

The Roman Conquered by Delay: Reducing
the Number of Preemptions using Sleep
States

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110301

Version:

Date: 03-15-2011

Muhammad Ali Awan

Stefan M. Petters

Technical Report HURRAY-TR-110301 The Roman Conquered by Delay: Reducing the Number

 of Preemptions using Sleep States

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

The Roman Conquered by Delay: Reducing the Number of Preemptions
using Sleep States
Muhammad Ali Awan

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Sleep-states are emerging as a first-class design choicein energy minimization. A side effect of this is that the
releasebehavior of the system is affected and subsequently thepreemption relations between tasks. In a first step we
haveinvestigated how the behavior in terms of number of preemptions of tasks in the system is changed at runtime,
using an existing procrastination approach, which utilizes sleepstates for energy savings purposes. Our solution resulted
in substantial savings of preemptions and we expect from even higher yields for alternative energy saving algorithms.
This work is intended to form the base of future research, which aims to bound the number of preemptions at
analysistime and subsequently how this may be employed in the analysis to reduced the amount of system utilization,
which is reserved to account for the preemption delay.

The Roman Conquered by Delay: Reducing the Number of Preemptions using
Sleep States∗

Muhammad Ali Awan Stefan M. Petters
CISTER Research Unit

ISEP-IPP
Porto, Portugal

{maan,smp}@isep.ipp.pt

Abstract

Sleep-states are emerging as a first-class design choice

in energy minimization. A side effect of this is that the re-

lease behavior of the system is affected and subsequently the

preemption relations between tasks. In a first step we have

investigated how the behavior in terms of number of pre-

emptions of tasks in the system is changed at runtime, using

an existing procrastination approach, which utilizes sleep-

states for energy savings purposes. Our solution resulted

in substantial savings of preemptions and we expect from

even higher yields for alternative energy saving algorithms.

This work is intended to form the base of future research,

which aims to bound the number of preemptions at analy-

sis time and subsequently how this may be employed in the

analysis to reduced the amount of system utilization, which

is reserved to account for the preemption delay.

1 Introduction

Embedded systems have become a necessity of our nor-
mal life. Typical examples of such system are GPS, music
systems or mobile phones. Real-time (RT) embedded sys-
tems have additional timing constraints. Not only the func-
tionality but also timing requirement should be met for the
correctness of the system. In some special cases deviation
from the timing constraint could be disastrous. For example
safety critical applications in cars i.e. airbag.

Apart from functionality and/or timing constraints, many
embedded system have a limited energy supply such as bat-
tery powered mobile devices or devices with limited or in-
termittent power supply, e.g. solar cells. The hardware de-
signers have provided several features for the system de-
signer to explore energy savings, such as dynamic voltage

∗This work was supported by the Portuguese Science and Technology
Foundation (FCT) (RePoMuC project PTDC/EIA-EIA/112599/2009) and
the ARTEMIS-JU (RECOMP project ARTEMIS/0202/2009).

and frequency scaling (DVFS) and sleep states.
The recent technology trends have equipped the modern

embedded processors with the several sleep states and re-
duced their overhead (energy/time) of the sleep transition.
The DVFS potential to save energy is diminishing due to
efficient (low overhead) sleep states and increased static
power consumption. Le Sueur and Heiser [1] have found
that race-to-halt followed by a sleep state is emerging as a
candidate superior to DVFS for energy management pur-
poses. In a race-to-halt solution tasks are executed as fast as
possible and the CPU is sent to a sleep state on conclusion
of a job of the task. The sleep state is usually initiated for
a predefined interval, as the overhead of transitioning into
and out of a sleep state are still substantial.

The forced sleep-state interval gives rise to two conflict-
ing constraints. 1) On one side, execution of the tasks re-
leases during the sleep-state interval are delayed and con-
strained to a smaller window for execution. One could eas-
ily perceive that number of preemptions will rise, as de-
laying the tasks execution increase the likelihood of higher
priority tasks releases. Thus in the presence of low priority
tasks, higher priority tasks cause more preemptions. 2) On
the other side, the interrupts that occur throughout the sleep
state interval are served on completion of the sleep interval.
We consider that a task release is triggered by an interrupt.
Therefore, tasks releases during sleep interval are bunched
together and scheduled after the sleep state. Thus delay-
ing new tasks arrival and waiting for the higher priority task
releases decreases the number of preemptions. Thus these
two considerations indicate positive or negative changes in
the number of preemptions.

For the scope of this paper, we assume the preemption
count, represents the count of preemptions taking place
when a actively executing task is being replaced before it
has completed execution by a higher priority task to exe-
cute. Suppose we have synchronous releases of high and
low priority tasks. The high priority task executes and pre-
emption is not counted, as low priority task has not yet

started its execution.
The number of preemptions poses a substantial overhead

on the running system. On resumption of a task the sys-
tem has to pay the penalty to reload the cache content dis-
placed by preemption. Access to off-chip memory is gen-
erally very expensive when compared to on-chip caches or
scratch-pad memory. The decrease in the number of pre-
emptions is resulting in a reduction of overall system uti-
lization and subsequently of energy consumption.

Considering the overhead of preemption on the energy
consumption, it is indeed an important issue to resolve
which constraint overwhelm. This issue raises many ques-
tions. 1) The forced sleep increases or decreases the num-
ber of preemptions? 2) If the number of preemptions is in-
creased, the overall energy saved from the sleep transition is
more or less than the energy penalty caused by the extra pre-
emptions? Nevertheless, if the number of preemptions de-
creases, the overall energy consumption actually decreases
more than just energy saved though sleep transition, as we
reduced the overhead of preemptions.

2 System Model

We assume implicit-deadline sporadic task model, with
� independent tasks. The task set is T = �τ1, τ2, . . . , τl�. A
Rate-Based Earliest Deadline first (RBED) framework [2]
is used to schedule the jobs released by T. RBED is based
on the earliest deadline first (EDF) scheduling algorithm. A
task τi is represented by a triplet �Ci, Ti, Ai�, where Ci is
the worst-case execution time (WCET), Ai is the periodic
budget allocated to the task and Ti is the inter-arrival time
and relative deadline of each job of the task. Our indepen-
dent tasks are released as a sequence of jobs. We assume a
varying execution time of jobs.

The misbehaviour under overloaded conditions is one
of major limitations of EDF scheduler. The RBED frame-
work [2] is used to provide a temporal isolation via enforced
budgets Ai associated with each job. This temporal iso-
lation allows the mixing of hard real-time, soft real-time
and best-effort type applications. For hard real-time (HRT)
tasks budget is equal to the WCET (Ai = Ci), to ensure
the timely completion of all jobs. The allocations of bud-
get for best-effort (BE) tasks can be independent of their
WCET i.e. Ai ≤ Ci. Normally, BE tasks execute for less
than their allocated budget Ai and the remaining budget is
considered as execution slack. However, BE task may re-
quire more than its allocated budget, which will lead to an
overloaded situation. The RBED takes precautionary mea-
sures to deal with such condition, opposed to classical EDF
which may have drastic consequences. The scheduler pre-
empts every job when it has used up its allocated budget ai.
The deadline of the task is extended for one period and its
budget is refilled again. The remaining portion of its execu-
tion is postponed until it is scheduled again. Thus a BE job

exceeding its budget cannot affect the overall schedulabil-
ity. The interested reader is directed to the original work of
Brandt et al. [2,3] for a detailed discussion and correspond-
ing proofs.

The different needs and varying slack situations in em-
bedded systems motivated the hardware vendors to provide
the platforms with multiple sleep states. To model our sys-
tem closer to reality, we assume N sleep states in the sys-
tem. Each of these is associated with a transition overhead
in time and energy. Static slack in our model is the spare ca-
pacity in the schedule to a system utilization Ui being less
than 1. Execution slack is generated from a difference of Ci

and the actual execution time of a job. The sporadic slack
corresponds to the delay due to sporadic release of tasks.

3 Experimental Setup

We used a discrete event simulator to implement the
Leakage Control Earliest Deadline First (LC-EDF) algo-
rithm [4]. LC-EDF is based on procrastination scheduling
and initiates sleep, when the system is idle. It relies on ex-
ternal hardware to recompute the sleep interval when tasks
arrive while the processor is in a sleep state. The interested
reader is directed to the original publication [4] for more
details. The only modification we made in the algorithm,
is the selection of sleep state based on task-set utilization.
In the original work, the system has three states: executing,
idle or sleep mode. However, as we assume N sleep states,
we select for each run the appropriate sleep state among the
available set of sleep states based on the maximum feasible
idle interval. The system utilization is varied from 0.1 to 1
with an increment of 0.02. The task set size is chosen to
be |T| ∈ {20, 30, 40, 50}. The Ti of HRT and BE task is
specified within a range of [30ms, 50ms], [50ms, 1sec] re-
spectively. The share of HRT and BE tasks in task-set size
and system utilization is �60%, 40%�.

Beyond those initial settings a two level approach is used
for generating a wide variety of different tasks and subse-
quently varying jobs. Tasks are further annotated with a
limit on the sporadic delay ∆s

i in the interval [0,Γ ∗ Ti]
and on the best-case execution time Cb

i in the interval
[ξ ∗ Ci, Ci]. Where, ξ ∈ {0.25, 0.5, 0.75, 1} and Γ ∈
{0, 0.2, 0.4, 0.6}. However, not only tasks vary in their re-
quirements, the same task is also varying behavior depen-
dent on system state and input parameters. This is modeled,
by assigning each job an actual sporadic delay in the interval
[0,∆s

i] and an actual execution time in the interval [Cb
i , Ci].

Considering all above mentioned parameters, 552 task sets
are generated. For each task set, the seed value of the ran-
dom number generator is varied from 1 to 100. In total, we
simulated 55200 combinations of all different parameters.
Each of them is simulated for 100 sec. The results for every
task set are averaged over all seed values to get single value.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

System Utilization

D
iff

er
en

ce
 in

 N
um

be
r o

f P
re

em
pt

io
ns

|T|=20
|T|=30
|T|=40
|T|=50

Figure 1. Difference between the absolute
number of preemptions of EDF and LC-EDF
and ξ = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

5%

10%

15%

20%

25%

30%

35%

40%

System Utilization

G
ai

n
ov

er
 E

D
F

|T|=20
|T|=30
|T|=40
|T|=50

Figure 2. Percentage gain of LC-EDF over EDF
with respect to number of preemptions and
ξ = 0.5

4 Results

The LC-EDF procrastinates the tasks execution when the
task arrival occurs while the processor is in a sleep state.
This behavior is in-line with our requirement to observe the
effect of tasks procrastination over the number of preemp-
tions. The LC-EDF concentrates the future tasks arrival and
on the other side pushes the low priority tasks closer to the
future releases of higher priority tasks. The number of pre-
emptions are counted for EDF and LC-EDF based on the
parameters defined in the system model. We illustrated the
results in absolute numbers of preemptions as well as in per-
centages gain of LC-EDF over EDF with respect to number
of preemptions.

The simulations shows that procrastination of tasks ex-
ecution, and bunching them together actually reduces the
number of preemtions in dynamic priority systems. This
can be explained through the following reasoning. While
logically pushing the release of several tasks into a single
instant, the tasks collected do not preempt each other in the
classical sense, as none of the tasks arrived has started exe-
cution before the arrival of higher priority tasks, which en-
ter the scheduler ready queue in the same instant. Outside
the sleep interval, the preemption relations are not affected,
leading to an overall reduction of preemption count.

The absolute difference between the number of preemp-
tions of EDF and LC-EDF is represented in Figure 1 for
four different task-set sizes. At low utilizations, the num-
ber of preemptions is lower in both cases due to larger static
slack in the system. As the utilization increases the differ-
ence increases, because LC-EDF can save preemptions by
not allowing execution for predefined interval. With a fur-
ther increase in utilization, the sleep interval enforced by
LC-EDF reduces as well. Thus it cannot delay the execu-
tion for longer interval and therefore difference decreases.

At utilization of 1, LC-EDF cannot afford any forced sleep
state, even if there would be dynamic slack available in the
system. Therefore it behaves similar to EDF. As can be ob-
served in the results, there are slight deviations to an other-
wise smooth curve dependent on the system utilization. As
discussed in the experimental setup, we have used a number
of sleep states and higher system utilization leads to certain
deep sleep states to be infeasible.

Another prominent effect in Figure 1 is the difference be-
tween different task-set sizes. The increase in task-set size,
raises the number of preemptions in EDF, and consequently
the potential for LC-EDF to combine more tasks. There-
fore difference between these two approaches increase, with
large task sets. Figure 2 further illustrates the percentual
gain of LC-EDF over EDF when considering the number
of preemptions for four different task-sets sizes. It demon-
strates that an increase in task-set size, actually reduces the
percentual gain over EDF after a utilization of 0.25. As the
number of total preemptions in EDF is increasing at a higher
rate than the difference of preemptions between EDF and
LC-EDF. Another point worth mentioning here is the fact
that, the gain over EDF decreases with an increase in uti-
lization. This is due to a reduce potential of LC-EDF to
force sleep state for longer interval.

We also observed the effect of varying execution time
and sporadic delay of the tasks on the number of preemp-
tions. By increasing the value of ξ and consequently the
Cb

i , we are increasing the effective system utilization by re-
ducing the interval between Cb

i and Ci. Thus an increase
in ξ will decrease the number of idle intervals (as execution
slack decreases), and subsequently a decrease in number of
forced sleep intervals. The data in Figure 3 reflects this by
a drop in the percentual gain with an increase in ξ. Sim-
ilar trends are observed in Figure 4 with the variation of
sporadic delay. In general extra slack whether caused by

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

5%

10%

15%

20%

25%

30%

35%

40%

System Utilization

G
ai

n
ov

er
 E

D
F

ξ=0.25
ξ=0.5
ξ=0.75
ξ=1

Figure 3. Percentage gain of LC-EDF over EDF
with varying execution time delay limit ξ and
|T | = 40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

5%

10%

15%

20%

25%

30%

35%

40%

System Utilization

G
ai

n
ov

er
 E

D
F

Γ=0
Γ=0.2
Γ=0.4
Γ=0.6

Figure 4. Percentage gain of LC-EDF over EDF
with varying sporadic delay limit Γ and |T | =
40

increased sporadic delay or lower best-case execution time
allows more sleep transitions, and hence the potential for
reduction in number of preemptions.

5 Future Work

The recent work of Bertogna and Baruah [5] addressed
the preemption reduction and proposed limited preemption
EDF scheduling for a sporadic task model. The static slack
available in the system is used to avoid unnecessary pre-
emptions, while guaranteeing schedulability. Opposed to
their approach, this work does not aim at delaying preemp-
tions as a general measure as proposed by Bertogna and
Baruah. Our work will rather exploit the slack in the system
for energy management purposes and hence, it may not re-
duce the number of preemptions to the same degree. How-
ever, as the reduction of preemptions comes as a side effect,
it is indeed a welcome improvement.

As a future consideration, we are interested to find the
bounds on the number of preemptions saved while delay-
ing the schedule with sleep intervals. The main target is to
analytically relate a sleep interval with the number of pre-
emptions. Moreover we will investigate other sleep-state
based energy management approaches with explicit slack
management, and whether those provide favourable guar-
anteeable reductions in the number of preemptions. Finally,
we will also explore how these reduced preemptions can be
exploited in the analysis and run-time of the system.

6 Conclusions

In this paper, we observed the effect of sleep state on the
number of preemption for dynamic priority systems. We
found that delaying the task execution of low priority tasks
and waiting for the higher priority tasks that can potentially

preempt the previous low priority tasks, reduces the number
of preemptions. This observation will allow the system de-
signer to further reduce the overall system energy consump-
tion, as preemptions impose an extra overhead on the energy
consumption. However, there is still need to develop more
efficient power saving approaches based on sleep states, as
LC-EDF itself is based on a very unrealistic assumption of
an external hardware to implement their algorithm. The in-
crease in leakage power consumption, efficient sleep state in
modern processor and their effect shown on number of pre-
emptions, reflects the importance of sleep states over DVFS.
Furthermore, DVFS increases the tasks execution time and
in turn probability of more preemptions.

References

[1] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency
scaling: The laws of diminishing returns,” in Proceedings of

the 2010 Workshop on Power Aware Computing and Systems,
(Vancouver, Canada), Oct 2010.

[2] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes,” in Proceedings of the 24th

IEEE Real-Time Systems Symposium, (Cancun, Mexico), Dec.
2003.

[3] C. Lin and S. A. Brandt, “Improving soft real-time perfor-
mance through better slack management,” in Proceedings of

the 26th IEEE Real-Time Systems Symposium, (Miami, FL,
USA), Dec. 2005.

[4] Y.-H. Lee, K. Reddy, and C. Krishna, “Scheduling techniques
for reducing leakage power in hard real-time systems,” in Pro-

ceedings of the 15th Euromicro Conference on Real-Time Sys-

tems, pp. 105 – 112, jul. 2003.
[5] M. Bertogna and S. Baruah, “Limited preemption edf schedul-

ing of sporadic task systems,” Industrial Informatics, IEEE

Transactions on, vol. 6, pp. 579 –591, Nov. 2010.

