in the context of systems which use GPUs as co-processors.

3.8 GPU performance analysis for the average case

The GPGPU developer community has done some work on optimizing general-purpose

GPU-code to achieve higher throughput [76], but usually not from a theoretical ap-

proach, but rather from an empirical/engineering perspective. On the other hand,

academic work on GPU performance modelling involves rich analytical models. Ryoo

et al. [168] developed two metrics (assuming non-memory intensive applications) to

be used to find better configuration of a GPU source code based on the assembly-like

PTX commands and resource usage information extracted by the nvcc compiler with-

out complete recompilation (by the CUDA runtime) of the source code. Works [90]

and [9] build models of GPU architectures to predict average-case execution time and

then run the benchmarks to support their adequacy. Hong et al. [91] estimated the

cost of memory requests by finding the maximum number of threads, waiting for the
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data from memory, that can execute together in parallel.

A stochastic model [10] of the GPU memory system was proposed by Baghsorkhi

et al. to monitor the average-case performance of the device, relying on Monte Carlo

methodology for non-predictable aspects of the problem. Schaa et al. [170] estimated

the execution time for a GPU application with multiple identical GPUs, assuming

that the corresponding execution time in the case of a single GPU could be obtained

empirically. Zhang et al. [186] target finding the bottlenecks in the performance by

running benchmarks first, and only then deriving paramentrizable models to account

for the latencies of the instruction pipeline, on-chip and off-chip memories. For in-

specting the number of instructions and their type the authors do not rely on PTX,

but on GPU simulator Barra [44] which was configured for NVIDIA GeForce 200-

series GPUs. The technique highlights the sections of the low-performance code, so

that the designer can tweak them afterwards.

However, all of the works mentioned above consider the execution time in the av-

erage case while, for real-time systems, we need to focus on the worst-case behaviour.

3.9 GPUs in real-time research

Heavy data-parallel workload is becoming common in modern embedded systems,

hence, there is a need of massively parallel processing to make the job done. This is

why the real-time systems research community demonstrates strong interest in both

theoretical and practical aspects of the usage of manycore processors. Often many-

cores are considered as co-processors to which traditional CPUs delegate workload of

a specific kind. We believe (as does Lisper [125]) that high-performance data-parallel

tasks in future embedded systems will be delegated to specialized co-processors, to

be run in parallel on many of their cores. This would require new timing analysis

techniques, resource management frameworks and data-transfer techniques tailored

for the emerging architectures. The challenge of such development is determined by
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substantial architectural differences with regards to traditional Central Processing

Units (CPUs).

3.9.1 GPU resource management

Bautin et al. developed GERM [20] – a fair-share GPU scheduler integrated

into the device driver. Kato et al. created TimeGraph [104], RGEM [103] and

Gdev [105]. TimeGraph is a fixed-priority scheduler dedicated to rendering workload,

which enhances isolation and resource sharing schemes. RGEM addresses the non-

preemptiveness of transfers between CPU main memory and GPU main memory,

with the focus on the problem of the blocking of a higher-priority GPGPU task by

the memory transfer of a lower-priority GPGPU task. The idea of the approach is to

develop a user-space GPGPU runtime subsystem that splits memory transfers into

multiple smaller blocks and provides preemption opportunities between these blocks.

Therefore, it specifies the upper bound on the blocking time as a duration of the

memory transfer of a whole single block.

Moreover, RGEM launches GPU kernels of different GPGPU tasks according to

their priorities. However, once the kernel is launched it cannot be preempted which

can lead to the following blocking scenario: the kernel of a lower-priority task launched

earlier, can postpone the execution of the kernel of a higher-priority task. The work

presents the derivation of upper bounds on such blocking delays for the sake of using

them as input into traditional fixed-priority response time analysis [6]. However, this

derivation assumes that the WCETs of the kernels under consideration are given as

parameters.

Gdev addresses GPU resource management implemented in the OS space. Sim-

ilarly to TimeGraph, it uses interrupts to schedule GPU contexts to use GPU re-

sources. Gdev provides an API for sharing GPU main memory between GPU con-

texts and enables GPU resource isolation by mapping the single physical GPU to
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multiple virtual GPUs to be available for OS users.

Membarth et al. proposed [145] a scheduling framework for the dynamic-priority

and fixed-priority scheduling domains. The framework is supposed to be provided

with the estimates on the WCET of the tasks. These estimates are obtained by taking

the maximum over 100 measurements for every task. The measurements are made by

using cudaEvent* functions which are relatively invasive in terms of execution time

impact.

Elliott et al. [55] consider GPUs as shared resources. Their GPU management

framework contains, among others, an execution cost predictor that is responsible

for estimating the execution time of the real-time jobs, which is based on the past

behaviour of the jobs.

Mangharam et al. [142] discussed the runtime scheduling on anytime algorithms

for real-time systems. The estimation of the GPU kernel execution time is still derived

from the empirical results but their schedulers are designed to adapt to the variations

in actual execution time, as they are observed at run-time.

Most of the works mentioned above assume an existing data communication

scheme which is characterized by the fact that the state-of-the-art GPU comput-

ing ecosystem is independent from the input/output device drivers. In particular, the

data transferred between a GPU and an input/output device have to travel via CPU

main memory.

3.9.2 GPU data transfer

The high-level principles of this traditional GPU data transfer scheme are the follow-

ing:

i: the data is accumulated in the buffer of the device and transferred to the buffer

allocated in the OS kernel space of the CPU main memory;

ii: the data has to be transferred from the “OS kernel buffer” to the buffer allocated
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in the OS user space of the CPU main memory;

iii: the GPU computing application is able to access the data placed in the “OS

user buffer” and copy it to the GPU main memory.

Fujii et al. pointed out [66] the importance of efficient GPU computing data transfer

by specifying multiple drawbacks of this data communication scheme. Since the same

data is copied multiple times between different memory areas, the whole computing

system experiences additional transfer latency. By copying the same data in multiple

intermediate buffers, the amount of available CPU main memory is decreased. Also,

the CPU has to wait until the buffer will be filled and then has to spend cycles for

copying data from one buffer to another. These reasons motivated the community to

create more efficient data transfer schemes [102], [149].

Kato et al. proposed [102] removing stage (ii) by accessing the data directly in

OS kernel space. This is done by mapping buffers allocated in GPU main memory

to “OS user buffers”, hence, when the data is copied from “OS kernel buffer” it goes

directly to the GPU main memory. Thus, this method allow to reduce the number

of data copies.

Nguyen et al. targeted [149] more specific problem of one-way data transfer from

the Network Interface Controller (NIC) to the GPU. For the sake of simplification,

the researchers assumed that the packets transferred from the NIC do not need to

pass from the TCP/IP protocol stack to get an original form that it had before being

sent. This simplification allowed to remove both stage (i) and stage (ii). It is achieved

in a following manner: GPU computing application allocates a buffer in GPU main

memory and obtains its physical address, then the address of this buffer is passed to

the NIC driver and its Direct Memory Access (DMA) controller can use it for the

direct data transfer from the NIC to the GPU. Hence, for this specific scenario of

NIC-to-GPU transfer, the number of data copies is reduced from three to one.

An important motivation for creating more efficient data transfer schemes is that
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it helps to amortize the data traveling costs in the case of the applications where

the performace is crucial. For example, this allows to make the GPUs suitable for

massively parallel signal processing workloads discussed below.

3.9.3 GPUs in cyber-physical systems

Cyber-physical systems often have to perform computationally expensive algorithms

to monitor and control complex physical world phenomena at high speed. An example

of such a system is an autonomous vehicle. To drive such a vehicle, the respective

computing system should receive sensor data, process it and change the direction and

speed to bring the vehicle to the correct destination and avoid accidents.

Typically, the number of sensor data that has to be processed by the autonomous

driving systems is very large and is amenable to data-parallel processing. Hence, such

systems could potentially benefit from GPU computing. Both the academia and the

industry make much effort to materialize this idea. For example, Glavtchev et al. work

on a speed-limit sign recognition system that would be part of driver support solutions

for high-end automobiles [69]. This service seems to perform complex (including

massively parallel) computations using CPU and GPU in the background and only

notifies the human user in special important situations. Gouiffès et al. dwell on the

more general problem of real-time robust obstacle detection [75].

Hirabayashi et al. addressed [88] a problem of vehicle detection targeting au-

tonomous driving systems based on passive camera sensors. To tackle this vision-

based problem the researchers opted for histograms of oriented gradients with de-

formable models [60]. This highly recognized approach for object detection is known

to be computationally expensive which poses a serious implementation challenge,

since in autonomous driving the processing should be performed in real time (in the

work under consideration, it is about maintaining a frame-rate of 10-20 frames per

second with 10 million of computational code blocks per frame). Assuming that the
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machine learning phase required for constructing the models of a vehicle is done a

priori, the authors analyzed CPU implementations [150] to identify the parts of the

code that downgrade the computation performance. The workload of the respective

computationally intensive blocks of code was then delegated to the GPU. Through

the experiments with automotive software, the authors show the speedup obtained

by their solution when executing on a computing system powered with a commodity

GPU. They also quantify the performance characteristics that should be achieved

to allow the approach to become a candidate for integrating in real-life autonomous

driving systems.

The works discussed above either assume that GPU execution requirements are

given, or obtain the respective estimates in some straightforward way. However, an

important aspect of the usage of the GPUs in varios (including cyber-physical) appli-

cations, is that it requires bounds on the execution requirements of the computation

entities. Depending on the strictness of timeliness guarantees required, these bounds

might result from applying the techniques of different safety levels. In any case, GPU

timing analysis is of paramount importance for successful integration of GPUs in the

applications that have some temporal constraints.

3.9.4 GPU timing analysis

In GPUs, entities of execution (threads) share computational and load/store units

within a processor, therefore, threads greatly affect each other while executing in

parallel. Unlike for CPUs, which are latency-oriented processors, the worst-case exe-

cution time of a single thread is not that important for GPU timing analysis, therefore,

analyzing the latency of a particular thread execution is not a primary goal. Being

designed for rendering purposes, GPUs are throughput-oriented processors, since it is

the common execution of many threads that gives the result. The aspects mentioned

above distinguish between these two processor architectures, and cause substantial
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difficulties in applying already well-established CPU timing analysis techniques to

GPUs. Hence, related work on GPU timing analysis is rich with unrealistic assump-

tions and simplifications which reflect the hardship the researchers (us included) are

inevitably facing in their work with GPUs.

Betts et al. presented [28] two WCET techniques for estimating CUDA ker-

nel functions running on GPU simulator GPGPU-sim [11]. However, the fact that

NVIDIA GPUs are switching from hardware to software implementation for their

scheduling stage (responsible for register scoreboarding and dependencies checking)

makes it even less feasible to rely on the third-party GPU simulators.

The first technique (called ”dynamic”) uses measurements to estimate the worst-

case release jitter of the latest warp and to estimate the warp-specific WCET, as-

suming that the latter number should include timing effects of multiple streaming

multiprocessors competing for shared resources (e.g., L2 cache, GPU global memory

bandwidth, etc.).

The second technique (called ”hybrid”) assumes a constant time delay for the

release of every warp and uses static analysis based on instrumentation point graphs

which is supported by the parameters obtained from measurements. A pivotal as-

sumption of the static part of the technique is that the warps arrive in waves, where

a subsequent wave of warps cannot be processed until the latest warp of the previous

wave is completed. The warp constant time delay, the number of waves and the size of

a wave are supposed to be obtained by measurements. Implicitly, the authors assume

that the warps in waves are scheduled according to a round-robin scheduling policy,

which is probably a simulator-based assumption. The authors took into account only

the GPU kernel execution time, not considering the timing analysis of the CPU code

that allocates data structures in GPU main memory and copies data from CPU main

memory to GPU main memory and back.

Still, it is important to note that, static instrumentation point graphs tend to be
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pessimistic; conversely, high-water mark times may be optimistic, if no methodology

for deriving safe upper-bounds is applied.

Hirvisalo presented [89] a theoretical GPU model and a static timing analysis

approach inspired by the Cooperative Thread Arrays [7] (CTA) assuming that it

implements only a single thread block as a set of warps of parallel threads. The

approach includes the following phases: a static control flow divergence analysis, an

abstract warp construction, an abstract CTA simulation. The author assumes that

the static divergence analysis will represent every warp as a sequence of instructions

to execute. With the help of assumptions that the warps are scheduled according

to the round-robin scheduling, the next phase of the approach is responsible for the

construction of an abstract warp – an oriented graph which is aimed to abstract

away from multiple warps and represent all of them with a single entity. Due to the

scheduling assumption, there is no need to consider how long it takes any given warp

to execute a particular instruction by every warp, which warp is the earliest one to

execute that instruction and which warp is the latest one. Instead, any basic block

of an abstract warp is characterized by an upper bound on the execution time of

the instruction performed by all warps that take the corresponding control-flow path.

This holds as in round-robin scheduling, an instruction is executed in convoy – the

sequence of eligible warps all performing that instruction in a round, however, for

another kind of scheduling approach (e.g., Most Pending Warp Executes First [23])

the concept of abstract warp would not be applicable. The GPU model assumes

only a single streaming multiprocessor available on chip with a low access latency to

the main GPU memory, an absence of an on-chip memory subsystem (e.g., caches)

and an availability of the kernel code in a simplified assembly form with well-defined

timing characteristics. The phase of an abstract CTA simulation is conducted by

an algorithm for traversing abstract warps, subject to an assumptions that the loop-

bound analysis of the kernel code would always provide an exact value of the loop
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iteration number and an absence of parallelism of basic block execution by multiple

warps. Implicit simplifications include assumptions that there is no contention be-

tween warps for the computational and load/store units, single memory transaction

for the case of memory transfers from/to GPU main memory and absence of dynamic

parallelism [154].

This brings us to the research conducted within the framework of this thesis. This

research includes the approaches from both branches of timing analysis: measurement-

based (see in Chapter 7) and static (see in Chapter 5 and Chapter 6). The latter

approaches are based on the GPU programming model and the model of GPU archi-

tecture discussed next.
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4 GPU model

The development of static timing analysis approaches requires the model of GPU

architecture and the GPU programming model that are amenable to analyzing. Our

models are based on the GPU technology from NVIDIA. Thus, we are going to use

the terminology introduced by this chip-maker. However, given that the technologies

from other GPU vendors have strong similarities with the one from NVIDIA, the

considerations presented in this thesis can be applied to those GPUs as well.

In terms of outline, Section 4.1 discusses the GPU programming model, Section 4.2

introduces the model of GPU architecture, Section 4.3 summarizes the most imortant

considerations and assumptions that should be kept in mind while reading Chapter 5

and Chapter 6 of this thesis.

4.1 GPU programming model

Novel parallel programming models, such as Nvidia CUDA [156] and OpenCL [107],

brought us to the GPU computing: the general-purpose use of GPUs for the broader

range of workloads, not just graphics. These programming models utilize the strenghts

of those design concepts implemented in the GPUs. GPUs are designed for high

throughput via massive parallelism; not via executing any single thread particularly

fast. Therefore, the applications best-suited for GPUs: (i) are easily decomposable in

thousands of parallel threads; (ii) have minimal dependency across data (no need for

synchronisation; maximum parallelism); (iii) are computationally intensive, to justify

the costly copying of the GPU input and output over the bus. In many cases, the

GPU is used as a co-processor to which certain functions are offloaded for speed up

– and this is the use we are most interested in this thesis.

The theoretical basis of the corresponding programming models was established

by stream processing. The stream processing computational paradigm was conceived
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so as to allow efficient processing for a particular type of parallel applications (with

minimal data dependencies) while simultaneously simplifying the parallel hardware

architecture. Given a set of data (a stream), a series of operations (kernel function) is

applied to each element in the stream. This paradigm applies very nicely to graphics

and was partially implemented in GPUs. In other words, GPUs were designed to

execute a large number of threads (in the order of thousands or more) so that their

joint execution provides a result to a user. Therefore, in terms of timing analysis,

we are not interested in one particular thread but in a group of many threads whose

joint execution provides the result. Hence, the focus on the worst-case makespan –

the longest possible time interval from the moment when the “earliest” thread starts

executing, until the “latest” thread terminates.

However, it is important to emphasize that GPU threads differ greatly from CPU

threads as the respective hardware architectures are drastically different. CPUs have

branch prediction (so that a thread does not have to wait for the result of a branch),

speculative execution (so as to perform computations before even being sure if the

result will be needed), out-of-order execution (wherein an instruction can be per-

formed as soon as its operands become available), substantial cache hierarchy (so as

to read/write the data faster in the average case), prefetching (to get the data earlier).

All these hardware optimizations, that CPUs are built around, aim to minimize

the average latency. In contrast let us consider a GPU-thread which is running and

needs to access the main memory. It takes hundreds of clock cycles to do that [158]

and the GPUs do not have such a sophisticated architecture, like the one earlier

described, that would help run a thread faster. Therefore, whenever the GPU thread

sends a request to the main memory, the processor switches to executing another

thread. In the general case, whenever any GPU thread stops for some reason, if there

is enough work to do, we can always keep the streaming multiprocessor busy in the

meantime. In this way, throughput is good, even if the processing of a single thread
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is not always fast. Instead of minimizing latency (like CPUs do), GPUs have a large

number of computational units and switching between threads “hides” the latency

and consequently increases the efficiency.

Another important aspect is that GPU threads are much more “light-weight” than

ordinary CPU threads, because context-switching between them does not involve

updates to operating system data structures and takes very few clock cycles. One of

the reasons that context-switching between GPU-threads is fast is that all of them

execute the same program (the “kernel”5 ) in parallel. This is also why, in GPU

computing, it is much more convenient to think not in terms of individual threads

but, instead, in terms of another entity of computation, the warp6 – a group of

threads, each of which executes the same kernel concurrently.

At run-time, warps are bundled together in groups termed thread blocks and each

thread block is sent to one streaming multiprocessor for execution. Each streaming

multiprocessor has a few thread blocks assigned to it at any time. Thread blocks do

not migrate among streaming multiprocessors. The CUDA engine tries to keep the

processing units of each streaming multiprocessor busy but exactly how warps are

dispatched is not publicly documented.

The concept of a thread block (work group in the terminology of OpenCL) has

similarities with the independent thread model (see Section 3.3.2). Traditionally, the

chip-makers do not provide an API for synchronizing thread blocks, thus by default

their execution is synchronized only by the start of the kernel and by the termination

of the kernel. However, there exists an approach presented by Feng et al [61] to make

an implicit synchronization based on atomic operations. Although it is sophisticated

from the engineering viewpoint, this approach is not considered to be a good develop-

ment practice since it requires an awareness of the chip organization details that are

usually kept as a secret by the chip-maker. Hence, such an implicit synchronization

5not to be confused with operating system kernels
6AMD ATI GPUs have a similar concept to that of a warp called a wavefront [1]
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is considered to be non-generic and to require considerable implementation effort in-

cluding reverse engineering. Moreover, the use of atomic operations not only limits

the performance of the application under consideration, but also increases the risk of

making an error in the code which would be hard to debug. On the other hand, the

unit of scheduling is not the thread block, but the warp (wavefront in OpenCL) – a

smaller group of threads that execute all together in parallel.

The concept of the warp introduces [124] a Single Instruction Multiple Threads

(SIMT) parallel execution model which has similarities with the concept of gang

scheduling (see Section 3.3.1). Every GPU thread has dedicated registers (including

the program counter). Thus, from the high abstraction viewpoint, it allows GPU

threads to follow different paths. Still, a thread is scheduled only as an element of

the warp, where all threads execute in a lock-step. Therefore, if there is a divergence

in their control flows, threads that are following the same path will execute while

the others will bet idle and vice versa. In such a way, the parallelism is limited until

the point of the convergence. It is important to note, that GPU execution makes

sense when only a few threads diverge in control flow. In the case that many threads

diverge – the data-transfer overhead would be hard to amortize.

4.2 GPU architecture model

Our analysis considers a streaming multiprocessor inspired by NVIDIA Kepler [154]

and NVIDIA Fermi [152] – hardware architectures of GPUs. Each streaming mul-

tiprocessor has a relatively complex structure, which makes its timing analysis a

non-trivial open problem. Therefore, in this work, we restrict our focus to the timing

analysis of a single such streaming multiprocessor.
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4.2.1 Streaming multiprocessor

The streaming multiprocessor(see in Figure 5) includes (i) multiple CUDA cores that

are capable of boolean, integer and floating-point arithmetic, (ii) multiple “load/store”

units that load data from and store data to cache or DRAM, (iii) multiple special

function units that implement computation of sine, cosine, square root and boolean

inverting directly in hardware and multiple double-precision units that are responsi-

ble for 64-bit arithmetic. GPUs evolve fast (even by chip makers industry standards),

hence, the configuration of the streaming multiprocessors of different GPU models

often varies (although these GPUs could belong to the same generic GPU architec-

ture). The configuration of a GPU-chip (particularly the number of computational

units of each kind in a streaming multiprocessor) is specified by the term compute

capability [158] – an identifier in the format x.y where x, y ∈ N.

Figure 5: A simplified scheme of the NVIDIA Kepler GK104 GPU chip that contains

8 streaming multiprocessors.

In GPU multiple lightweight threads are advancing together in parallel subject to

the capacity of shared computational resources of a streaming multiprocessor. For

example for the GPU device of compute capability 3.0 the streaming multiprocessor

includes 192 CUDA cores and 32 load/store units. Therefore, it is possible that 192

threads perform arithmetic operation concurrently but only 32 of them can store data
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in parallel with each other.

4.2.2 Entities of computation

A streaming multiprocessor processes warps, while its CUDA cores and load/store

units process the corresponding threads. All threads of all warps, which are running

on a given streaming multiprocessor, execute the same kernel [152].

The maximum efficiency occurs when the threads of the warp, all together in

parallel, follow the same execution path. However, every individual thread has its

own execution context (instruction address counter, states of registers, etc) therefore

it is able to execute and branch independently of other threads within the same warp.

Since warps execute independently, regardless of whether they are taking the same

path or not, talking about control flow divergence makes sense only for threads within

a single warp. If the threads of the same warp branch in different directions, the

hardware sequencer keeps track of the diverged threads. It broadcasts the instruction

fetch to the computational units that serve the threads of the same branch. Upon

reaching the point of convergence, the threads stall waiting for the threads of the other

branch, so that they can resume the execution of a common instruction together in

parallel.

A streaming multiprocessor manages, schedules, and executes warps. The schedul-

ing engine of a streaming multiprocessor comprises several warp-schedulers each of

which includes few instruction dispatch units. Given warps to execute, a streaming

multiprocessor allocates them among its warp-schedulers. Then at instruction issue

time each warp-scheduler selects an active warp (one that has threads ready to exe-

cute its next instruction) and issues few independent instructions from corresponding

threads. The number of the instructions that could be issued for the particular warp

is bounded by the number of instruction dispatch units of the warp-scheduler and

by the number of corresponding computational units (to process these instructions)
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available. Therefore, if the warp-scheduler includes δ instruction dispatch units, up

to δ instructions (that have no dependencies between each other) could be performed

concurrently.

4.2.3 Simplifying assumptions

The execution context of any thread is stored in the on-chip memory [158] as long

as the corresponding warp exists, therefore, switching from one context to another

is lightweight. The term instruction latency specifies the number of clock cycles

it takes for a warp to execute a given instruction. Full utilization of the streaming

multiprocessor is achieved when there is enough workload to keep all its computational

units continuously busy. For example, when a warp is stalled on I/O, the streaming

multiprocessor quickly switches to another warp (in a single cycle). This technique

is known as “latency hiding”.

According to our simplified model, all the data has to be stored in a single-

type memory and we assume that the data layout does not influence the latency of

the corresponding memory instruction. Moreover, for the sake of simplification, we

assume that all the data needed is already present in level-1 cache, thus, the data

access latency is minimal. For the sake of clear presentation all instructions under

consideration are supposed to require only a single clock cycle for their execution.

However, later in Section 4.2.5, we present a technique for modelling instructions

that have multi-cycled latency.

As stated earlier, the warps are competing for the computational resources of a

streaming multiprocessor according to some largerly undocumented scheduling pol-

icy. The chip-maker reported [153] about the move from complex scheduling logic

implemented in hardware (as it is done in NVIDIA Fermi) towards software schedul-

ing that is performed at run-time (in NVIDIA Kepler). However, we still do not have

concrete publicly available information about the actual scheduling policy. Similar to
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[22], in this work we therefore simply assume that the scheduling is work-conserving:

whenever there are warps available and free computational units in a streaming mul-

tiprocessor, these units are used to execute some warps.

A streaming multiprocessor under our model includes σ warp-schedulers and each

of them comprises only a single instruction dispatch unit, therefore, we assume that

any warp-scheduler is able to issue no more than one instruction per clock cycle.

Hence, the number of warps that could be processed in parallel by a single streaming

multiprocessor is pessimistically bounded by σ and the overall computational capacity

of a streaming multiprocessor. According to the information available [154] there is

a pair of instruction dispatch units per each of 4 warp-schedulers of a streaming

multiprocessor in NVIDIA Kepler. However, in our model we pessimistically restrict

the number of instruction dispatch units per warp-scheduler to avoid the difficulties

of having dependencies among the instructions that were dispatched by multiple units

in parallel. We also pessimistically assume that all the types of computational units

in a streaming multiprocessor under consideration are not pipelined.

We assume that there is no off-chip data traffic. This is an optimistic assumption

(which ought to be relaxed in future work) but partially justified by the fact that in

GPU architectures under consideration the amount of the on-chip memory is relatively

big [152], [154]).

4.2.4 Kernel instruction string

Early works [73], on using GPUs for general-purpose computation, contain a lot of

reverse engineering efforts and in terms of programming, everything was developed

by hand in assembly code. The positive aspect of the low-level coding was that the

developers had better knowledge of how their programs would use the hardware units

of the GPUs. Later, researchers began to use the OpenGL graphics interface [162]

for general-purpose computation. This was also tedious because, although in most
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cases the code did something completely different, it still had to be written as if it

were graphics computations.

Nowadays, the programming model for GPU computing is moving towards that

of the high-level programming languages. CUDA not only provides users with the

APIs for high-level programming languages (C, C++, Fortran, wrappers for Java and

Python), support for computational interfaces (OpenCL, DirectCompute) and for

directive-based OpenACC, but it also specifies a virtual Instruction Set Architecture

(ISA) which is kept relatively stable over the generations of the GPUs developed by

NVIDIA. This ISA, the pseudo-assembly language and the low-level virtual machine

are all called PTX because they were designed for parallel thread execution. Since

GPUs evolve rapidly, via PTX, NVIDIA provides a stable layer of pseudo-assembly

language to developers, while remaining free to change the underlying instruction set

later, if necessary.

The high-level GPU-code is processed by a specialized compiler (that supports

the extensions that CUDA adds to programming languages); the one from NVIDIA

is called nvcc [158]. Running this compiler with the -ptx flag will output the human-

readable representation of the pseudo-assembly code that is put into an object file.

This file serves as input to the CUDA-driver which includes another compiler that

translates the PTX-code into the target ISA – a binary code that can be run on a

particular hardware. Although PTX-code is not the machine code that is actually

executed by the hardware, we (like Ryoo et al. [168]) rely on it for the purposes of

counting the number of the instructions and their mix. Given that we are interested

in the usage of the computational units of a streaming multiprocessor, we abstract

away from the assembly code using the kernel instruction string [22] – a sequence of

“L”, “C”, “S”, and “D” symbols, each of which represents a hardware instruction

that should be performed on load/store unit (“L”-instruction), CUDA-core (“C”-

instruction), special function unit (“S”-instruction) and double-precision 64-bit unit
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(“D”-instruction). For example, the kernel instruction string “LS” specifies that an

instruction should be carried out by the load/store unit, followed by an instruction

that should be performed on the CUDA core.

Clock Cycle 1 2 3 4 5 6 7 8

Warp 1 L C L

Warp 2 L C L

Warp 3 L C L

Warp 4 L C L

Figure 6: Possible schedule (round-robin, σL = σC = 1) as a valid solution

4.2.5 Architectural details

Since our goal is to make the model as generic as possible addressing GPUs of different

compute capabilities, we introduce a set of variables to specify the configuration

of a streaming multiprocessor. Assume that the streaming multiprocessor includes

computational units of some generic type U , let us define the variable σU as it is in

equation (1)

σU =
uUnitsNumber

warpSize
(1)

Given that uUnitsNumber equals to the number of u-units that a streaming mul-

tiprocessor includes, and warpSize equals to the number of threads per warp, σU

specifies the maximum number of warps that can perform “U”-instruction within

the same clock cycle on a single streaming multiprocessor. However, if the number

of computational units of some kind is less than the warp size, it is not possible to

execute corresponding instruction by all threads of the warp within a single clock

cycle. To illustrate, for the possible schedule (in Figure 14) this means that at every

96



Kostiantyn Berezovskyi Dissertation Thesis

single column (that corresponds to a clock cycle) the number of “U”-symbols cannot

exceed σU . As an example let us consider a streaming multiprocessor of compute

capability 2.0 that has 32 threads per warp, 32 CUDA-cores, but only 16 load/store

units, therefore

σL =
lUnitsNumber

warpSize
=

16

32
=

1

2

σC =
cUnitsNumber

warpSize
=

32

32
= 1 (2)

In such case, 16 threads of the warp (a half-warp [158]) will execute an “L”-instruction

in one clock cycle, and another half-warp will execute this instruction in a later clock

cycle. At the cost of some pessimism this could be considered to be equivalent to

“L”-instruction latency of two clock cycles. To simplify the analysis by having the

same instruction latency for every type of instruction we transform the kernel in-

struction string (e.g., “LC”, σL = 1
2
) replacing every original “L”-instruction by

two consecutive “L”-instructions (getting “LLC”, σL = 1 as a result). We can

describe this transformation technique for the generic “U”-units as follows. Given

that in NVIDIA general-purpose GPU-architectures (Kepler, Fermi, GT200, G80)

the value of uUnitsNumber is a power of 2, and uUnitsNumber < warpSize im-

plies warpSize mod uUnitsNumber = 0, the value of σU will be fractional: σU =

uUnitsNumber
warpSize

= 1
n
, where n ∈ N. Multiplying both sides of the equation by n, we get

n · σU = 1

We can transform the instruction string for our kernel by replacing each “U”-instruction

with n “U”s (each one corresponding to each “subwarp” of warpSize
n

threads) and addi-

tionally assuming that σU = 1 (the transformation is equivalent because n subwarps

of a warp, execute the “U”-instruction in mutual exclusion [12]). For our example of

a streaming multiprocessor of compute capability 2.0, where L = 16, C = 32, S = 32,
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σL = 1
2
, σC = 1, the instruction string “LC” will be transformed to “LLC”. (In other

words, the original “L”-instruction is replaced by 2 consecutive “L”-instructions) and

the value of σL will be changed to σL = 1 (Figure 7). We apply the same technique

(at the cost of some pessimism) to the occasional CUDA instruction that takes more

than one cycle.

LC ⇒ LLC
σL = 1

2
σL = 1

Figure 7: Transformation of the kernel instruction string

4.3 Summary

The assumptions and the most important considerations of the section are summa-

rized as follows:

❼ A streaming multiprocessor includes four types of computational units: load/store,

special function, double-precision, CUDA cores, and their respective quantities

are lUnitsNumber, sUnitsNumber, dUnitsNumber, cUnitsNumber.

❼ For the purpose of the parallelism the threads are organized into groups called

warps. Each warp comprises up to warpSize threads.

❼ All threads of all waprs of a given streaming multiprocessor execute the same

kernel instruction string.

❼ All the data needed are in level-1 cache, therefore, we do not have to account

for the latency of memory operations.

❼ Any instruction takes a single clock cycle and is executed in “atomic”-fashion

– it holds the computational resource exclusively and cannot be interrupted.
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❼ The warps are scheduled in a work-conserving way by σ warp-schedulers, and we

pessimistically assume that only a single instruction can be scheduled from the

given warp by the available warp-scheduler. Therefore, the number of warps

that could be processed in parallel by a single streaming multiprocessor is

bounded by the following value:

min{σ, σL + σC + σS + σD}

A warp may be scheduled by at most one warp-scheduler at a time.

❼ The goal of our timing analysis is to find the worst-case makespan (further on

referred to as the makespan) the longest possible time interval between the

moment when the “earliest” thread starts execution, and the moment when

the “latest” one finishes, subject to the given kernel instruction string and the

configuration of the streaming multiprocessor.
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5 Optimization-based approach

For the sake of brevity in this chapter we consider a streaming multiprocessor with

only two types of computational units (CUDA cores and load/store units). However,

all the considerations could be applied to GPUs with additional types of units in a

straightforward way.

In the remainder of this chapter, Section 5.1 offers a new fast but pessimistic

method for calculating an upper bound on the makespan for a single streaming mul-

tiprocessor. Section 5.2 considers the formulation of a binary Integer Linear Program-

ming (ILP) problem of finding the exact value of the worst-case makespan. Section 5.3

provides an alternative optimization problem formulation. Section 5.4 summarizes

the ILP derivation. Section 5.5 introduces the technique for efficiently computing

a safe estimate on the worst-case makespan. Section 5.6 presents the results of the

experiments. Section 5.7 concludes.

5.1 Pessimistic makespan derivation

Let us introduce an approach with very low computational complexity for deriving

an upper bound on the makespan of a group of threads executing on a streaming

multiprocessor. This approach is pessimistic but its output may serve as input to

other, less pessimistic, derivations (as later shown).

The pessimistic derivation formulated in this subsection is based on the fact that

a streaming multiprocessor is used most inefficiently when, in a given clock cycle,

all warps contend for the same type of computational unit. In that scenario, the

computational units of other types are “wasted” (i.e., cannot be used for “latency

hiding”) because they cannot be used to advance any warp in computation (during

that cycle).

This can be illustrated by the following example: 128 threads (in 4 warps of 32)
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all execute the same kernel (with instruction string “LLC”) on a single streaming

multiprocessor. Figure 8 presents one possible schedule (which is work-conserving).

Note that during the first 5 clock cycles, the multiprocessor has a throughput of only

one instruction per warp per cycle (Figure 8), because initially all warps need to

perform two consecutive load/store instructions and the CUDA cores are of no use

to any of them (hence remain idle).

Clock Cycle 1 2 3 4 5 6 7 8 9

Warp 1 L L C

Warp 2 L L C

Warp 3 L L C

Warp 4 L L C

Figure 8: Possible schedule (σL = σC = 1)

Accordingly, our pessimistic makespan derivation assumes that for every instruc-

tion of a given warp, all other warps are also competing for the same computational

unit, at the time of its issue. To enforce this (very pessimistic) assumption, we no

longer consider the actual kernel instruction string but rather just the number of

instructions of a given type in that string.

Assume that the kernel instruction string α has length I and that there are two

types of computational units: load/store and CUDA (represented by “L” and “C” in

the string). Then, IL and IC is the number of “L”s and “C”s in the kernel instruction

string (i.e., IL + IC = I). From the original kernel instruction string, we derive two

strings: one string αL consisting exclusively of “L”s (IL in count) and one string αC

consisting exclusively of “C”s (IC in count). In equations:
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αL = {L L . . . L︸ ︷︷ ︸
IL “L”s

} (3)

αC = {C C . . . C︸ ︷︷ ︸
IC “C”s

} (4)

The pessimistic worst-case makespan is then derived as

T = TL + TC (5)

where TL is the worst-case makespan for a group of W hypothetical warps executing

αL as kernel (and likewise for TC and αC). In turn, TL and TC are derived as:

TL =

⌈
W

σL

⌉
IL (6)

TC =

⌈
W

σC

⌉
IC (7)

5.2 ILP derivation

In this subsection we present the formulation of the worst-case makespan derivation

problem as a binary ILP. The solution of the ILP instance provides the exact (sub-

ject to our simplifying assumption) worst-case makespan. In order to generate the

ILP instance from the problem instance, we also employ the pessimistic makespan

derivation described in the previous subsection.

Assume that the kernel (known beforehand) consists of I instructions. We can
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present the sequence of the instructions using binary constants with index i = 1..I.

ILi =





1 if instruction i is for a load/store unit;

0 otherwise.

(8)

ICi =





1 if instruction i is for a CUDA core;

0 otherwise.

(9)

∀i ILi + ICi = 1 (10)

It is obvious that the schedule for which the worst-case (i.e., longest) makespan is

observed can be no longer than T clock cycles, where T is the makespan estimate (5)

computed under the simple pessimistic approach described earlier in Section 5.1.

To describe the schedule of W warps over T clock cycles, we introduce the follow-

ing binary decision variables, specifying the usage of the resources of the streaming

multiprocessor:

LSw,i,t =





1 if warp w performs instruction i on

load/store unit at clock cycle t ;

0 otherwise.

CCw,i,t =





1 if warp w performs instruction i on

CUDA core at clock cycle t ;

0 otherwise.

where indexes w = 1..W and t = 1..T stand for warps and clock cycles respectively.

With the help of these variables, the formulation of the ILP is presented as fol-

lows: in Section 5.2.1 we derive the objective function, corresponding to the worst-

case makespan; Section 5.2.2 formulates capacity constraints on the computational
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resources of the single streaming multiprocessor; Section 5.2.3 states precedence con-

straints for the instructions of the kernel instruction string; Section 5.2.4 dwells on

constructing constraints that guarantee the work-conserving property of the schedule.

5.2.1 Objective function

The objective function should be designed in such a way, to provide the longest

possible makespan when all the constraints are satisfied. Relying on the precedence

constraints between instructions, we notice that the makespan is maximized iff the

last instruction of the last warp to complete (whichever that is), is executed as late

as possible. Since this would be the I th kernel instruction, the worst-case makespan

is then given by

max
w=1..W,t=1..T

{t · (LSw,I,t + CCw,I,t)} (11)

Given that the objective function of our optimization problem should be linear,

we need to add some extra constraints to present (11) in a proper way. Although,

in principle, we are not interested in which one of the W warps executes the last

instruction in the schedule, specifying that would allow us to simplify (11). Without

loss of generality, since all warps are identical, any schedule with worst-case makespan

can be transformed into a schedule where the last completing warp is the warp W

(e.g., via re-indexing of warps). We can express this additional requirement using

(W − 1) constraints:

∀w = 1..(W − 1)

T∑

t=1

(t · (LSw,I,t + CCw,I,t)) ≤
T∑

t=1

(t · (LSW,I,t + CCW,I,t))

Therefore (11) could be presented as finding the clock cycle when the warp W
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executes an instruction with the index I.

max
t=1..T

{t · (LSW,I,t + CCW,I,t)} (12)

However, there exists only one t′∈[1..T ] such that warp W performs instruction I at

cycle t′. Therefore ∀t′′ ∈ [1..T ], t′′ 6=t′: LSW,I,t′′=0 and CCW,I,t′′=0 ⇒ LSW,I,t′′ +

CCW,I,t′′ = 0. Hence expression (12) can be rewritten as a linear function of LSW,I,t

and CCW,I,t as follows:

T∑

t=1

(t · (LSW,I,t + CCW,I,t)) (13)

This is the objective function (that should be maximized) in our binary ILP-formulation.

5.2.2 Capacity constraints

As explained in Section 4.1, the makespan is dependent on how internal resources in

a streaming multiprocessor (CUDA cores and load/store units in our case) are shared

between threads. Although streaming multiprocessors of modern GPUs have many

computational units, these are still finite resources. Additionally, the number of com-

putational units of each type (i.e., L and C) is typically different. Such limitations,

among others, can be represented by the following constraints:

An upper bound on the number of load/store instructions that could be performed

within a single clock cycle t, could be expressed as:

∀t

W∑

w=1

I∑

i=1

LSw,i,t ≤ σL (14)

Similarly for the number of CUDA instructions:

∀t
W∑

w=1

I∑

i=1

CCw,i,t ≤ σC (15)
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Any warp is able to perform no more than one instruction at a single clock cycle:

∀w, t
I∑

i=1

LSw,i,t ≤ 1,
I∑

i=1

CCw,i,t ≤ 1 (16)

Any instruction can only be executed on a computational unit of a specific re-

spective type:

∀w, i

T∑

t=1

LSw,i,t = ILi,

T∑

t=1

CCw,i,t = ICi (17)

The constraints expressed by Equations (10) and (17) mean that:

– If (ICi = 1) then (∀w, t LSw,i,t = 0)

– If (ILi = 1) then (∀w, t CCw,i,t = 0)

Additionally, Equations (17) and (10) ensure that every instruction is performed by

every warp.

5.2.3 Precedence constraints

Since the kernel instructions are executed in a particular order by all warps, we must

model the constraints of precedence between them. For these purposes it is useful to

introduce auxiliary (not decision) variable Yw,i which denotes the clock cycle when

warp w executes instruction i. This new variable facilitates expressing the constraint

that ∀i = 1..(I−1) and for every warp, the instruction i+1 cannot be executed until

after the instruction i has been executed by the same warp:

∀w Yw,1 < Yw,2 < · · · < Yw,I−1 < Yw,I (18)

Taking into account Equations (17) and (10), one may see that (Yw,i = t) is equivalent

to (
∑t

t′=1(LSw,i,t′ + CCw,i,t′) = 1)
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That could be written as

Yw,i =
T∑

t=1

(t · (LSw,i,t + CCw,i,t)) (19)

By substitution of Equation (19) to (18), we get:

∀w, i = 1..(I − 1)

T∑

t=1

(t · (LSw,i,t + CCw,i,t)) <
T∑

t=1

(t · (LSw,i+1,t + CCw,i+1,t))

In linear programs the inequalities should be non-strict [184]. Therefore (since the

decision variables are integer) we rewrite the above as:

∀w, i = 1..(I − 1)

1 +
T∑

t=1

(t · (LSw,i,t + CCw,i,t)) ≤
T∑

t=1

(t · (LSw,i+1,t + CCw,i+1,t))

5.2.4 Work-conserving constraints

One of our assumptions, stated in Section 4.2.3, was about the scheduling policy im-

plemented in GPU. Namely, that it is work-conserving. This means that whenever

there are warps available and free computational resources on the streaming multi-

processor, the scheduler must select some warp for execution. Next, we introduce

some additional variables, for the purpose of modeling the work-conserving property

of the schedule via ILP constraints.

Let us assume that instruction i is for a load/store unit (ILi = 1, ICi = 0). Then

LSREADYw,i,t = 1 iff warp w was ready to execute instruction i at clock cycle t (i.e.,

it had already executed instructions 1..(i − 1)) but did not. Similarly with variable

CCREADYw,i,t if ILi = 0 and ICi = 1. In formal notation:
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∀w, t

LSREADYw,1,t =





1 if (IL1 = 1) ∧ (t < Yw,1) ;

0 otherwise.

CCREADYw,1,t =





1 if (IC1 = 1) ∧ (t < Yw,1) ;

0 otherwise.

∀w, i = 2..I, t

LSREADYw,i,t =





1 if (Yw,i−1 < t) ∧ (ILi = 1)

∧(t < Yw,i) ;

0 otherwise.

CCREADYw,i,t =





1 if (Yw,i−1 < t) ∧ (ICi = 1)

∧(t < Yw,i) ;

0 otherwise.

A schedule is not work-conserving iff there exists some warp w that is ready to

perform some instruction i at clock cycle t, but stays idle, even if there were spare

computational units (of the type that instruction i runs on). This scenario could be

expressed as follows:
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∃w, t
(
(

I∑

i=1

LSREADYw,i,t 6= 0)∧

(
W∑

w′=1

I∑

i=1

LSw′,i,t < σL)
)
∨

(
(

I∑

i=1

CCREADYw,i,t 6= 0)∧

(
W∑

w′=1

I∑

i=1

CCw′,i,t < σC)
)

(20)

If and only if the expression (20) does not hold (or equivalently, its logical com-

plement holds), the schedule is work-conserving. The logical complement to (20) can

be derived via application of De Morgan’s laws and is the following:

∀w, t
(
(

I∑

i=1

LSREADYw,i,t = 0)∨

(
W∑

w′=1

I∑

i=1

LSw′,i,t = σL)
)
∧

(
(

I∑

i=1

CCREADYw,i,t = 0)∨

(
W∑

w′=1

I∑

i=1

CCw′,i,t = σC)
)

(21)

In a system of ILP-constraints, expression (21) can be split into two constraints

that make the following boolean expressions true:

∀w, t
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(
(

I∑

i=1

LSREADYw,i,t = 0) ∨ (
W∑

w′=1

I∑

i=1

LSw′,i,t = σL)
)

(22)

and

∀w, t

(
(

I∑

i=1

CCREADYw,i,t = 0) ∨ (
W∑

w′=1

I∑

i=1

CCw′,i,t = σC)
)

(23)

Let us consider constraint (22). The equality

I∑

i=1

LSREADYw,i,t = 0 (24)

holds iff ∀i LSREADYw,i,t = 0.

From the definition, we know that LSREADYw,i,t = 0 iff the following boolean

expressions hold:

¬
(
(IL1 = 1) ∧ (t < Yw,1)

)
= true (25)

for LSREADYw,1,t = 0;

¬
(
(Yw,i−1 < t) ∧ (ILi = 1) ∧ (t < Yw,i)

)
= true (26)

for LSREADYw,i,t = 0 ∀i = 2..I.

Expressions (25) and (26) can be equivalently rewritten as:

(IL1 = 0) ∨ (t ≥ Yw,1) = true (27)

111



Kostiantyn Berezovskyi Dissertation Thesis

for LSREADYw,1,t = 0;

(Yw,i−1 ≥ t) ∨ (ILi = 0) ∨ (t ≥ Yw,i) = true (28)

for LSREADYw,i,t = 0 ∀i = 2..I.

Taking into account that

t∑

t′=1

(LSw,i,t′ + CCw,i,t′) =





1 if t ≥ Yw,i;

0 otherwise.

and
T∑

t′=t

(LSw,i,t′ + CCw,i,t′) =





1 if Yw,i ≥ t;

0 otherwise.

we can rewrite the left hand sides of boolean expressions (27) and (28) as

TLw,1,t = (IL1 = 0) ∨ (
t∑

t′=1

(LSw,1,t′ + CCw,1,t′) = 1)

and

TLw,i,t =(
T∑

t′=t

(LSw,i−1,t′ + CCw,i−1,t′) = 1) ∨ (ILi = 0)∨

(
t∑

t′=1

(LSw,i,t′ + CCw,i,t′) = 1) ∀i = 2..I

respectively (using the shorthand TLw,i,t for the purpose of making equations more

readable).

In such a way the equality (24) can be equivalently rewritten as:

TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t = true (29)
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To express
∑W

w′=1

∑I
i=1 LSw′,i,t = σL, which is the right hand side part of (22), let us

denote

Et =





1 if
∑W

w′=1

∑I
i=1 LSw′,i,t = σL ;

0 otherwise.

Intuitively, Et = 1 iff there is no spare capacity of load/store units in the streaming

multiprocessor at clock cycle t. An equivalent (but more convenient) definition of the

above binary decision variable is:

Et = 1− sign(σL −
W∑

w′=1

I∑

i=1

LSw′,i,t) (30)

where

sign(r) =





1 for r > 0;

0 for r = 0;

−1 for r < 0.

Subject to (29) and the definition of Et, (22) is rewritten as:

(TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t) ∨ Et (31)

or equivalently

(TLw,1,t ∨ Et) ∧ (TLw,2,t ∨ Et) ∧ · · · ∧ (TLw,I,t ∨ Et) (32)

We expressed the work-conserving property for load/store units through the boolean

expressions presented above. To ensure that these expressions hold, we have to model

them using linear constraints. According to Theorem 6 (see Appendix), Equation (31)
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can be represented by a single relatively long linear constraint:

∀w, t
1

2
(−

I − 1

I
+

1

I

I∑

i=1

TLw,i,t + Et)−
1

2I
<

(TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t) ∨ Et ≤

1

I

I∑

i=1

TLw,i,t + Et (33)

wherein the boolean expression (TLw,1,t ∧ TLw,2,t ∧ · · · ∧ TLw,I,t) ∨ Et is treated as

a binary integer. Similarly expression (32) could be represented by I relatively short

linear constraints:

∀w, i, t
1

2
(TLw,i,t + Et) ≤ TLw,i,t ∨ Et ≤ TLw,i,t + Et (34)

Applying a similar approach to (23), using shorthand TCw,1,t, where

TCw,1,t = (IC1 = 0) ∨ (
t∑

t′=1

(LSw,1,t′ + CCw,1,t′) = 1)

TCw,i,t =(
T∑

t′=t

(LSw,i−1,t′ + CCw,i−1,t′) = 1) ∨ (ICi = 0)∨

(
t∑

t′=1

(LSw,i,t′ + CCw,i,t′) = 1) ∀i = 2..I

and binary decision variable

Gt = 1− sign(σC −
W∑

w′=1

I∑

i=1

CCw′,i,t) (35)
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we can present (23) by a single long constraint:

∀w, t

1

2
(−

I − 1

I
+

1

I

I∑

i=1

TCw,i,t +Gt)−
1

2I
<

(TCw,1,t ∧ TCw,2,t ∧ · · · ∧ TCw,I,t) ∨Gt ≤

1

I

I∑

i=1

TCw,i,t +Gt (36)

or by I short linear constraints:

∀w, i, t
1

2
(TCw,i,t +Gt) ≤ TCw,i,t ∨Gt ≤ TCw,i,t +Gt (37)

At this point, let us focus on how to model decision variables Et and Gt (which

have non-linear definitions) as linear expressions. By inspecting Equations (30) and

(35), we can notice that function sign() takes only integer non-negative arguments

there. In the case of Et, it is because ∀t σL ≥
∑W

w′=1

∑I
i=1 LSw′,i,t In particular:

if σL =
∑W

w′=1

∑I
i=1 LSw′,i,t, then

sign(σL −
∑W

w′=1

∑I
i=1 LSw′,i,t) = sign(0) = 0;

if σL >
∑W

w′=1

∑I
i=1 LSw′,i,t, then

sign(σL −
∑W

w′=1

∑I
i=1 LSw′,i,t) = 1.

Since there is no need to “implement” sign() for negative arguments, we can model

it as follows. Let us denote the shorthand SLt = sign(σL−
∑W

w′=1

∑I
i=1 LSw′,i,t). The

constraint

SLt ≤ σL −
W∑

w′=1

I∑

i=1

LSw′,i,t (38)

states the first basic property of the function (that its value cannot be greater than its

argument). The second fundamental property (that the value of the function denotes
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maximize
T∑

t=1

(t · (LSW,I,t + CCW,I,t)) subject to

iterated variables expression for constraint number of constraints

∀t
W∑

w=1

I∑

i=1

LSw,i,t ≤ σL T

∀t

W∑

w=1

I∑

i=1

CCw,i,t ≤ σC T

∀w = 1..(W − 1)

T∑

t=1

(t · (LSw,I,t + CCw,I,t)) ≤
T∑

t=1

(t · (LSW,I,t + CCW,I,t)) W − 1

∀w, t
I∑

i=1

LSw,i,t ≤ 1 W · T

∀w, t

I∑

i=1

CCw,i,t ≤ 1 W · T

∀w, i

T∑

t=1

LSw,i,t = ILi W · I

∀w, i
T∑

t=1

CCw,i,t = ICi W · I

∀w, i = 1..(I − 1) 1 +
T∑

t=1

(t · (LSw,i,t + CCw,i,t)) ≤
T∑

t=1

(t · (LSw,i+1,t + CCw,i+1,t)) W · (I − 1)

∀t Et ≥ 1− σL +
W∑

w′=1

I∑

i=1

LSw′,i,t T

∀t Et · σL ≤

W∑

w′=1

I∑

i=1

LSw′,i,t T

∀w, i, t 1

2
(TLw,i,t + Et) ≤ TLw,i,t ∨ Et ≤ TLw,i,t + Et W · I · T

∀t Gt ≥ 1− σC +
∑W

w′=1

∑I
i=1

CCw′,i,t T

∀t Gt · σC ≤
∑W

w′=1

∑I
i=1

CCw′,i,t T

∀w, i, t 1

2
(TCw,i,t +Gt) ≤ TCw,i,t ∨Gt ≤ TCw,i,t +Gt W · I · T

Figure 9: The complete ILP formulation (using short constraints)

the sign of the argument) is stated by the following constraint:

σL −
W∑

w′=1

I∑

i=1

LSw′,i,t ≤ SLt · (σL −

W∑

w′=1

I∑

i=1

LSw′,i,t)

Without loss of correctness, we can rewrite this as

σL −
W∑

w′=1

I∑

i=1

LSw′,i,t ≤ SLt · σL (39)

reducing computational complexity for the software implementation.

According to Equation (30) and the definition of SLt, we can compute Et as

(1 − SLt), but it will be more efficient to model Et directly (using the previous
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derivation of SLt). Multiplying (38) by (−1) and adding 1 to both sides yields

1− SLt ≥ 1− (σL −

W∑

w′=1

I∑

i=1

LSw′,i,t)

This can be rewritten as follows:

Et ≥ 1− σL +
W∑

w′=1

I∑

i=1

LSw′,i,t (40)

Multiplying (39) by (−1) we get

−(σL −

W∑

w′=1

I∑

i=1

LSw′,i,t) ≥ (1− SLt) · σL − σL

One may then reduce it to

Et · σL ≤

W∑

w′=1

I∑

i=1

LSw′,i,t (41)

By analogy, for linear constraints (40) and (41) for Gt:

Gt ≥ 1− σC +
W∑

w′=1

I∑

i=1

CCw′,i,t

Gt · σC ≤

W∑

w′=1

I∑

i=1

CCw′,i,t

5.3 Alternative optimization problem formulation

The number of decision variables, the expression to use as an objective function,

the number of constraints and their complexity — all these characteristics of the

formulation affect the computational time for solving the optimization problem. In-

stead of using binary decision variables for every type of computational unit (e.g.,

binary variables CCw,i,t for CUDA cores) we introduce more generic integer variables
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Yw,i ∈ {1, . . . T}, where (Yw,i = t) denotes that warp w performs instruction i at clock

cycle t. These variables were already utilized in Section 5.2.3 as auxiliary variables

just for the sake of presenting the derivation. Here, we would like to use Yw,i as in-

teger decision variables and reformulate the optimization problem according to that.

Although Yw,i does not explicitly specify the type of the computational unit that is

performing the instruction for the warp w, we can always find it out with the help of

the instruction index i and binary constants ILi, ICi, etc.

To simplify the expression of the objective function we utilize the idea presented

in Section 5.2.1 enforcing the warp with identifier W to be the last one to finish

execution of the kernel instruction string. This can be stated with the help of W − 1

linear constraints:

∀w ∈ {1, . . . (W − 1)} Yw,I ≤ YW,I

Now we are sure that the later that warp W performs the instruction with index I,

the longer the makespan we will get. Therefore, our objective function is

Maximize YW,I

Without the loss of generality, the solution search space can be reduced by re-

stricting the finishing time of the warps. For instance, we can optionally order the

warps according to their index, such that, the warp with the higher index finishes its

execution no earlier when compared to the warp with the lower index. This statement

can be expressed as the following W − 1 constraints:

∀w ∈ {1, . . . (W − 1)} Yw,I ≤ Yw+1,I (42)

Although, the constraints in Equation (42) are optional, in our implementation of the

ILP, they contributed to the speed-up. However, in general case, the usefulness of
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these constraints is subject to particular ILP-solver organization, amount of memory

available, etc.

Every warp should perform the instructions of the kernel instruction string in a

given order (instruction i should be executed before instruction i + 1). Hence, we

need W · (I − 1) precedence constraints:

∀w, i ∈ {1 . . . (I − 1)} Yw,i < Yw,i+1

The possible scenario, when warp w performs instruction i at clock cycle t (Yw,i = t),

can be expressed in the following way:

(Yw,i ≤ t) ∧ (t ≤ Yw,i) (43)

We use Equation (43) and binary constants ILi, ICi, etc., to ensure that the capacity

of computational units of a streaming multiprocessor is not exceeded at any clock

cycle.

With regard to load/store units the idea behind the corresponding capacity con-

traints is the following: at every clock cycle no more than σL ”L”-instructions can be

performed. This statement can be expressed as T constraints:

∀t ∈ {1, . . . T}
W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ILi = 1)

)
≤ σL (44)

Let us consider the three terms (Yw,i ≤ t), (t ≤ Yw,i), (ILi = 1) that form a body

of summation in the left-hand side of Equation (44). We can treat these terms as

binary expressions and binary constants, such that:

(Yw,i ≤ t) =





1 if Yw,i ≤ t;

0 otherwise.

(45)
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(t ≤ Yw,i) =





1 if t ≤ Yw,i;

0 otherwise.

(46)

(ILi = 1) = ILi (47)

Thus, we can consider the whole term
(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ILi = 1)

)
as

a conjunction of three binary expressions. Therefore, we can apply Theorem 5 (see

Appendix) as follows: the entire right-hand side of Equation (44) maps to X. The

individual terms (Yw,i ≤ t), (t ≤ Yw,i), (ILi = 1) that form the conjunction map to

I = 3 terms x1, x2, x3. Therefore,

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ILi = 1)

)

is equivalent to

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} :

−
2

3
+

1

3

(
(Yw,i ≤ t) + (t ≤ Yw,i) + (ILi = 1)

)
≤

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ILi = 1)

)
≤

1

3

(
(Yw,i ≤ t) + (t ≤ Yw,i) + (ILi = 1)

)
(48)

Equation (48) represents W × I inequalities for every clock cycle t. By summing all

of them we get the following constraint:
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∀t ∈ {1, . . . T}

−
2×W × I

3
+

1

3

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) + (t ≤ Yw,i) + (ILi = 1)

)
≤

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ILi = 1)

)
≤

1

3

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) + (t ≤ Yw,i) + (ILi = 1)

)
(49)

Notice, the middle component of the double inequality in Equation (49) is equal

to the left-hand side of the capacity constraint in Equation (44). Therefore, with the

help of the constraints stated in Equation (44) and in Equation (49), the capacity

requirements for load/store units of a streaming multiprocessor can be expressed in

a linear way.

The very same reasoning can be applied for the derivation of the capacity con-

straints for other types of computational units. Analogously to Equation (44) and to

Equation (49), the capacity constraints for CUDA cores can be expressed as follows:

∀t ∈ {1, . . . T}
W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ICi = 1)

)
≤ σC (50)

∀t ∈ {1, . . . T}

−
2×W × I

3
+

1

3

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) + (t ≤ Yw,i) + (ICi = 1)

)
≤

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i) ∧ (ICi = 1)

)
≤

1

3

W∑

w=1

I∑

i=1

(
(Yw,i ≤ t) + (t ≤ Yw,i) + (ICi = 1)

)
(51)
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One may notice that boolean expressions (Yw,i ≤ t) and (t ≤ Yw,i) used in Equa-

tion (49) and in Equation (51) are actually not linear, but rather conditional state-

ments represented in Equation (45) and in Equation (46) respectively. However, we

intentionally presented all the derivations in Equations (44)– (51) using these boolean

expressions because of the following reason. Since linear programming is a popular

tool in many domains including management decision support, the vendors of solvers

and development environments provide users with high-level abstraction languages

to express their optimization problems in a form usually called “models”. The lan-

guages of this kind e.g., OPL [95], allow to formulate models in a significantly easier

and informal way when compared to pure linear programming formalism. In such

cases, the workload of translating the model to a proper linear program is taken by

the development environment. Of course, this is done at a price of twofold waste of

performance:

❼ by translating the model offline;

❼ by executing an automatically generated program that is potentially less effi-

cient when compared to a handmade linear program.

However, in terms of presentation, high-level models are favorable, since they

require less effort from the reader to follow the derivations. Therefore, we opt to use

boolean expressions (Yw,i ≤ t) and (t ≤ Yw,i) in the following derivations, although

here we will show how to express linearly the conditional statements represented

in Equation (45) and in Equation (46).

Let us consider boolean expression (Yw,i ≤ t) first. Based on the corresponding

conditional statement (see Equation (45)) we can introduce a boolean variable Bw,i,t

which states whether the warp w executes instruction i before than or exactly at
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the clock cycle t:

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} t ∈ {1, . . . T} :

Bw,i,t =





1 if Yw,i ≤ t;

0 otherwise.

(52)

In the following reasoning we rely on the pessimistic makespan estimate T that

was obtained using the technique presented in Section 5.1, thus, by the definitions of

t, and Yw,i we know that

1 ≤ t ≤ T

1 ≤ Yw,i ≤ T (53)

To ensure that Bw,i,t takes appropriate values consistent with Equation (52), we

can construct the following linear constraints:

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} t ∈ {1, . . . T}




t− Yw,i < Bw,i,t × T

t− Yw,i ≥ (Bw,i,t − 1)× T

(54)

The validity of the constraints expressed above can be checked by mapping possible

values of binary variable Bw,i,t into Equation (54) and checking against the definition
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in Equation (52) and properties expressed by Equation (53):

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} t ∈ {1, . . . T}

Case Bw,i,t = 0 :
(54)
=⇒




t < Yw,i

t− Yw,i ≥ −T

(55)

Notice, that (t < Yw,i) complies with the definition of Bw,i,t for this case and (t−Yw,i ≥

−T ) is just a valid inequality (from Equation (53)).

Case Bw,i,t = 1
(54)
=⇒




t− Yw,i < T

Yw,i ≤ t

(56)

In Equation (56), (t− Yw,i < T ) is a valid inequality (from Equation (52) and Equa-

tion (53)), while (Yw,i ≤ t) corresponds to the definition of Bw,i,t, for this case.

For the boolean expression (t ≤ Yw,i) and conditional statement in Equation (46)

we apply similar reasoning as we did for the boolean expression (Yw,i ≤ t) and the

conditional statement in Equation (45). We introduce a boolean variable Aw,i,t which

specifies whether the warp w executes instruction i after than or exactly at the clock

cycle t:

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} t ∈ {1, . . . T}

Aw,i,t =





1 if t ≤ Yw,i;

0 otherwise.

(57)

The compliance of the values of Aw,i,t with Equation (57) is guaranteed by the
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following linear constraints:

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} t ∈ {1, . . . T}




Yw,i − t < Aw,i,t × T

Yw,i − t ≥ (Aw,i,t − 1)× T

(58)

Let us demonstrate, how the constraints in Equation (58) determine the values of

Aw,i,t. Similarly to what we did in Equation (55) and in Equation (56), we just map

all possible values of Aw,i,t into linear constraints in Equation (58).

Case Aw,i,t = 0




Yw,i < t

Yw,i − t ≥ −T

(59)

While (Yw,i < t) corresponds to the definition of Aw,i,t in Equation (57), the inequality

(Yw,i − t ≥ −T ) is simply valid (from Equation (53)).

Case Aw,i,t = 1




Yw,i − t < T

Yw,i ≥ t

(60)

In Equation (60), expression (Yw,i − t < T ) is a valid inequality (from Equation (53))

and (Yw,i ≥ t) complies with the conditional statement in Equation (57).

After including constraints represented in Equation (58) and in Equation (54)

into the ILP formulation we can express other constraints in a purely linear way.

Let us consider the load/store units capacity constraint in Equation (48). By sub-

stituting (Yw,i ≤ t) and (t ≤ Yw,i) by Bw,i,t and Aw,i,t respectively, the constraint
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in Equation (48) is equivalent to the following constraint:

∀ w ∈ {1, . . .W} i ∈ {1, . . . I} :

−
2

3
+

1

3

(
Bw,i,t + Aw,i,t + ILi

)
≤

(
Bw,i,t ∧ Aw,i,t ∧ ILi

)
≤

1

3

(
Bw,i,t + Aw,i,t + ILi

)
(61)

Applying the very same substitution to all the constraints in this section would allow

us to make our ILP truly linear. Still, we need to discuss under which cases one or

the other ILP formulation would be preferable.

We showed that the integer variable Yw,i can be considered as a “decision variable”

only from the viewpoint of the user that formulates the ILP in a modern development

environment (e.g., IBM CPLEX [95]). While the user can stay on the higher level

of abstraction, the development environment will eventually translate the model to

the integer linear program in terms of pure decision variables Aw,i,t and Bw,i,t. Then

the linear program will be transferred to the ILP solver which will be able to provide

the solution (in case the program is feasible) in the form of particular values for

binary decision variables Aw,i,t and Bw,i,t. After that, the development environment

will translate that solution to a representation via the values of variables Yw,i. Thus,

the simplicity provided to the user comes at a price of additional workload delegated

to development environment. Therefore, for rapid prototyping, the usage of variable

Yw,i as a high-level pseudo “decision variable” in an ILP model would be appropriate.

While in the case when performance is crucial, one should consider formulating the

integer linear program directly in terms of binary decision variables Aw,i,t and Bw,i,t,

to be processed by the solver.

Also, we need to discuss what are the other benefits and potential drawbacks of the

ILP formulation presented in this section when compared to the original one presented
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in Section 5.2. The reader may notice that, after all the derivations involving two-

dimensional variable Yw,i we come up with an ILP formulation that eventually would

need to be based once again on two three-dimensional binary decision variables Aw,i,t

and Bw,i,t even though these are used in implicit way. What are the benefits of this

formulation? How does this formulation differ from the one presented in Section 5.2

using three-dimensional binary decision variables LSw,i,t and CCw,i,t?

In Section 5.2 we proposed to use a distinct variable for every type of computa-

tional unit within a streaming multiprocessor – e.g., LSw,i,t for the load/store units,

etc. However, the formulation presented in the current section uses a more generic

approach in terms of the defining decision variables. Since variable Yw,i does not ex-

plicitly hold the information about the type of computational unit on which the warp

w has to execute the instruction i, we rely on the binary constants that are defined

for every type of computational unit, e.g., ILi etc. According to the assumptions

listed in Section 4.3, in this chapter we consider the case when a streaming multipro-

cessor includes only two types of computational units: load/store units and CUDA

cores. Therefore, for such a case there is no expectation to gain performance with

this generalization because of the following reasons:

❼ The solver would still need two three-dimensional binary decision variables Aw,i,t

and Bw,i,t for the variable Yw,i to be expressed in the integer linear program;

❼ The workload of determining the proper unit for the instruction i still has to

be specified in the constraints rather than in the decision variable formulation.

However, for more realistic models of a streaming multiprocessor that would also in-

clude other types of computational units e.g., special function units, double precision

units, etc., the use of just two generic variables Aw,i,t and Bw,i,t could be beneficial.

Since any warp is able to perform at most a single instruction at any given clock
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cycle, we need W × T constraints

∀w, t

I∑

i=1

(
(Yw,i ≤ t) ∧ (t ≤ Yw,i)

)
≤ 1 (62)

In the case of integer decision variables, the work-conserving property of the sched-

uler can be expressed in a similar way as it was done for binary decision variables in

Section 5.2.4. However, some steps have to be represented here for the sake of clarity.

In Section 5.2.4, we introduced the work-conserving constraints with the help of aux-

iliary variables. Then we showed how the high-level formulation (that uses auxiliary

variables) can be transformed to a low-level formulation (that uses actual decision

variables). Here, we would like to follow the same formulation strategy. Moreover,

we rely on the same auxiliary variables as we did in Section 5.2.4.

∀w ∈ {1, . . .W}, i ∈ {1, . . . I}, t ∈ {1, . . . T} : LSREADYw,i,t, CCREADYw,i,t

We showed that the work-conserving property formulated in Equation (21) with the

help of these auxiliary variables, can be split into shorter constraints for every type of

computational unit, e.g., for the load/store units in Equation (22) and for the CUDA

cores in Equation (23). Let us consider the work-conserving constraints for load/store

units in Equation (22):

∀w, t
(
(

I∑

i=1

LSREADYw,i,t = 0) ∨ (
W∑

w′=1

I∑

i=1

LSw′,i,t = σL)
)

These constraints state that there should be either no idle warps with pending

load/store workload or if such warps exist, it should be due to lack of spare ca-

pacity in terms of load/store units in a streaming multiprocessor; thus, not all ready

warps will be able to perform the computation. These two alternatives are repre-

sented by the left-hand expression and the right-hand expression of the disjunction
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stated in Equation (22) respectively.

Let us consider the left-hand expression of the disjunction in Equation (22):

I∑

i=1

LSREADYw,i,t = 0

This equation can be rewritten as

LSREADYw,1,t +
I∑

i=2

LSREADYw,i,t = 0 (63)

As we already showed in Equation (25), (LSREADYw,1,t = 0) corresponds to

(
(IL1 = 0) ∨ (t ≥ Yw,1) = true

)

and ∀i ∈ {2..I} (LSREADYw,i,t = 0) corresponds to (Equation (26))

(
(Yw,i−1 ≥ t) ∨ (ILi = 0) ∨ (t ≥ Yw,i) = true

)

Let us rewrite Equation (25) by substituting (IL1 = 0) and (t ≥ Yw,1) by ¬IL1 and

Bw,1,t respectively:

(¬IL1) ∨Bw,1,t = true (64)

Similarly, Equation (26) can be rewritten by substituting (Yw,i−1 ≥ t), (ILi = 0) and

(t ≥ Yw,i) by Aw,i−1,t, ¬ILi and Bw,i,t:

Aw,i−1,t ∨ (¬ILi) ∨ Bw,i,t = true (65)

Thus, (LSREADYw,1,t = 0) corresponds to Equation (64) and

∀i = 2 . . . I (LSREADYw,i,t = 0) corresponds to Equation (65).

129



Kostiantyn Berezovskyi Dissertation Thesis

One may notice that Equation (63) is equivalent to the following condition

∀ i ∈ {1, . . . I} LSREADYw,i,t = 0 (66)

Therefore, Equation (63) can be expressed in a following way:

(LSREADYw,1,t = 0) ∧ (LSREADYw,2,t = 0) ∧ · · · ∧ (LSREADYw,I,t = 0) (67)

We can rewrite Equation (67) using Equation (64) and Equation (65):

(¬IL1∨Bw,1,t)∧ (Aw,1,t∨¬IL2∨Bw,2,t)∧ · · ·∧ (Aw,I−1,t∨¬ILI ∨Bw,I,t) = true (68)

Equation (68) is just another way of representing the left-hand expression of the

disjunction in Equation (22) with the help of binary decision variables Aw,i,t and

Bw,i,t. Notice, that Equation (68) is based on the idea of representing Equation (22)

with the help of boolean expressions, just like we did for the previous ILP formulation

to obtain Equation (29) in Section 5.2.4.

Let us consider the right-hand expression of the disjunction in Equation (22)

(
W∑

w′=1

I∑

i=1

LSw′,i,t = σL) (69)

When this equation holds, it means that for any clock cycle t, the capacity of

load/store units in a given streaming multiprocessor is fully utilized. This is done

by considering the value of the LSw′,i,t variable for any warp w′ ∈ {1..W} and any

instruction i ∈ {1..I} from the kernel instruction string. Since in this section we are

trying to get rid of “three-dimensional” decision variables LSw′,i,t, CCw′,i,t etc.,

we need to express Equation (69) by using integer decision variables Yw′,i and binary

constants ILi. According to the definition stated in Section 5.2, the variable LSw′,i,t
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specifies whether the warp w′ executes instruction i on a load/store unit at the clock

cycle t. This can be expressed as a conjunction of the following two statements:

❼ The warp w′ performs an instruction i at the clock cycle t;

❼ An instruction i is for a load/store unit.

The first of these two statements can be expressed with the help of Equation (43)

(Yw′,i ≤ t) ∧ (t ≤ Yw′,i)

The second statement can be expressed by considering the value of the variable ILi

that was defined in Section 5.2

(ILi = 1)

Hence, LSw′,i,t is equal to

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)

and Equation (69) corresponds to the following equation:

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
= σL (70)

Equation (70) has to be expressed in a linear way. Similarly to what we did in Sec-

tion 5.2.4, we use an auxiliary variable

Et =





1 if
∑W

w′=1

∑I
i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
= σL ;

0 otherwise.

(71)

Thus, Et is a binary auxiliary variable that is equal to 1 if at clock cycle t there is

no spare capacity of load/store units in a streaming multiprocessor. We can express
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this variable in a more convenient way as follows:

Et = 1− sign(σL −

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
) (72)

The function sign() in Equation (72) has to be modeled in a linear way. It is important

to notice that its argument

σL −
W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)

is non-negative because of the load/store capacity constraint in Equation (44). This

allows us to model sign() in a simpler and more efficient way, as it was shown in Sec-

tion 5.2.4. The idea behind this modeling is based on the following observation.

When being a function of an integer non-negative argument, sign() has two

fundamental properties:

❼ The value of the function cannot be greater than its argument.

❼ The value of the function specifies the sign of the argument.

Similarly as we did in Section 5.2.4, we are going to use a shorthand

SLt = sign(σL −
W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)

to represent the value of the function sign() in Equation (72) where it takes the

following argument:

σL −
W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
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The first basic property can be expressed as follows:

SLt ≤ σL −

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
(73)

The second basic property is stated with the help of the following equation:

σL −
W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
≤ SLt · σL (74)

The linear modeling of sign() presented above is based on an implicit assumption

that the expression

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
(75)

can be modeled in a linear way as well. We have already showed how to do it for the

analogous boolean expression in Equation(49). Therefore, for the argument presented

in Equation (75), linear constrains can be written as follows:

∀t ∈ {1, . . . T}

−
2×W × I

3
+

1

3

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) + (t ≤ Yw′,i) + (ILi = 1)

)
≤

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) ∧ (t ≤ Yw′,i) ∧ (ILi = 1)

)
≤

1

3

W∑

w′=1

I∑

i=1

(
(Yw′,i ≤ t) + (t ≤ Yw′,i) + (ILi = 1)

)
(76)

The left-hand expression of the disjunction used in a load/store work-conserving

requirement (Equation (22)) corresponds to Equation (68) and the right-hand ex-

pression of that disjunction corresponds to Equation (70). From the definition of the

binary auxiliary variable Et presented in Equation (71), the load/store full capac-
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ity requirement represented in Equation (70) is equivalent to the boolean expression

(Et = 1). Therefore, the complete work-conserving requirement for the load/store

units in Equation (22) can be expressed with the help of Equation (68) and Et as

follows:

∀ w ∈ {1, . . .W} t ∈ {1, . . . T}
(
(¬IL1 ∨ Bw,1,t) ∧ · · · ∧ (Aw,I−1,t ∨ ¬ILI ∨ Bw,I,t)

)
∨ Et = true (77)

Equation (77) can be equivalently rewritten as

∀ w ∈ {1, . . .W} t ∈ {1, . . . T}

(¬IL1 ∨ Bw,1,t ∨ Et) ∧ · · · ∧ (Aw,I−1,t ∨ ¬ILI ∨ Bw,I,t ∨ Et) = true (78)

Similarly to Equation (32), Equation (78) can be presented as a list of I relatively

short equations, which must simultaneously hold true:

(¬IL1) ∨ Bw,1,t ∨ Et = true

Aw,1,t ∨ (¬IL2) ∨ Bw,2,t ∨ Et = true

. . .

Aw,I−1,t ∨ (¬ILI) ∨ Bw,I,t ∨ Et = true (79)

To express these equations in a linear way we can use Theorem 4 (see Appendix).

For the first equation from the list (79)

(¬IL1) ∨ Bw,1,t ∨ Et = true

we map the whole left-hand side of that equation to X, and (I = 3) operands of the
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disjunction operation, namely (1−IL1), Bw,i,t, Et we map to x1, x2, x3 respectively.

1

3
×

(
(1− IL1) + Bw,1,t + Et

)
≤

(¬ILI) ∨ Bw,1,t ∨ Et) ≤
(
(1− IL1) + Bw,1,t + Et

)
(80)

For every single equation from the list (79) except the first one,

∀i ∈ {2 . . . I} Aw,i−1,t ∨ (¬ILi) ∨ Bw,i,t ∨ Et = true

we map the whole left-hand side of that equation to X, and (I = 4) operands of the

disjunction operation, namely Aw,i,t, (1− ILi), Bw,i,t, Et we map to x1, x2, x3, x4

respectively.

1

4
×

(
Aw,i−1,t + (1− ILi) + Bw,i,t + Et

)
≤

Aw,i−1,t ∨ (¬ILi) ∨Bw,i,t ∨ Et) ≤
(
Aw,i−1,t + (1− ILi) + Bw,i,t + Et

)
(81)

Therefore, from Equation (80) and Equation (81), the work-conserving property of

the scheduler can be expressed with the help of W × I × T relatively short linear
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constraints as follows:

∀ w ∈ {1, . . .W} t ∈ {1, . . . T}

1

3
×

(
(1− IL1) + Bw,1,t + Et

)
≤

(¬ILI) ∨Bw,1,t ∨ Et) ≤
(
(1− IL1) + Bw,1,t + Et

)

∀i ∈ {2, . . . I}

1

4
×

(
Aw,i−1,t + (1− ILi) + Bw,i,t + Et

)
≤

Aw,i−1,t ∨ (¬ILi) ∨ Bw,i,t ∨ Et) ≤
(
Aw,i−1,t + (1− ILi) + Bw,i,t + Et

)
(82)

We consider the ILP-formulation derived in this section to be more generic and

suitable for the models of GPU architectures with greater variety of computational

units incorporated. However, in the context of the simplified model powered by

CUDA cores and load/store units only considered in this thesis, the ILP-formulation

derived in Section 5.2 seems to be the best fit.

5.4 Summary of the ILP formulation

Let us now present the entire formulation of the binary ILP from Section 5.2 in one

place (Figure 9) (opting for using as short constraints as possible).

5.5 Resolving the issue of tractability

Integer programming is in common use in various fields [184] and corresponding prob-

lems are probably, the most widely-used examples of NP-hard computational prob-

lems. Even for relatively small number of warps (W ), computing the makespan with

the ILP formulation presented above may take much time. However, we can find a
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marginally pessimistic makespan estimate at only a fraction of the time as follows:

Let T (W ) denote the worst-case makespan of W warps (for which we seek an

upper bound) and T (x) denote the corresponding worst-case makespan for x warps

(with x≪W ). By choosing a small enough value for x such that the exact value for

T (x) can be tractably computed, according to our ILP derivation, then T (W ) can be

safely approximated by

T
(W )
approx(x) =

x

min
y=1

T (W,y) (83)

where

T (W,y) =

⌈
W

y

⌉
· T (y), y ∈ N (84)

We compute the upper bound on T (W ) using Equation (83) and not as T (W,x) because,

although T (W,x) typically decreases with increasing x, sometimes there are small in-

creases (especially for very small x). The estimate T
(W )
approx(x) for T (W ) given by (83)

improves with higher x, at the cost of rapidly increasing computation times. How-

ever, experimental evidence (see the next section) shows diminishing returns, even

past small values of x. In other words, the estimate rapidly converges and even for

small x, there is very little pessimism.

5.6 Experiments

As shown in Section 5.2 the makespan depends on the number of warps, the kernel

instruction string and the hardware (namely, the number of computational units of

each type and the warp size). We implemented the techniques introduced in above in

a cross-platform software tool that reads the problem instance from a configuration

file (Figure 10), constructs the binary ILP-formulation and launches the proprietary

ILP-solver (see [95]). After getting the solution, it presents the worst-case makespan

and corresponding schedule (like the one in Figure 8) or alternatively computes an
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estimate using Equation (84) (if the user does not want to wait too long).

Figure 10: Typical configuration file and application workflow.

In Section 5.2.4 we stated that there are two alternatives for expressing the work-

conserving property: either (i) usingW ·I ·T shorter constraints (34), (37) or (ii) using

W ·T longer constraints (33), (36). We implemented both options and compared their

timings. One such comparison is presented in Figure 11. In our experiments, the first

option generally gave shorter computation times.

Figure 11: Computation time for solving ILP-problem with short and long constraints

(σL = σC = 1, “LLCLL”)
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Figure 12: Convergence of T (W ) with increasing x (W=600, σL=σC=1, “LLCLL”).

The horizontal dashed line corresponds to the pessimistic estimate T (Section 5.1).

We also explored how the tractable approximation for T (W ) (presented in Sec-

tion 5.5) improves/converges with increased values of the parameter x. Figure 12 and

Figure 13 present the results of two such experiments. In general, we observed that

the estimate T (W ) converges very fast with increasing x and afterwards the improve-

ment to the estimate is minor (diminishing returns). Our interpretation is that this

is because the approximation is good even for small values of x. Therefore, although

the computation time increases very rapidly with x (Figure 13), one may obtain (i.e.,

using small x) estimates that are both quite accurate and tractably derivable.
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Figure 13: Growth of computation time and convergence of T (W,x) with increasing x

(W = 420, σL = 1
2
, σC = 1, “LCLCL”).

5.7 Summary

In this chapter we introduce techniques for finding the worst-case makespan for a

group of GPU threads: one approach which is pessimistic but has very low compu-

tational complexity and another approach (which builds on the former one) which

employs Integer Linear Programming for an exact derivation (subject to some sim-

plifying assumptions). Since the exact approach is computationally intractable for a

large number of warps, we also introduce a simple way of obtaining, at only a fraction

of the time, a safe estimate that is only marginally pessimistic.
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6 Metaheuristic-based approach

We believe that instead of using computationally expensive techniques for finding an

exact worst-case makespan, many soft real-time systems applications could benefit

from a tight lower bound on the worst-case makespan. Hence, we would like to

consinder estimation of the maximummakespan usingmetaheuristics – computational

methods that try to find a better solution for an optimization problem iteratively, and

statistically tend to converge to the global optimum over time. In the remainder of

this chapter we present some considerations to motivate the idea behind the new

technique. Sections 6.1 and 6.2 introduce the proposed metaheuristic. Sections 6.3

and 6.4 discuss the generation of suitable initial solutions and aspects of an efficient

implementation, respectively. Section 6.5 provides a case study and some evaluation.

Section 6.6 concludes.

6.1 Warp pseudo-precedence string

For the exact technique of the optimization-based approach in Chapter 5 (or in [22]),

the objective is to maximize the makespan and the solution of an optimization prob-

lem is presented in the form of decision variables. For an approach using metaheuris-

tics the objective remains to find the maximum makespan as well, but a question to

consider is how to most conveniently represent the solution. One option is to express

the solution in the form of the corresponding schedule as depicted in Figure 14.

A schedule representation not only contains all necessary information, such as the

kernel instruction string, warp number, configuration of the streaming multiprocessor,

the makespan, but it is also intuitive and readily understandable by humans. Still, we

should check how suitable this representation is in the context of a metaheuristic that

searches through a large solution space moving iteratively from the current solution

to the neighbour solution, both being relatively “close” to each other. Let us apply
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the concept of the neighbour solution, which is the core of the metaheuristics, to a

schedule. If we move some instruction of some warp to a different clock cycle in

the schedule in Figure 14, we can consider the resulting schedule in Figure 15 as a

neighbour solution to the original one.

However, we can notice that in our example in Figure 15, just by moving that

single instruction we are breaking the work-conserving property of the scheduling

policy (at clock cycle 5 there is spare capacity of load/store units and a pending “L”-

instruction for warps with the identifiers 1, 2 and 3, but the streaming multiprocessor

is staying idle). This in turn makes the new solution invalid. The verification (re-

garding the precedence constraints or the work-conserving properties) of the altered

schedule would be computationally expensive and there is no straightforward way of

generating a priori valid schedules by moving instructions, other than validating a

posteriori.

Clock Cycle 1 2 3 4 5 6 7 8

Warp 1 L C L
Warp 2 L C L
Warp 3 L C L
Warp 4 L C L

Figure 14: Possible schedule (σL = σC = 1) as a valid solution

Clock Cycle 1 2 3 4 5 6 7 8 9

Warp 1 L C L
Warp 2 L C L
Warp 3 L C L
Warp 4 L C L

Figure 15: An invalid solution (the work-conserving property is violated)

Therefore the schedule itself is probably not the best way of representing a solu-

tion, when using metaheuristics. For these purposes we therefore invented another

data structure: the warp pseudo-precedence string. One possible way to derive the

warp pseudo-precedence string from a schedule is the following: traversing the cells
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of the schedule, column by column, from top to bottom, we append to an (initially

null) integer string the identifier of the warp that performs some instruction in the

corresponding clock cycle. For our example in Figure 14 the warp pseudo-precedence

string is the following:

1 1 2 2 3 3 4 1 4 2 3 4 (85)

Let us consider the warp pseudo-precedence string as a solution for the metaheuristics.

To build a schedule from a warp pseudo-precedence string we simply traverse warp

identifiers in the string one by one from left to right, and insert the corresponding

instruction by the respective warp in the earliest clock cycle (i.e., in the left-most

position in the schedule) possible, subject to capacity and precedence constraints. To

determine whether this instruction is for a load/store unit or for a CUDA core, we

need to keep track of how many instructions by each warp we have already scheduled

at any instant. In other words, if we have already scheduled k instructions by the

warp in consideration, then we need to examine the (k + 1)th instruction of kernel

instruction string, to see which computation unit should process it (e.g., if that is

“L”, or “C” etc.) The simple algorithm is presented in Figure 16.
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//Warp pseudo-precedence string.

INPUT: warpPrecStr;

OUTPUT: schedule;

while (warpPrecStr is not fully traversed)

//From warpPrecStr:

w = read current warp id();

//According to the kernel instruction string:

i = read current instruction type by warp(w);

//Subject to capacity and precedence constraints:

t = find earliest cycle wherein possible execute(w, i);

add to schedule(w, i, t);

Figure 16: The algorithm for constructing the schedule.

We can try to get a neighbour solution by swapping the positions of warp identifiers

in the string (85). There are many possible ways to do that, but let us consider moving

all the identifiers of the warp 4 to the end of the string. After doing that, the warp

pseudo-precedence string becomes “1 1 2 2 3 3 1 2 3 4 4 4”. The schedule that

corresponds to this new string as a neighbour solution is presented in Figure 17, and

the makespan increases to 9 clock cycles.

Clock Cycle 1 2 3 4 5 6 7 8 9

Warp 1 L C L

Warp 2 L C L

Warp 3 L C L

Warp 4 L C L

Figure 17: A valid neighbour solution (with increased makespan)
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Hence, we can address the problem of estimating the maximum makespan from

the following standpoint: find a warp pseudo-precedence string such that the cor-

responding makespan is maximized, subject to the configurations of the streaming

multiprocessor under consideration.

One may notice that the warp pseudo-precedence string is a much more low-

level representation (compared with the corresponding schedule), but because of the

fact that it does not bind the warps to particular clock cycles, we are free to make

permutations of the warps in the string subject to all the logic of the kernel, capacity,

precedence and work-conserving constraints, even though these are not explicitly

specified in terms of the data structure itself.

Because the warp pseudo-precedence string contains I instances (the number of

instructions in the kernel instruction string) of each warp identifier (an integer in the

range [1,W ]), its length is W · I warp identifiers. In accordance with the multino-

mial theorem, the number of permutations of warp identifiers in the warp pseudo-

precedence string is equal to (W ·I)!
(I!)W

. However, because of the fact that all the warps

are identical, the equation above includes permutations that differ from each other

only in terms of indexing of warps. For example if we swap the indexes of the warp 2

and the warp 3 in the permutation (85), we will get the following new permutation:

1 1 3 3 2 2 4 1 4 3 2 4, but the corresponding solution (as we consider it) is still

the same. Every “unique permutation” corresponds to W ! permutations that could

be obtained by re-indexing the warps. Hence the (still enormous) number of unique

permutations is:
(W · I)!

(I!)W ·W !
Note that even different unique permutations do not nec-

essarily specify distinct solutions. For example, the warp pseudo-precedence string

“1 2 1 3 2 3 1 2 3 4 4 4” still corresponds to the schedule in Figure 17 (built according

to the different string “1 1 2 2 3 3 1 2 3 4 4 4”).
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6.2 The metaheuristic

As shown in Section 6.1, we present finding the maximum makespan as a combina-

torial optimization problem where a solution is sought over a discrete search-space of

warp pseudo-precedence strings. Considering even a relatively moderate length for the

kernel instruction string (I), the brute-force search over (W ·I)!
(I!)W ·W !

permutations would

not be computationally tractable. Consequently, we apply computational methods

that iteratively search for a “better” solution according to a given strategy. Among

many different metaheuristics that are widely used in various scientific and applica-

tion domains we decided in favour of simulated annealing by Kirkpatrick et al. [109],

which is very popular for tackling combinatorial problems. Inspired by the annealing

technique in metallurgy, simulated annealing attempts to replace the current solution

of the problem with another candidate solution (often randomly obtained) at each its

iteration. A candidate solution that improves on the current one is always accepted.

However, occasionally, the algorithm will also accept a “worse” candidate solution

with a probability which depends on the value of probability function. This function

takes as parameters a variable T (also called as “the temperature”) and the difference

of the utilities of the current solution and the candidate solution. Higher tempera-

tures and lower reduction in utility makes it likelier that such a candidate solution

will be chosen. Occasionally accepting “worse” solutions helps avoid the pitfall of

getting stuck at a local optimum of the optimization problem. With the number of

iterations, T is decreased according to a given “annealing schedule”.

Let itermax denote the (user-defined) maximum number of iterations for the an-

nealing and let the variable iter hold the index of the current iteration. Before the

first iteration the temperature T is set to T0 and is decreased after every iteration

according to the following annealing schedule:

T = T0 ·
(
1−

iter

itermax

)
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The lower the temperature is set, the more “greedy” (in its preference for better

solutions) the metaheuristic becomes. This principle is specified in the definition

of the probability function which, besides T , also depends on the makespans of the

current (m) and the candidate solution (mcand.):

P (m,mcand., T ) =





1 if mcand. ≥ m;

min(1, T
m−mcand. ) otherwise.

(86)

Note how the probability of accepting a solution with a smaller makespan decreases

as (m−mcand.) increases.

6.3 Providing a suitable initial solution

Although any “randomly” shuffled string consisting of I instances of each warp iden-

tifier could serve as an initial solution, providing a “good” initial solution to the

metaheuristic may considerably speed up the convergence towards a good estimate

of the makespan. Hence, although our technique is parallelizable over an arbitrary

degree of processors (which would help with convergence speed), we present some

“templates” (according to our empirical observation) for generating initial solutions

with long makespan. When running the metaheuristic on a multi-processor machine

(with one thread per processor), we recommend using the initial solutions presented

below on some processors and random warp pseudo-precedence strings on the rest.

6.3.1 “Round-robin”

The corresponding warp pseudo-precedence string can be constructed based on the

following pattern:

1, 2, . . . ,W,︸ ︷︷ ︸ 1, 2, . . . ,W,︸ ︷︷ ︸ . . . , 1, 2, . . . ,W︸ ︷︷ ︸︸ ︷︷ ︸
I times
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An example of a schedule generated using a “round-robin” pseudo-precedence

string is the one in Figure 14.

6.3.2 “Fixed-priority”

Clock Cycle 1 2 3 4 5 6 7 8

Warp 1 L C C L

Warp 2 L C C L

Warp 3 L C C L

Figure 18: Fixed-priority (σL = σC = 1)

The respective warp pseudo-precedence string could be easily constructed according

to the pattern presented below:

1, 1, . . . 1,︸ ︷︷ ︸
I times

2, 2, . . . 2,︸ ︷︷ ︸
I times

. . .W,W, . . .W︸ ︷︷ ︸
I times

Using a “fixed-priority” pseudo-precedence string outputs the schedule that we would

get if warps were assigned static priorities and dispatched under those (as in Fig-

ure 18).

6.3.3 Most Pending Warp Executes First

Clock Cycle 1 2 3 4 5 6 7 8

Warp 1 L C C L

Warp 2 L C C L

Warp 3 L C C L

Figure 19: Most Pending Warp Executes First (σL = σC = 1)
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To construct such a schedule (and, eventually, a corresponding warp pseudo-precedence

string), we need to maintain a list of “pending” warp identifiers, initialized as 〈1, . . .W 〉.

The schedule for clock cycle t is constructed before moving on to cycle t+1. To sched-

ule a warp within a given clock cycle, the algorithm traverses the list from head to

tail (i.e., left to right) until it finds a warp which could be scheduled in that given

cycle, subject to the availability of free processing units. As soon as that instruction

is inserted into the schedule, the index of the corresponding warp is appended to the

(initially empty) warp pseudo-precedence string and the same warp index is removed

from its position in the list and inserted at the tail of the list. If all processing units

are made busy for the current clock cycle or when all element of the list have been

traversed, the algorithm moves on to the next clock cycle. This algorithm is presented

in pseudocode in Figure 20.
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INPUT: kernInstrStr; //Kernel instruction string.

OUTPUT: warpPrecStr; //Warp pseudo-precedence string.

//List of identifiers of pending warps.

pendWarpList = < 1, 2, ...W >;

clockCycle = 1; //The first clock cycle.

while (pendWarpList is not empty)

index = 1; //The first index in pendWarpList.

while (exists spare capacity and unread warps)

w = read warp id at(index); //From pendWarpList

//According to kernInstrStr

i = read next instruction type by warp(w);

//Subject to capacity constraints

if (exists spare capacity of i at clockCycle)

warpPrecStr += w;

remove warp id(w); //From pendWarpList

if (warp w does not finish execution)

insert warp id(w); //To pendWarpList

clockCycle += 1;

Figure 20: Constructing a “Most Pending Warp Executes First” initial solution.

As an illustration, consider the example in Figure 19: the list is initially 〈1,2,3〉. By

scheduling warp 1 in clock cycle 1, it becomes 〈2,3,1〉. But warp 2 cannot be scheduled

within the same cycle due to capacity constraints; not can warp 3. Therefore, we move

to clock cycle 2 (the list is still 〈2,3,1〉). We can schedule warp 2 in this cycle and the

list becomes 〈3,1,2〉. Then, warp 3 is not schedulable in cycle 2, but warp 1 is (hence,

the list becomes 〈3,2,1〉. And so on.
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6.4 Implementation optimization

For each new candidate solution considered, the metaheuristic needs to create a corre-

sponding schedule from the new warp pseudo-precedence string under consideration

using the algorithm of Figure 16, so that the corresponding makespan can be cal-

culated. Doing so from scratch could be an option, but would be inefficient, in the

sense that, if each neighbour solution was obtained just by a single permutation (or

a few) of the warp pseudo-precedence string, then surely the two schedules would be

similar and, in principle, there should exist a faster way, of deriving the one from the

other by doing just the part of the computation reflecting the differences of the two

pseudo-precedence strings. Over a large number of iterations the time saved would be

significant (and the convergence to a good estimate of the makespan would be sped

up). Therefore, we introduce the warp cycle string warpCycleStr – an integer string

of the same length as the warp pseudo-precedence string warpPrecStr. Element

warpCycleStr[w] holds the index of the clock cycle in which the warp with the iden-

tifier warpPrecStr[w] is scheduled. The warpCycleStr itself is a “compact” way of

storing a schedule (instead, e.g., of sparse two-dimensional arrays). If the first index

where the new warpPrecStr differs from the previous one is z, then, from elements

warpCycleStr[1] to warpCycleStr[z − 1] we can obtain the “common” part of the

schedule. It then suffices to assign new values for elements warpCycleStr[z] onwards,

considering the rest of the new pseudo-precedence string (i.e., from warpPrecStr[z]

onwards).

6.5 Case studies

The technique presented in Section 5.5 can be used for finding in tractable time an

upper bound on the worst-case makespan. The metaheuristic-based approach can

supplement that technique, in an analysis tool, for also bounding the worst-case

makespan from below. We implemented this as multithreaded module.
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6.5.1 Overview

Parameters for the problem instance under consideration can be categorized as (i) program-

related (the number of warps; the kernel instruction string), (ii) hardware-related (the

number of computational units of each type; the warp size) and (iii) metaheuristic-

related (the initial temperature T0, the maximum number of iterations itermax and

an integer flag specifying the kind of the initial solution – i.e., whether it is random

or obtained according to one of the patterns presented in Section 6.3). These param-

eters serve as input to each thread (on the respective processor), which then starts

to iterate among candidate solutions, in parallel with (and independently of) other

threads on other processors. The estimate, at any instant, is obtained as the greatest

reported makespan so far, over all threads.

6.5.2 The benchmark

For our experiments, we choose a kernel instruction string derived from a real ap-

plication that could be run as many parallel GPU threads: Voronoi diagrams [179]

which are used e.g., for solving proximity problems in computational geometry or

localization in wireless sensor networks.

A Voronoi diagram on a two-dimensional plane, like the one depicted in Figure 21,

consists of polygonal tiles, each “centered” around a corresponding limit point. Each

tile consists of the points in the plane closer to the particular limit point than to any

other. Segments in a Voronoi diagram are formed from the points of the plane which

are equidistant to two neighboring limit points.
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Figure 21: Voronoi diagram for a set S of limit points.

For practical implementations (such as visualization on a screen), the concept can

be extended from a plane to rasters with a finite number of points (pixels). For those

cases, the algorithm in [141] is much easier to implement than the one presented by

Shamos and Hoey [171] (and based on a divide-and-conquer paradigm) or Fortune’s

sweepline algorithm [65].

For every pixel{Calculate distance to every limit point;

Select the closest limit point;

Put the pixel into conformity with that limit point;}

The iterations for each pixel are entirely independent, permitting a high degree

of parallelism. In C-like pseudocode, one iteration may be presented as in Figure 22,

with each thread given the coordinates (x, y) of a pixel and computing the distance

to every limit point (xi, yi) in a set S.
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//minimal distance square

float md = (x− x1)
2 + (y − y1)

2;

//minimal distance point

int mdp = 1;

// N is number of points in S;

for (int i=2; i<=N; i++)

if ( (x− xi)
2 + (y − yi)

2 < md ) {

md = (x− xi)
2 + (y − yi)

2 ;

mdp = i;}

Figure 22: Simple Voronoi diagram representing code.

Our “port” of that program to assembly for NVIDIA’s Parallel Thread Execution

(PTX) virtual machine [158] is shown in Figure 23. Every line consists of an assembly

statement, comments that ”map” that statement to the corresponding code from the

original higher-level program illustrated in Figure 22 and a character for the type of

hardware unit assumed to perform the corresponding assembly instruction. We tag

instructions executed on CUDA core with a “C” and instructions for a load/store unit

with an “L”. The resulting kernel instruction string corresponding to the branchless

code, from the start of the program until the end of the first iteration of the inner

loop in Figure 23, was used in our experiments.
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Figure 23: PTX program for visualizing Voronoi diagrams.

6.5.3 Experimental results

The metaheuristic approach described outputs a lower bound on the worst-case

makespan for the problem instance in consideration under the simplifying assumptions

discussed earlier. These assumptions were all pessimistic except for the assumption

that all load/stores are single-cycle. Conversely, the optimization-based approach

outputs an upper bound for the worst-case makespan under the same assumptions.

Therefore, we sought to investigate the “quality” of the solutions output by the meta-

heuristic by comparing its output with that of the optimization-based approach in

Chapter 5.
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As a benchmark, we used the Voronoi kernel instruction string introduced earlier:

LLLLL︸ ︷︷ ︸
5 Ls

CCCCCCCCC︸ ︷︷ ︸
9 Cs

LL︸︷︷︸
2 Ls

CCCCCCCCCC︸ ︷︷ ︸
9 Cs

We used parameters {σC = 4, σL = 1} (intended to model NVIDIA Kepler, under

the pessimistic assumption that only one instruction dispatch unit per warp scheduler

is used) and for W = 16 warps. We ran 8 instances (Java threads) of the metaheuris-

tic (2 with the “round-robin” initial solution; 2 with “fixed-priority”; 2 with “most

pending warp executes first”; 2 random) with initial temperature T0 = 0.3 for 2 · 106

iterations each on a Pentium Dual-core E5400 (2.7 GHz). These runs were performed

sequentially, not in parallel. However, by logging every reported improvement to the

current estimate along with timestamps, in seconds since the beginning, we were able

to retroactively “simulate” the behavior one would get by running the instances of

the metaheuristic in parallel, since their executions would be independent anyway.

The reported estimates of the individual Java threads are plotted in Figure 24, with

the horizontal axis denoting the time since launch. The composite reported estimate,

obtained as the maximum over all graphs, at any time instant (i.e., as the “envelope”

of all graphs), converged to 160 at the end of the experiment.

By comparison, the upper bound on the worst-case makespan obtained via the

optimization-based approach for 16 warps was 176 clock cycles and took 58 hours

to compute, on the same machine. It was derived by pessimistically extrapolating

from the respective exact worst-case estimate for 4 warps, which was the most that

could tractably be computed. This means that the estimate by the metaheuristic was

just 9.1% lower than the one by the optimization-based approach. We interpret this

as evidence that the both approaches provide relatively tight lower/upper bounds

respectively for the worst-case makespan, subject to our assumptions. However, the

metaheuristic provides its estimates orders of magnitude faster.
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Additional observations from this small-scale experiment are that, even the “round-

robin” initial solution can serve as a quick/rough estimate for the worst-case makespan

(even before running the meta-heuristic). This is also in accordance with our expe-

rience by experimenting with other kernel instructions strings and problem instances

in general. However, even when the the metaheuristic is launched with random initial

solutions, it converges fast towards better estimates, comparable to those obtained

when using the “round-robin” initial solution. The graphs also serve, to an extent, to

highlight the relative speedup that can be achieved in the convergence to a good esti-

mate, by running (and tracking) multiple independent instances of the metaheuristic

in parallel.

Figure 24: Convergence of the estimates of the worst-case makespan over time, for 8

instances of the metaheuristic, with different initial solutions.
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6.6 Summary

This chapter presents an approach for tractably obtaining an estimate of the worst-

case makespan of a set of identical GPU threads running on a single streaming mul-

tiprocessor, subject to some simplifying assumptions. This approach is based on the

metaheuristic of simulated annealing and is readily parallelizable, for even faster con-

vergence. The result is very close to the pessimistic estimate obtainable using much

more computationally complex optimization-based approach presented in Chapter 5.

Therefore, the estimate output by this metaheuristic-based approach is, in the most

unfavourable circumstance, a slight underestimation of the actual worst case. As

such, the target of the approach is soft-real time systems, wherein a very rare missed

deadline does not matter.
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7 Statistical measurement-based approach

Our prior approaches presented in Chapter 5 and in Chapter 6 for deriving WCET

estimates for GPU kernels were optimistic in their assumptions on cache misses and

the memory subsystem in general. Extending them, as originally intended, to also

consider the effects of cache and memory, turned to be challenging for two reasons.

First, due to tractability issues, inherent in those approaches, which kicked in when

considering long-latency operations (e.g., hundreds of cycles for an L1 miss). Secondly,

because the exact cache architectures and replacement policies for modern GPUs

are trade secrets, thus not openly documented. A probabilistic measurement-based

approach bypasses both hurdles. To that end, we undertake a measurement-based

probabilistic approach, based on Statistic Analysis and Extreme Value Theory (EVT).

This technique allows the derivation of highly accurate estimates on the probability

that any run of the GPU application exceeds a respective time threshold, even if such

high execution times are not observed in any of the measurements. It advances the

state of the art because it accurately captures the overall behaviour of the memory

subsystem. In terms of outline, Section 7.1 elaborates on measurement collection.

Section 7.2 offers background on the statistical analysis of the measurements and

on EVT, which we use to obtain highly accurate probabilistic WCET estimates.

Section 7.3 discusses our experiments. Section 7.4 concludes.

7.1 On Collecting Measurements

In the typical CUDA setup, the following sequence of actions is performed by a

CUDA-C program [101].

S1: The program allocates memory on the host (CPU) for the input and output of

the CUDA kernel.
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S2: The program allocates7 memory on the GPU (device) for the input and output

of the CUDA kernel.

S3: The program initiates7 the copying of the input from host memory to GPU

memory. This is normally a blocking operation, unless the copied data is less

than 64KB [155].

S4: The program launches the CUDA kernel. This operation is non-blocking: the

driver returns control to the CPU immediately after the launch8.

S5: The kernel executes on the GPU until completion. In parallel, the program on

the host polls on the status of its completion.

S6: Upon completion of the kernel, the program copies7 the output of the CUDA

kernel from GPU memory to host memory.

S7: The program continues its execution on the host.

The execution time of the kernel corresponds to stage S5. Let that be denoted as

TDEV. However, the combined duration of stages S2 to S6 is also of interest, since

it determines the acceleration attained via CUDA. Let us denote that by THOST. If

determining TDEV analytically (which our approaches in Chapter 5 and Chapter 6

attempted) is hard, for THOST it is even more so, since it also includes the execution

of the CUDA driver and the I/O latency for copy over the PCI-e bus. Therefore,

we attempt to characterise both by collecting measurements over a sufficiently large

number of runs and applying EVT.

To measure THOST we used standard Linux primitives for reading the system

time. We placed those system calls just before S2 and at the start of S7. Accurately

measuring TDEV is harder because the GPU cannot be probed. Any instrumentation

7Via the high-level CUDA Run-time API or directly the Driver.
8Synchronous semantics (i.e., self-suspension until the GPU-side computation completes) can still

be obtained, e.g., via custom CPU-side programming.
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code added to the kernel would be executed by all CUDA threads so it would have to

be extremely light-weight/non-intrusive for the cumulative effect on TDEV to not be

significant. Recall that TDEV is the interval from when the first kernel instruction by

some thread (warp) executes until the last kernel instruction by some thread (warp)

is completed. The tricky part is that we cannot know a priori which warp starts to

execute first and which one completes last. We deal with this as follows:

There is a special clock-register on each SM, which counts GPU cycles. We

read/record its value via manually inserted assembly code, at the start/end of each

thread. A naive approach would use two respective per-thread variables, start cycle

and end cycle. But this would use too much shared memory (out of the 48 KBs, at

most, per SM) or else thrash the L1 cache, significantly altering the timing behaviour.

Hence we use a single per-SM pair of start cycle and end cycle variables (Figure 25),

and leverage the fact that execution on the GPU is in-order. The first thread to

execute, whichever that is, sets the start cycle variable. All subsequent threads de-

tect this (if-condition at line 1) and avoid overwriting its value. Upon completion,

all threads write to the stop cycle variable (line 4), which means that the last value

written to it is by the latest thread to complete. Then TDEV (in GPU cycles) is

derived9, with p denoting the index of the SM, as:

TDEV = max
p

{end cycle[p]} −min
p
{start cycle[p]} (87)

To apply EVT, we need such measurements from many runs of a given CUDA

kernel. We therefore developed a tool that repeatedly (i) launches the same kernel and

(ii) records its timing measurements. To eliminate interference from screen rendering,

we switch off the windowing system entirely. To guarantee the safe application of the

EVT, the number of runs must be large enough; in the order of thousands, as has

9In the rare case of clock-register overflow, the above code does not work. We detect/discard
such data, offline.
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//start cycle initialised to MAXINT

//if-condition TRUE only for the earliest thread
1. if (start cycle>CLK REG)

2. start cycle:=CLK REG;

3. —– (The instructions of the kernel go here...) —-

4. stop cycle:=CLK REG; //overwritten by every
thread

Figure 25: High-level overview of the measurement-collecting assembly inserted in
each GPU thread.

been demonstrated. We conservatively opted for 105 runs, which, as expected, proved

to be more than enough.

7.2 Statistical Analyses of Execution Time

Statistical estimations of worst-case execution time are becoming popular within the

real-time community, [53, 26, 83, 37, 48]. They lead to the notion of probabilistic

WCET (pWCET), alternative to the deterministic WCET, as distributions of values

Cj with an associated probability of being the WCET. Cj upper-bounds the task

execution time with a probability pj. 1 − pj is the probability for a task instance

having a bound on its execution time different than Cj.

Definition 1 (probabilistic WCET). Given Ci, the distribution of execution time

measured in a certain configuration/condition i, the probabilistic Worst-Case Exe-

cution Time distribution C∗ of a task is a tight upper bound on the execution time

distribution Ci of all possible execution conditions10. Hence, ∀i, C∗ is larger than or

equal to Ci. In notation: C∗ � Ci ∀i.

The total ordering among distributions is defined such that, a distribution Cj is

greater than or equal to a distribution Ck, Cj � Ck, iff P{Cj ≤ d} ≤ P{Ck ≤ d}

for any d and the two random variables are not identically distributed (two different

10We use calligraphic letters to represent probability distributions. Non calligraphic letters are
for single values.
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distributions), [52]. The tightest possible pWCET distribution would be the exact

pWCET, which is unknown. However, we still need to come up with a safe pWCET

estimation, meaning a pWCET estimation C∗ that is greater than or equal to the

(unknown) exact pWCET. And the only information we can rely on, for construct-

ing such a pWCET estimation is the set of measurements ({Ci}) and the execution

conditions (i) under which they were taken.

The probabilistic worst-case execution time can also be defined in terms of the

exceeding thresholds and the 1-Cumulative Distribution Function (1-CDF) represen-

tation. Given a probability of exceedence p∗, C∗ is the worst-case execution time such

that P{C∗ ≥ C∗} ≤ p∗. Alternative to the pWCET distribution, we can call mini-

mum probabilistic worst-case execution time the tuple 〈C∗, p∗〉. In our experiments

we consider p∗ = 10−6, p∗ = 10−9, and p∗ = 10−12.

Measurements, when used in conjunction with statistical approaches such as the

EVT, contribute at estimating safe pWCETs. On their own, measurements are not

enough to obtain pWCETs since they may lack completeness: through the mea-

surements there is no guarantee to have experienced all the execution conditions.

Nonetheless, measurements are important for extracting observable features such as

average behaviours and trends that can appear while executing tasks. Extreme value

analysis is for the statistical inference on the tail region of a distribution function.

The statistical estimation of the pWCET makes use of the EVT for exploring rare

events, wherein the WCET and its probabilistic version pWCET should lie. In the

following we state the basics for the EVT that we apply in our framework.

Classical EVT discusses the possible limiting laws for the maximum

Mn = max{X1, X2, . . . , Xn}

of n independent identically distributed (i.i.d.)11 random variables {Xn} as n tends

11Readers not already familiar with the concept of independent and identically distributed vari-
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to infinite12. [80].

Theorem 1 (Fisher-Tippett-Gnedenko EVT). Let

X1, X2, . . . , Xn be a sequence of independent and identically-distributed random vari-

ables, and Mn = max{X1, . . . , Xn}. If a sequence of pairs of real numbers an, bn exists

such that each an > 0 and

lim
n→∞

P

{
Mn − bn

an
≤ x

}
= G(x), (88)

where G is a non degenerate distribution function, then the limit distribution G belongs

to either the Gumbel, the Frechet or the Weibull family. These can be grouped into

the generalised extreme value distribution.

Theorem 1 expresses the EVT theory in case of independence among samples:

the maxima of an i.i.d. sequence converge to a Generalised Extreme Value (GEV)

distribution Gξ, which admits the following Cumulative Distribution Function (CDF):

Gξ(x) =





exp(− exp(−x)), if ξ = 0

exp
(
−(1 + ξx)−

1

ξ

)
, if ξ 6= 0

. (89)

The GEV distribution Gξ can be of three distinct types, characterised by ξ = 0,

ξ > 0 and ξ < 0, which correspond to the Gumbel, Fréchet and Weibull distributions,

respectively.

Usually, the EVT is established for i.i.d. observations, and previous works have

linked the safety of EVT estimations to that hypothesis. Therein, it is claimed that

if both independence and identical distribution are verified, the EVT distribution tail

ables, may peek ahead to Sections 7.2.1.1 and 7.2.1.2, where we formally define and discuss these
concepts.

12{Xn} is the sequence of observations; each observation results from a distribution Xn. The
identical distribution hypothesis assumes that all the observations follow the same distribution, thus
X1 = X2 = . . .Xn = F . In our case, both observations and distributions refer to execution time,
hence there is equivalence between {Xn} and {Cn} as well as Xn and C, in terms of representation.
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projection can be considered as a safe pWCET estimation, [48].

However, more recent developments showed that independence is not a necessary

hypothesis for the EVT. Leadbetter et al. [114], Hsing [92] and Northrop [151] de-

veloped EVT for stationary weakly dependent time series. The latter two references

also established statistical tools for use under that assumption.

Theorem 2 (Long Range Independence EVT, [115]). Let {Xn} be a stationary se-

quence such that

Mn = max{X1, . . . Xn} has a non-degenerate limiting distribution G as in

P{an(Mn − bn) ≤ x}
d
→ G(x), (90)

for some constants an > 0, bn. Suppose that

D(un) : |Fi1,...,ip,j1,...,jq(un)− Fi1,...,ip(un) · Fj1,...,jq(un)| ≤ αn,l,

where liml→∞limn→∞αn,l = 0, holds for all sequences un given by un = x/an + bn,

−∞ < x < ∞. Then G is one of the three classical types: Weibull, Frechet, Gumbel.

The distributional mixing condition D(un) alone is sufficient to guarantee that

the central classical result concerning the possible extremal types (the EVT), holds

also for stationary sequences. Both an and bn can be computed as best-fit of the

input observations. D(un) is called long-range dependence conditions, and if satisfied

it means that there is no dependence between far away observations.

In [115] it is introduced the local dependence condition D′(un),

D′(un) : limn→∞ supn ·

n/k∑

j=2

P{X1 > un, Xj > un} → 0

slightly more constraining than D(un), seeking to assure the independence between

close-in-time observations. If D′(un) holds with k → ∞ and for each un = x/an + bn,
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then the particular distribution type which applies is the same as if the sequence {Xn}

were i.i.d, with the same marginal distribution function, and the same normalizing

constants an, bn may be used.

Theorem 3 (Extremal Independence EVT, [115]). Let {Xn} be a stationary sequence

with marginal distribution function F such that Mn = max{X1, . . . Xn}, and {un} a

sequence of constants such that D(un), D
′(un) hold. Let 0 ≤ τ < ∞, then

P{Mn ≤ un}
d
→ exp(−τ) (91)

iff

n · [1− F (un)] → τ. (92)

Theorem 3 states that if both D(un) and D′(un) are satisfied, the resulting EVT

is equal to the one obtained in case of observing independence.

Chernick [41], extending Loynes [137], showed that, if for each τ > 0, un = un(τ)

is defined to satisfy Equation (92), under D(un) conditions alone, then any limit

function for P{Mn ≤ un(τ)} must be of the form

P{Mn ≤ un(τ)}
d
→ exp(−θτ), (93)

for some θ with 0 ≤ θ ≤ 1.

The parameter θ, called the extremal index of the time series, is a measure of

clustering at the extremes. It is useful for analysing the behaviour of the extremes

in the tail; a small θ means greater clustering of the largest observations, i.e., higher

dependence between observations; a value of θ = 1 i.e., no extremal clustering, denotes

independence.

Assuming C the pWCET EVT estimation in case of stationarity, and Ĉ the
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pWCET EVT estimation in case of independence. Supposing that the execution time

measurements in the two cases follow the same marginal distribution, it is C = Ĉθ

with C � Ĉ, [38]. In case of independence at the extremes, θ = 1, C ≈ Ĉ, [38]. Once

one of the above hypotheses (either independence, extremal dependence, or station-

arity) is satisfied the EVT provides pWCET estimations which are greater than or

equal to the exact pWCET. In here, the safety of pWCET EVT estimations.

In the present chapter we apply these theoretical developments to the execution

time analysis and safe pWCET estimations. In doing so, we consider the Gumbel dis-

tribution for EVT pWCETs, as it has been demonstrated to be the most appropriate

distribution for execution times, [48].

7.2.1 On the Verification of the EVT hypotheses

Hypothesis testing means to decide, from a number of observations, whether one

should consider a property to be true or not. We may never know for sure, but

a statistical test will give us guidance in making a decision. In statistics we can

state this problem using two hypotheses: H0 (named null hypothesis) that denotes

the hypothesis that the property is true, and H1 (namely alternative hypothesis)

denoting the hypothesis that the property is false. It has to be decided whether to

accept or reject the hypothesis H0 based on a sample (set of observations). The ρ-

value is the result for hypothesis testing, where ρ is the probability of obtaining a test

result at least as extreme as the one that was actually observed, assuming that the

null hypothesis is true. Normally, ρ > 0.05 validates H0; ρ ≤ 0.05 rejects H0, thus

validates H1. Various alternative approaches exist for calculating such an ρ-value,

leading to different hypothesis tests; we discuss, later on in this section, those ones

that we will be using.
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7.2.1.1 Independence of Observations In statistics, a collection of random

variables is independent (i.) if all the random variables are mutually independent.

By this, we mean whether individual observations within the same execution trace

are correlated with each other or not. If knowing one observation tells you something

about another, then the observations are dependent; if knowing one observation tells

you nothing about another, in that case they are independent.

A test applied in [48] aims at proving that samples are independent looking for

randomness. This is called runs test, where randomness is sought within the ob-

served data series by examining the frequency of “runs”; a “run” is a series of similar

responses.

In this chapter we look to extend independence tests from runs test, since random-

ness is not formally sufficient to verify independence. This type of independence can

not be proven or tested except for time series. Time series tests are based on autore-

gression and autocorrelation. In particular, we aim at verifying stationarity, which

gives more information about the observation traces and applying it to characterise

system execution behaviour while looking for the worst-case execution conditions.

7.2.1.2 Identical Distribution of Observations In statistics, a collection of

random variables is identically distributed (i.d.) if each random variable has the

same probability distribution. A common test for verifying identical distribution in

observations is the two-sample Kolmogorov-Smirnov test: The trace of observations

is divided into two sets which are compared, to verify whether they represent the

same distribution.

7.2.2 Statistical Analyses

In practical applications, the independence assumption may or may not be realistic.

To test how realistic it is on a given execution time data set, the autocorrelation can
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be computed with lag plots, or a turning point test can be performed. These are to

test the relationship that exists between measured observations. We apply them in

order to extract patterns and behavioural models which could describe the observed

system behaviour. In particular, we employ autocorrelation tests together with the

notion of stationarity, which indirectly quantify the statistical independence between

observations.

With no means of formalism, a process is stationary if its mean variance and

autocovariance structure do not change over time. This is what is called weak form

of stationarity, which means flat-looking observations, no trend, constant variance

over time, and no periodic fluctuations or autocorrelation.

Autocorrelation, in a time series, is the similarity between observations as a func-

tion of the time lag between them. In our case, the time is given with the order of

observations, thus lags are in terms of number of observations. The sample Auto Cor-

relation Function (ACF) is one of the most important assessment tools for detecting

data dependence and fitting models to data. Although the model is not faced at first,

the observed data {X1, . . . , XN} are known.

An autoregressive (AR) model instead, is a representation of a type of random

process. The AR model describes the underlying stationarity model of a trace of

observations (time series): AR(0), the sequence of observations has no dependence

between the observations – white noise; AR(1), a process where, with a positive

parameter, only the previous observation in the process and the noise term contribute

to the output – very light dependence; AR(2), a process where the previous two

observations and the noise term contribute to the output. And so it goes on, increasing

the dependence pattern between observations.

We also use the Ljung-Box test, which looks for any significant evidence for non-

zero correlations between lags. Large ρ-values from the test suggest that the series is

not stationary, thus there is no trend between consecutive observations; this supports
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non stationarity, and thus independence.

Valuable to time series analysis is also the test called extremogram [49], where

the dependence at the extremes is estimated. The extremogram defines an analogue

of the autocorrelation function, which depends only on the extreme values in the

sequence of observations.

Finally, to compare with the independence case, there is the extremal index θ

of the observations which is another tool for measuring the dependency of extreme

values. We make use of the blocks test to compute θ, based on estimators [57]. We

stress that there is equivalence between the extremogram and the extremal index,

for evaluating extremal dependences, thus ultimately the EVT applicability. For

completeness we apply both, although just one of the two would have been enough

to verify extremal behaviour of observations.

Tests such as the above allow us to conclude about the stationarity of execu-

tion time observations and their eventual extremal dependence. As earlier argued,

under those circumstances it is still possible to derive safe EVT distributions, thus

safe pWCET estimations. More importantly, the stationarity helps with describing

the execution behaviour and points out to us which are the worst-case conditions

necessary, in order to safely conclude about pWCETs.

7.3 Experiments

Our testbed used a Kepler GK104 with 8 SMs (Figure 5), configured with 32KB

of shared memory and 32KB of L1 each. As benchmark, we developed in CUDA

a Voronoi diagram generator, according to the raster-coloring massively parallel ap-

proach [141] also used in Section 6.5.2 of the metaheuristic-based approach in Chap-

ter 6. Informally, a Voronoi diagram for a 2D-plane and K points on it, divides the

plane into tiles, each tile consisting of the points in the plane closer to one of the K

points than to any other. For a 2D-raster, this is formed by calculating, for every
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pixel, the distance to each of the K points. Our application uses a separate thread

per pixel. Therefore, the raster size (X by Y ) determines the number of threads,

whereas the number of points K determines the workload of a thread. For valid com-

parisons (same per-thread workload) we used K = 32 in all setups and simply varied

the number of threads. The first setup (VOR-1) used X=Y=32 which corresponds to

1024 threads (32 warps), the maximum thread block size in Kepler. The other setups

involved 8, 28 and 32 thread blocks of this size. The execution times are in ns.

7.3.1 Timing Analysis

The experiments made provide execution time measurement traces, to be statistically

tested. As we will proceed to show, although the TDEV and THOST traces behaved

very differently, all traces, upon testing, indeed support the conditions that permit

the safe application of EVT.

Table 1 groups the numerical results of the independence tests carried out, i.e.,

runs test (runs), Ljung-Box (LB), and autoregressive (AR). These results reveal the

independence of the TDEV case; hence realistic cases could be independent, and

the EVT could be applicable with no need for artificially induced randomicity, as

made in [48] with random replacement caches. Instead, the THOST traces are not

independent, but stationary. This is due to the filtering effects that HOST exer-

cises, which reduce variability and thus the independence of the observations. This

stationarity is present at different degrees in the 4 different traces of THOST , but EVT

is still applicable to all of them (Equation (93)).

The combination of the autocorrelation tests, the stationary tests and the ex-

tremogram (Figure 28) gives more accuracy and completeness to the independence/

stationarity verification than just the runs test. For example, in case of VOR-32

THOST , the runs test would have concluded about the trace independence; in reality

though, it exhibits stationarity – and, in particular, a strong stationary relationship

171



Kostiantyn Berezovskyi Dissertation Thesis

(AR(22)).

Noticeably, for TDEV the AR is at most 1 indicating very light dependence; to-

gether with the LB test with ρ ≥ 0.1424, thus no evidence of stationarity at all. This

allows us to confirm the independence of the observations. With THOST , AR is larger

than 11, revealing stronger dependence between observations in the form of stationar-

ity; LB has small ρ. Crucially for the applicability of EVT, the stronger stationarity

of the THOST cases does not reflect into dependence of extreme observations, being

the exponential trend of the ACFs with respect to lags. This is also supported by

the extremogram results, in Figure 28. In there, the extremogram estimation ρ̂(h)

varying lag h is represented. Small ρ̂-values i.e., less than 0.05 suggest that the se-

ries has no dependences at the extremes. The extremal index θ confirms that, hence

the resulting EVT pWCET estimation for THOST is equal to the one in case of full

independence, Theorem 3, being θ ≈ 1.

The trends we could find in the measurement-bases distributions through the

stationarity tests, therefore give us support to further statistically investigate mea-

surements seeking the worst-case execution conditions.

The identical distribution, Kolmogorov-Smirnov (KS) test, is verified for all traces,

with ρ > 0.05. It suffices to check if the observations follow the same distribution:

indeed, this is always the case whenever the observations are taken with the same

execution conditions.

To further comment on the different behaviour of TDEV and THOST cases, notice

the differences in Figure 26 and Figure 27. For TDEV , the non stationarity (LB test

and ACF residuals) is clearly explained with the trace of the standardised residuals:

there is no evident pattern, thus it resembles white noise. In case of THOST , an

execution pattern appears, more evident with VOR-32 THOST . The pattern is not

that strong since ACF residuals and Ljung-Box outline stationarity until leg 5, VOR-

32 THOST . Hence, it is not a strong stationarity, but stationarity is present anyway.
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TDEV THOST

VOR-1 runs (ρ) 0.3175 5.235e− 13

VOR-8 runs (ρ) 0.7844 < 2.2e− 16

VOR-28 runs (ρ) 0.664 1.336− 07

VOR-32 runs (ρ) 0.5288 0.6189

VOR-1 KS (ρ) 0.9987 0.267

VOR-8 KS (ρ) 0.9601 0.532

VOR-28 KS (ρ) 0.6104 0.391

VOR-32 KS (ρ) 0.727811 0.5861

VOR-1 LB (ρ) 0.7407 < 2.2e− 16

VOR-8 LB (ρ) 0.1424 4.622e− 07

VOR-28 LB (ρ) 0.9205 < 2.2e− 16

VOR-32 LB (ρ) 0.9715 6.988e− 05

VOR-1 AR 1 26

VOR-8 AR 0 12

VOR-28 AR 0 22

VOR-32 AR 0 22

VOR-1 θ 1 1

VOR-8 θ 0.992 1

VOR-28 θ 1 1

VOR-32 θ 1 0.994

Table 1: Independence, stationarity and extremal tests.

With THOST we can see that there is no randomicity anymore, except for VOR-32

THOST . Moreover, execution peaks with a certain periodicity appear. Conversely, in

case of TDEV the appearances of peaks do not exhibit any periodic trend.

Seeking the worst case by investigating different execution conditions, we can see

how the VOR-32, unsurprisingly, represents the worst-case among the ones considered

(VOR-1, VOR-8, VOR-28, and VOR-32), being the case with larger observations. In

Figure 29 we have represented the measurement-based distributions as Cumulative

Distribution Functions (CDFs). In there we can also see that there is no measurable

difference between VOR-28 and VOR-32 at both TDEV and THOST cases.

7.3.2 From the Measurements to the pWCET

Finally we apply the EVT, in particular the block maxima version of the EVT [48]. In

this chapter we do not give any detail about the complexity of the block maxima EVT
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Figure 26: Statistics from the autocorrelation function (ACF) and the Ljung-Box
statistics. VOR-1 and VOR-32 TDEV compared.

due to parameter decision (notably the block size), and we consider a block size of 25

observations. The application of the EVT is meant to compare the pWCETs of the

different execution conditions. Figures 30 and 31 illustrate the differences accuracy

in between VOR-x cases. The CDF representation is applied to the EVT pWCET
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Figure 27: Statistics from the autocorrelation function (ACF) and the Ljung-Box
statistics. VOR-1 and VOR-32 THOST compared.

distribution estimations. Although the real pWCET is not known, we can still reason

about the accuracy of the pWCET estimations. For VOR-1 TDEV and VOR-8 TDEV ,

the EVT is closer to the measurements while for VOR-28 TDEV and VOR-32 TDEV

it is less close. This is due to the shape of the measurement distributions. Wider
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Figure 28: Measurement extremogram up to 20 observations lag. TDEV and THOST

compared.

distributions (larger execution variability) means that rare events could be far away

from the average behaviour. The EVT has to consider that in order to be safe: pos-

sibly much larger values than the measured ones have to be included. For the THOST

cases, the measured distributions are consistently even wider, due to larger peaks on

the execution times and two different peaks, visible in the residual representation of

Figure 27. This makes the measured distributions resemble bi-variate distributions

(Figure 31) and motivates the smaller estimation accuracy from the EVT. Table 2

shows the EVT estimations of the pWCET values at probability 10−6, 10−9, and 10−12

for both TDEV and THOST cases; the probabilistic worst-case execution times are in

ns. Those values are exceeding thresholds C, from the 1-CDF representation, and

recall that the associated probabilities p are the probabilities of exceeding that thresh-

old, p(C) = P{C∗ > C} being C∗ the EVT pWCET distribution estimation. These

results illustrate the pWCET variation at different probability thresholds. To explain
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Figure 29: Measurements for all the VORONOI cases. CDF representation of the
distributions.

the large differences of the VOR-28 and VOR-32 TDEV EVT estimations with respect

to their measurements, again, we need to consider the variability of the measurement

distributions: in order to be safe, with large variabilities and stationarity, the EVT

looses accuracy. With narrow distributions like VOR-1 and VOR-8, the EVT can

177



Kostiantyn Berezovskyi Dissertation Thesis

11500 12000 12500 13000 14000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Execution time (ns)

P
ro

b
a
b
ili

ty

Measured

EVT

(a) VOR-1 TDEV

18000 19000 21000 23000 25000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Execution time (ns)

P
ro

b
a
b
ili

ty

Measured

EVT

(b) VOR-8 TDEV

30000 40000 50000 60000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Execution time (ns)

P
ro

b
a
b
ili

ty

Measured

EVT

(c) VOR-28 TDEV

30000 40000 50000 60000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Execution time (ns)

P
ro

b
a
b
ili

ty

Measured

EVT

(d) VOR-32 TDEV

Figure 30: EVT applied to VOR-1, VOR-8, VOR-28 and VOR-32 TDEV . Comparison
of measurements vs EVT, CDF representations.

better model the measurements; the resulting pWCET estimations are closer to the

observed execution times. For THOST , the poorest accuracy is due to the quality of

the measured distribution. We also notice that the exceeding values for THOST for

all VOR-x cases, for the same probability threshold, are of similar magnitude at each

other. We conclude, empirically, that this is because THOST is dominated by the

one-off costs of the CUDA driver execution and bus transfer launch, rather than the

size of the problem instance (number of thread blocks). Indeed, THOST ≫ TDEV in

our experiments.

Figure 32 is to give informal evidence to EVT pWCET differences. Although the

EVT provides the pWCET from a set of measurements C, alone it is not enough

to conclude about the task pWCET in any possible execution condition. Since the

pWCET estimates for VOR-28 and VOR-32 (the cases with more thread blocks) are

not inferable from those of VOR-1 and VOR-8, it is necessary to include the worst-case
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Figure 31: EVT applied to VOR-1, VOR-8, VOR-28 and VOR-32 THOST . Compari-
son of measurements vs EVT, CDF representations.

execution condition (in terms of thread blocks) in order to guarantee safe pWCET

estimations C∗. Among the measurements made, VOR-32 is the worst-case for both

TDEV and THOST . The EVT statistical estimation out of the VOR-32 can provide

the safety guarantee that real-time analyses require upper-bounding the pWCET

estimation for all the other measurements.

A few interesting observations on Table 2: (1) the gap between VOR-1 (1 thread

block on 1 SM) and VOR-8 (8 thread blocks in parallel, on different SMs) quantifies

the effect of contention across SMs for L2 and GPU main memory; (2) unlike the

measured values, the EVT for VOR-8 and VOR-32 for a given probability, does not

scale linearly with the thread blocks; (3) the almost identical VOR-28 and VOR-32

pWCET estimations are evidence of a balanced thread block assignment to SMs;

the pWCET in VOR-28 (where some SMs get 3 and some get 4 thread blocks) is

determined by those SMs with 4 thread blocks (same as all SMs in VOR-32).
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10−6 10−9 10−12

VOR-1 TDEV 12083 12278 12474
VOR-8 TDEV 20600 20989 21248
VOR-28 TDEV 80061 104613 128051
VOR-32 TDEV 88252 115189 142510
VOR-1 THOST 6697335 9283349 12127964
VOR-8 THOST 6561744 9438101 12053516
VOR-28 THOST 8007463 11350140 14692817
VOR-32 THOST 8985862 12812711 16345188

Table 2: EVT estimates for TDEV and THOST at 10−6, 10−9, and 10−12 probability
thresholds.

7.4 Summary

Through the work presented in this chapter we demonstrated that it is possible to ap-

ply a pWCET analysis approach based on measurements, statistic analysis, and EVT

to parallel applications running on GPUs. We have proficiently extended applicabil-

ity of EVT to less constraining hypotheses than independence. And that provides a

way for obtaining accurate WCET estimates, for the desired confidence level, despite

the lack of detailed public documentation on the GPU’s memory subsystem and its

internal scheduling.
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Figure 32: CDF EVT distributions for TDEV , THOST .
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8 Conclusion

In the thesis statement presented in Chapter 1, we expressed our perspective about

the potential of GPU timing analysis for the real-time systems domain. We sup-

ported that statement by developing GPU timing analysis approaches for real-time

systems: optimization-based, metaheuristic-based and statistical measurement-based.

Optimization-based and metaheuristic-based approaches represent a static branch of

timing analysis subject to the theoretical model of GPU hardware that we proposed

in Chapter 4. Our probabilistic measurement-based approach represents a statistical

fork of a measurement-based branch of timing analysis. It allows us to target real

hardware and demonstrates great potential for practical usage.

The strategy of our research was somehow similar to the breadth-first search in

graphs. Instead of diving deep in one of the approaches, we opted on showing the

big picture of the potential of GPU timing analysis. Thus, each of these approaches

have some room for improvement. In the following, we discuss such improvements

for optimization-based (Section 8.1), metaheuristic-based (Section 8.2), statistical

measurement-based (Section 8.3) approaches, and finally conclude in Section 8.4.

8.1 On the optimization-based approach

First, in Chapter 5, the technique for computing a pessimistic upper bound on the

worst-case makespan was presented. Then we used the outcome of this technique

to formulate the optimization problem for finding an exact worst-case makespan and

the corresponding schedule. Since the exact approach is computationally heavy for

a large number of warps, we also introduced a simple way of obtaining, at only a

fraction of the time, a safe estimate that is only marginally pessimistic subject to the

simplifying assumptions.

The core of the optimization-based approach is the formulation of an optimization
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problem that searches for the worst-case execution requirement. This formulation is

also the main factor in terms of performance, thus, the efficiency of the problem

solving determines the performance of the whole technique. The success of the for-

mulation also depends on the model of the hardware and its configuration. Therefore,

it would be interesting to analyze alternative scenarios for the sake of deriving some

generic guidance for the application of the formulations presented in Chapter 5.

Another aspect of our theoretical model of GPU hardware, is that we addressed

only a single streaming multiprocessor. However, since a GPU contains many stream-

ing multiprocessors, an interesting problem to address is the extension of this ap-

proach to the case of a kernel execution over multiple streaming multiprocessors. Do-

ing so will require faithfully modelling how warps are dispatched/partitioned among

streaming multiprocessors – something which, to the best of our understanding, is

either not fully documented at the moment or subject to change between revisions.

On the other hand, adding some modelling of the memory subsystem would be cru-

cial for making this approach to be more realistic. This would require serious efforts,

taking into account the absence of publicly available information about the internal

organization of the GPUs.

8.2 On the metaheuristic-based approach

In Chapter 6, an approach for obtaining a tight lower bound on the worst-case

makespan was presented. This approach is based on the metaheuristic of simulated

annealing and is capable of converging to a relatively tight estimate within short time.

An important aspect is that the combination of the metaheuristic-based approach and

the optimization-based approach provides both an upper-bound and a lower-bound

on the worst-case makespan. This could be very beneficial for the cases when an

exact solution cannot be found tractably.

As a next step, for additional confidence, and even though the degree of latency
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hiding makes this less of an issue, it would be interesting to relax an optimistic aspect

of the approach – the modelling of the memory subsystem and the absence of cache

misses.

Similarly, since the GPU comprises multiple streaming multiprocessors, the ex-

tension of the approach to derive a makespan for GPU threads executing over the

entire array of available streaming multiprocessors would be an interesting problem

to address. Such an extension is not straightforward because the dispatching of the

warps among streaming multiprocessors is undocumented as we already mentioned.

Moreover, since multiprocessors within the GPU chip share the interconnection net-

work, L2 cache and GPU main memory, there will be contention upon access to those

resources. This contention needs to be modelled and accounted for by the analysis,

even if the corresponding arbitration protocols are, likewise, undocumented.

8.3 On the statistical measurement-based approach

The output of the optimization-based approach and the metaheuristic-based approach

was only safe subject to an optimistic assumption regarding cache misses, that was

imposed due to control variable explosion in the first technique. The intension to work

with real hardware processing real-life GPU applications brought us to the approach

presented in Chapter 7, which uses measurements of end-to-end execution but which,

through Statistical Analysis and Extreme Value Theory, can “predict” worst-case

timing behavior even when that is not observable in the high-water mark times. In

using measurements, we also largely sidestep the lack of public knowledge about

the characteristics of the memory subsystem, which hampered us in the approaches

discussed Chapter 5 and Chapter 6.

We believe that the statistical measurement-based approach has a great poten-

tial for practical use. We intend to continue the GPU probabilistic timing analysis

investigating other system configurations and/or other system elements. For exam-
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ple, by also considering different shared memory/L1 configurations (16/48 or 48/16

KB) rather than just different input sizes. The sensitivity analysis will be applied to

system configurations and system parameters to evaluate their effect on the pWCET

estimates. This will give us the possibility to develop an aided-design probabilistic

framework for more deterministic GPU development.

8.4 Closing remarks

When we started this research, the GPU computing ecosystems did not include in-

tegrated GPUs. However, these days, the integrated GPUs are already available for

GPU computing. We expect the rapid growth of their popularity and in terms of tim-

ing analysis this trend looks very promising. The plans on the integration of GPUs

with other chips on the same die and the addition of the 3D memory technology

revealed by the chip-makers might decrease the data-transfer latencies and make the

hardware more amenable to the analysis in some aspects. Thus, we believe that this

line of work will also apply to the next generations of GPU architectures.

We also hope that the research discussed in this thesis contributes in promoting

the GPUs in the domain of real-time systems and will facilitate the future efforts on

GPU timing analysis.
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Appendix

Lemma 1. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}:

If inequality

1

I

I∑

i=1

xi ≤ X ≤

I∑

i=1

xi (94)

is valid, then

X = ∨I
i=1xi

Proof. Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 0 (95)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 1 (96)

In Case 1, from (95) it follows that
∑I

i=1 xi = 0, which in turn means that

1
I

∑I
i=1 xi = 0. Then according to (94), 0 ≤ X ≤ 0 which means that X = 0. But

from the assumption of the case, it also holds that ∨I
i=1xi = 0 – therefore X = ∨I

i=1xi.

In Case 2, from (96) it follows that
∑I

i=1 xi ≥ 1 and therefore 1
I

∑I
i=1 xi > 0.

Combining this with the (94) and the fact that X ∈ {0, 1}, we obtain that X = 1.

Additionally, as ∨I
i=1 xi = 1, therefore, also in this case, X = ∨I

i=1xi.

Therefore, in all cases, X = ∨I
i=1xi.
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Lemma 2. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}

If

X = ∨I
i=1xi

then inequality (94)

1

I

I∑

i=1

xi ≤ X ≤
I∑

i=1

xi

is valid.

Proof. Again, we explore two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 0 (97)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 1 (98)

In Case 1, from (97) follows that
∑I

i=1 xi = 0 and consequently 1
I

∑I
i=1 xi = 0.

According to definition of X and (97), X = 0. Therefore inequality (94) is valid in

Case 1.

In Case 2, from (98) follows that
∑I

i=1 xi ≥ 1 and 1
I

∑I
i=1 xi > 0. According to

definition of X and (98), X = 1. Therefore inequality (94) is valid for Case 2 as well.

Hence, in all cases, inequality (94) holds.

Theorem 4. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}:

An inequality (94)

1

I

I∑

i=1

xi ≤ X ≤

I∑

i=1

xi

is equivalent to the equality X = ∨I
i=1xi

Proof. Follows from Lemma 1 and Lemma 2.

Lemma 3. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}
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If inequality

−
I − 1

I
+

1

I

I∑

i=1

xi ≤ X ≤
1

I

I∑

i=1

xi (99)

is valid, then

X = ∧I
i=1xi

Proof. Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 1 (100)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 0 (101)

In Case 1, from (100) it follows that
∑I

i=1 xi = I and consequently 1
I

∑I
i=1 xi =

1, − I−1
I

+ 1
I

∑I
i=1 xi =

1
I
> 0. Via substitution to (99) we then obtain 0 < X ≤ 1,

which means that X = 1. Additionally, it holds that ∧I
i=1xi = 1 – therefore X =

∧I
i=1xi.

In Case 2, from (101) it follows that
∑I

i=1 xi < I and consequently 0 ≤ 1
I

∑I
i=1 xi <

1, − I−1
I

+ 1
I

∑I
i=1 xi ≤ 0. Via substitution to (99) we obtain 0 ≤ X < 1, which means

that X = 0. Additionally it holds that ∧I
i=1xi = 0 – therefore X = ∧I

i=1xi.

Therefore, in all cases, X = ∧I
i=1xi.

Lemma 4. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}

If

X = ∧I
i=1xi

then inequality (99)

−
I − 1

I
+

1

I

I∑

i=1

xi ≤ X ≤
1

I

I∑

i=1

xi

is valid.
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Proof. Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 1 (102)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 0 (103)

In Case 1, from (102) it follows that X = 1, − I−1
I

+ 1
I

∑I
i=1 xi = 1

I
< 1, and

1
I

∑I
i=1 xi = 1. Therefore (99) in this case is valid.

In Case 2, from (103) it follows that X = 0, − I−1
I

+ 1
I

∑I
i=1 xi ≤ 0, and 0 ≤

1
I

∑I
i=1 xi ≤ 1. Therefore (99) is valid for this case as well.

Therefore inequality (99) holds in all cases.

Theorem 5. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, X ∈ {0, 1}

The inequality (99)

−
I − 1

I
+

1

I

I∑

i=1

xi ≤ X ≤
1

I

I∑

i=1

xi

is equivalent to the equality

X = ∧I
i=1xi

Proof. Follows from Lemma 3 and Lemma 4.
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Lemma 5. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, y, Z ∈ {0, 1}:

If inequality

1

2
× (−

I − 1

I
+

1

I
×

I∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I
×

I∑

i=1

xi + y (104)

is valid, then

Z = (∧I
i=1xi) ∨ y (105)

Proof. For the sake of brevity, we denote the left-hand expression and the right-hand

expression of the double inequality (104) as L and R respectively:

L =
1

2
× (−

I − 1

I
+

1

I
×

I∑

i=1

xi + y)−
1

2× I
(106)

R =
1

I
×

I∑

i=1

xi + y (107)

Let us consider two complementary cases:

Case 1: ∀i 1 ≤ i ≤ I i ∈ N xi = 1 (108)

Case 2: ∃j 1 ≤ j ≤ I j ∈ N xj = 0 (109)

In Case 1, from (108) it follows that
∑I

i=1 xi = I and consequently

1

I

I∑

i=1

xi = 1 (110)
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Hence, from Equation (106)

L =
1

2
× (−

I − 1

I
+ 1 + y)−

1

2× I
=

1

2
× (

−I + 1 + I

I
+ y)−

1

2× I
=

1

2
× (

1

I
+ y)−

1

2× I

Therefore,

∀i 1 ≤ i ≤ I i ∈ N xi = 1

L =
1

2
× (

1

I
+ y)−

1

2× I
(111)

From Equation (107) and Equation (110) we get

R = 1 + y (112)

We can substitute the left-hand side and the right-hand side of the double inequal-

ity (104) with the right-hand sides of Equation (111) and Equation (112) respectively:

∀i 1 ≤ i ≤ I i ∈ N xi = 1 :

1

2
× (

1

I
+ y)−

1

2× I
< Z ≤ 1 + y (113)

Inside Case 1, we can consider two complementary subcases:

∀i 1 ≤ i ≤ I i ∈ N xi = 1

Case 1.0: y = 0

Case 1.1: y = 1

(114)
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In Case 1.0, we can rewrite Equation (113) by substituting y with 0:

1

2
× (

1

I
+ 0)−

1

2× I
< Z ≤ 1 + 0 ⇐⇒

0 < Z ≤ 1 (115)

By the definition, Z is a binary value Z ∈ {0, 1}, therefore, Equation (115) specifies

that Z = 1. Notice, that

∀i 1 ≤ i ≤ I i ∈ N xi = 1, y = 0

(∧I
i=1xi) ∨ y = 1 ∨ 0 = 1 (116)

Therefore, in Case 1.0, Z = (∧I
i=1xi) ∨ y = 1 and Lemma 5 is valid.

In Case 1.1, we substitute y with 1 in Equation (113):

1

2
× (

1

I
+ 1)−

1

2× I
< Z ≤ 1 + 1 ⇐⇒

I + 1

2× I
−

1

2× I
< Z ≤ 2 ⇐⇒

1

2
< Z ≤ 2 (117)

Since Z can have only two possible values, 0 or 1, Equation (117) specifies that Z = 1.

Given that

∀i 1 ≤ i ≤ I i ∈ N xi = 1, y = 1

(∧I
i=1xi) ∨ y = 1 ∨ 1 = 1 (118)

Z = (∧I
i=1xi) ∨ y = 1. Hence, in Case 1.1, Lemma 5 holds as well.
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In Case 2, from Equation (109) we know that 0 ≤
∑I

i=1 xi < I and consequently

0 ≤
1

I

I∑

i=1

xi < 1 (119)

From Equation (106) and Equation (119) we get the following bounds on the left-hand

expression of the double inequality (104) marked as L.

1

2
× (−

I − 1

I
+ 0 + y)−

1

2× I
≤ L <

1

2
× (−

I − 1

I
+ 1 + y)−

1

2× I
⇐⇒

1

2
× (−

I − 1

I
+ y)−

1

2× I
≤ L <

1

2
× (

−I + 1 + I

I
+ y)−

1

2× I
⇐⇒

1

2
× (−

I − 1

I
+ y)−

1

2× I
≤ L <

1

2
× (

1

I
+ y)−

1

2× I
(120)

To construct the bounds for the right-hand expression of the double inequality (104)

(marked as R) we use Equation (107) and Equation (119):

0 + y ≤R < 1 + y

y ≤R < 1 + y (121)

Inside Case 2, we consider the following complementary subcases:

∃j 1 ≤ j ≤ I j ∈ N xj = 0

Case 2.0: y = 0

Case 2.1: y = 1

(122)

In Case 2.0, we substitute y with its value 0 in Equation (120) to get the bounds on
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the left-hand side L of the double inequality (104):

1

2
× (−

I − 1

I
+ 0)−

1

2× I
≤ L <

1

2
× (

1

I
+ 0)−

1

2× I
⇐⇒

−I + 1− 1

2× I
≤ L <

1

2× I
−

1

2× I
⇐⇒

−
1

2
≤ L < 0 (123)

For the right-hand side R of the double inequality (104), we substitute y with 0 in

Equation (121):

0 ≤R < 1 + 0

0 ≤R < 1 (124)

From Equation (123) L ∈ [−1
2
, 0) and from Equation (124) R ∈ [0, 1) (see Figure 33).

From the double inequality (104) Z ∈ (L,R], hence its value should be somewhere

on the right side of 0 (included) and on the left side of 1 (excluded). Given that

by definition Z ∈ {0, 1}, the only value that meets for all the constraints is Z = 0.

Notice, that the value Z = 1 violates Equation (124) (R ∈ [0, 1)) and the double

inequality (104) (Z ∈ (L,R]).

−1
2

0 1

L R

Figure 33: Determining the value of Z in Case 2.0
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By checking Equation (105):

∃j 1 ≤ j ≤ I j ∈ N xj = 0, y = 0

(∧I
i=1xi) ∨ y = 0 ∨ 0 = 0 (125)

Z = ∧I
i=1xi) ∨ y = 0, hence Lemma 5 holds in Case 2.0.

In Case 2.1, y is substituted with 1. By doing this in Equation (120) we get the

bounds for the left-hand side L of the double inequality (104):

1

2
× (−

I − 1

I
+ 1)−

1

2× I
≤ L <

1

2
× (

1

I
+ 1)−

1

2× I
⇐⇒

−I + 1 + I

2× I
−

1

2× I
≤ L <

I + 1

2× I
−

1

2× I
⇐⇒

0 ≤ L <
1

2
(126)

For the right-hand side R of the double inequality (104) we substitute y with 1 in

Equation (121):

y ≤R < 1 + y

1 ≤R < 2 (127)

From Equation (126) L ∈ [0, 1
2
) and from Equation (127) R ∈ [1, 2) (see Figure 34).

According to the double inequality (104) Z ∈ (L,R], the value of Z has to be some-

where on the right side of 1
2
(excluded) and on the left side of 1 (included). By

definition, Z can be either 0 or 1, therefore, Z = 1 is the only value that can sat-

isfy all the constraints. Notice, that the value Z = 0 is not eligible since it violates

Equation (126) (L ∈ [0, 1
2
)) and the double inequality (104) (Z ∈ (L,R]).
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0 1
2

1 2

L R

Figure 34: Determining the value of Z in Case 2.1

Let us check Equation (105):

∃j 1 ≤ j ≤ I j ∈ N xj = 0, y = 1

(∧I
i=1xi) ∨ y = 0 ∨ 1 = 1 (128)

Z ∈ {0, 1}, from double inequality (104) Z ∈ (L,R] Hence, Lemma 5 is also valid in

Case 2.1.

Thus, we showed that Lemma 5 holds in all subcases within Case 1 and Case 2.

Lemma 6. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, y, Z ∈ {0, 1}:

If the equality (105)

Z = (∧I
i=1xi) ∨ y

holds, then the inequality (104)

1

2
× (−

I − 1

I
+

1

I
×

I∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I
×

I∑

i=1

xi + y

is valid.

Proof. Let us consider the boolean expression (∧I
i=1xi) ∨ y in the right-hand side

of Equation (105) as a disjunction of the boolean expression ∧I
i=1xi and the binary

variable y, for the sake of applying Theorem 4. In the formulation of the theorem,

we substitute X with Z and I = 2 terms of the disjunction x1, x2 with ∧I
i=1xi and
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y, hence the following bounds on the boolean expression (∧I
i=1xi) ∨ y are derived:

1

2
×

(
(∧I

i=1xi) + y
)
≤ Z ≤ (∧I

i=1xi) + y (129)

Notice, that according to Theorem 5

−
I − 1

I
+

1

I

I∑

i=1

xi ≤ ∧I
i=1xi ≤

1

I

I∑

i=1

xi (130)

subject to the substitution of X with ∧I
i=1xi in the formulation of the theorem.

Let us consider the left-hand inequality of the double inequality (129)

1

2
×

(
(∧I

i=1xi) + y
)
≤ Z (131)

and the left-hand inequality of the double inequality (130)

−
I − 1

I
+

1

I

I∑

i=1

xi ≤ ∧I
i=1xi (132)

The right-hand side of Equation (132) appears in the left-hand side of Equation (131).

Therefore, we can substitute the right-hand side of Equation (132) into the left-hand

side of Equation (131):

1

2
× (−

I − 1

I
+

1

I

I∑

i=1

xi + y) ≤
1

2
×

(
(∧I

i=1xi) + y
)
≤Z ⇐⇒

1

2
× (−

I − 1

I
+

1

I

I∑

i=1

xi + y) ≤Z (133)

By subtracting a positive number ( 1
2×I

) from the left-hand side of Equation (133) we

198



Kostiantyn Berezovskyi Dissertation Thesis

can make the corresponding non-strict inequality strict:

1

2
× (−

I − 1

I
+

1

I

I∑

i=1

xi + y)−
1

2× I
< Z (134)

Let us consider the right-hand inequality of the double inequality (129)

Z ≤ (∧I
i=1xi) + y (135)

and the right-hand inequality of the double inequality (130)

∧I
i=1xi ≤

1

I

I∑

i=1

xi (136)

The right-hand side of Equation (136) can be found in the left-hand side of Equa-

tion (135). Thus, we substitute the right-hand side of Equation (136) into the left-

hand side of Equation (135).

Z ≤ (∧I
i=1xi) + y ≤

1

I

I∑

i=1

xi + y ⇐⇒

Z ≤
1

I

I∑

i=1

xi + y (137)

One can combine the inequality (134) and the inequality (137) into a double inequality

1

2
× (−

I − 1

I
+

1

I

I∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I

I∑

i=1

xi + y (138)

which is exactly the same as Equation (104) in the formulation of Lemma 6.
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Theorem 6. ∀i 1 ≤ i ≤ I such that i, I ∈ N; I ≥ 2 and xi, y, Z ∈ {0, 1}:

The inequality (104)

1

2
× (−

I − 1

I
+

1

I
×

I∑

i=1

xi + y)−
1

2× I
< Z ≤

1

I
×

I∑

i=1

xi + y

is equivalent to the equality (105)

Z = (∧I
i=1xi) ∨ y

Proof. Follows from Lemma 5 and Lemma 6.
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