

Team Automata: Overview and Roadmap

Conference Paper

CISTER-TR-240604

Maurice H. ter Beek

Rolf Hennicker

José Proença

Conference Paper CISTER-TR-240604 Team Automata: Overview and Roadmap

© CISTER Research Center
www.cister-labs.pt

1

Team Automata: Overview and Roadmap

Maurice H. ter Beek, Rolf Hennicker, José Proença

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Team Automata is a formalism for interacting component-based systems proposed in 1997, whereby multiple

sending and receiving actions from concurrent automata can synchronise. During the past 25+ years, team

automata have been studied and applied in many different contexts, involving 25+ researchers and resulting in

25+ publications. In this paper, we first revisit the specific notion of synchronisation and composition of team

automata, relating it to other relevant coordination models, such as Reo, BIP, Contract Automata, Choreography

Automata, and Multi-Party Session Types. We then identify several aspects that have recently been investigated
for team automata and related models. These include communication properties (which are the properties of

interest?), realisability (how to decompose a global model into local components?) and tool support (what has
been automatised or implemented?). Our presentation of these aspects provides a snapshot of the most recent

trends in research on team automata, and delineates a roadmap for future research, both for team automata and
for related formalisms.

Team Automata: Overview and Roadmap

Maurice H. ter Beek1(�) , Rolf Hennicker2, and José Proença3

1 CNR–ISTI, Pisa, Italy, maurice.terbeek@isti.cnr.it
2 LMU Munich, München, Germany, hennicker@ifi.lmu.de

3 CISTER and University of Porto, Porto, Portugal, jose.proenca@fc.up.pt

Abstract. Team Automata is a formalism for interacting component-
based systems proposed in 1997, whereby multiple sending and receiving
actions from concurrent automata can synchronise. During the past 25+

years, team automata have been studied and applied in many different
contexts, involving 25+ researchers and resulting in 25+ publications. In
this paper, we first revisit the specific notion of synchronisation and com-
position of team automata, relating it to other relevant coordination mod-

els, such as Reo, BIP, Contract Automata, Choreography Automata, and
Multi-Party Session Types. We then identify several aspects that have
recently been investigated for team automata and related models. These
include communication properties (which are the properties of interest?),
realisability (how to decompose a global model into local components?)
and tool support (what has been automatised or implemented?). Our pre-
sentation of these aspects provides a snapshot of the most recent trends
in research on team automata, and delineates a roadmap for future re-
search, both for team automata and for related formalisms.

1 Introduction

Team automata (TA) were first proposed at the 1997 ACM SIGGROUP Con-
ference on Supporting Group Work [82] for modelling components of groupware
systems and their interconnections. They were inspired by Input/Output (I/O)
automata [110] and in particular inherit their distinction between internal and
external (i.e., input and output) actions used for communication with the envi-
ronment (i.e., other I/O automata). Technically, team automata are an exten-
sion of I/O automata, since a number of the restrictions of I/O automata were
dropped for more flexible modelling of several kinds of interactions in groupware
systems. The underlying philosophy is that automata cooperate and collaborate
by jointly executing (synchronising) transitions with the same action label (but
possibly of different nature, i.e., input or output) as agreed upon upfront. They
can be composed using a synchronous product construction that defines a unique
composite automaton, the transitions of which are exactly those combinations
of component transitions that represent a synchronisation on a common action
by all the components that share that action. The effect of a synchronously ex-
ecuted action on the state of the composed automaton is described in terms of
the local state changes of the automata that take part in the synchronisation.
The automata not involved remain idle and their current states are unaffected.

http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-0971-8919

Team automata were formally defined in Computer Supported Cooperative
Work (CSCW)—The Journal of Collaborative Computing [41], in terms of com-
ponent automata that synchronise on certain executions of actions. Unlike I/O
automata, team automata impose hardly any restrictions on the role of actions
in components and their composition is not limited to the synchronous product.
Composing a team automaton requires defining its transitions by providing the
actions and synchronisations that can take place from the combined states of
the components. Each team automaton is thus a composite automaton defined
over component automata. However, a given fixed set of component automata
does not define a single unique team automaton, but rather a range of team au-
tomata, one for each choice of the team’s transitions (individual or synchronising
transitions from the component automata). This is in contrast with the usual
synchronous product construction. The distinguishing feature of team automata
is this very loose nature of synchronisation according to which specific synchro-
nisation policies can be determined, defining how many component automata
can participate in the synchronised execution of a shared external action, either
as a sender (i.e., via an output action) or as a receiver (i.e., via an input action).
This flexibility makes team automata capable of capturing in a precise manner
a variety of notions related to coordination in distributed systems (of systems).

To illustrate this, consider the Race example in Fig. 1, borrowed from [31],
which is meant to model a controller Ctrl that wants to simultaneously send to
runners R1 and R2 a start message, after which it is able to receive from each
runner separately a finish message once that runner individually has run. Here
and in all subsequent examples and figures, components have exactly one initial
state, indicated by a small incoming arrow head, and typically denoted by 0,
and external actions may be prefixed by “!” (for output) or “?” (for input).

It is important to note that the synchronous product (as used in I/O au-
tomata and many other formalisms) of these three automata has a deadlock:
after synchronisation of the three start transitions, Ctrl is blocked in state 1 until
both R1 and R2 have executed their run action; at that point, full synchronisation
of the finish transitions leads to a deadlock, with Ctrl in state 2 and R1 and R2

in their initial state. Team automata allow to exclude the latter synchronisation,
yet at the same time enforcing the full synchronisation of start.

Ctrl =
0

2

1

!start

?finish?finish

R1 = 0

1

2

?start !run

!finish

R2 = 0

1

2

?start !run

!finish

Fig. 1: Race example: a controller Ctrl and two runners R1 and R2

Contribution We first revisit the specific notion of synchronisation and com-
position of team automata (Sect. 2). Next, we relate team automata to other
coordination models frequently presented at the COORDINATION conferences,
such as Reo, BIP, Contract Automata, Choreography Automata, and Multi-
Party Session Types (cf., e.g., [10, 11, 20, 22, 31, 46]), inspired by a preliminary
comparison in [120] (Sect. 3). We compare them by giving for each formalism
(1) the definition, means of (2) composition (via synchronisation), (3) a model of
the Race example, (4) a brief relation with team automata, and (5) tool support.

2

Table 1: Coordination formalisms and aspects analysed in this paper

C
o

o
rd

in
a
ti

o
n

F
o
rm

a
li

sm
(S

e
c
ti

o
n

s
2

&
3

)

C
o
m

m
u

n
ic

a
ti

o
n

P
ro

p
e
rt

ie
s

(S
e
c
ti

o
n

4
)

R
e
a
li

sa
b

il
it

y
(S

e
c
ti

o
n

5
)

V
e
ri

fi
ca

ti
o
n

(S
e
c
ti

o
n

s
4

&
5

)
S

u
p

p
o
rt

in
g

T
o

o
ls

(S
e
c
ti

o
n

s
3

,
4

&
5

)
V

a
ri

a
b

il
it

y
(S

e
c
ti

o
n

6
)

D
a
ta

(S
e
c
ti

o
n

6
)

Team Automata [41,82] ✓ ✓ ✓ ✓ ✓

Reo via Port Automata [2, 102] ✓ ✓ ✓ ✓

BIP [26,64] ✓ ✓ ✓ ✓

Contract Automata [18,24] ✓ ✓ ✓ ✓ ✓

Choreography Automata [10,12] ✓ ✓ ✓ ✓

Multi-Party Session Types [127,128] ✓ ✓ ✓ ✓

We then focus on two aspects of team automata that we investigated during the
last five years: communication properties (Sect. 4) and realisability (Sect. 5).

§4 We report results on compliance with communication requirements in terms
of receptiveness (no message loss) and responsiveness (no indefinite waiting),
give a thorough comparison with other compatibility notions, incl. deadlock-
freedom, and give a roadmap for future work on communication properties.

§5 We report results on the decomposition (realisability) of a global interaction
model in terms of a (possibly distributed) system of component automata
coordinated according to a given synchronisation type specification. In par-
ticular, we provide a revised and extended comparison of our approach with
that of Castellani et al. [73] and a roadmap for future work on realisability.

Finally, we mention other aspects of team automata and of some of the related
coordination models (Sect. 6) and conclude (Sect. 7). Table 1 shows the relations
between the formalisms and aspects discussed in this paper. Fig. 2 summarises
this paper’s contribution. Appendix A lists selected team automata publications.

Realisation (§5)

c
b

• •
go!

done?

a

Local
Components

•

•

•

. . .

. . .

a →b:go

c →b:stop

Global
Model

•

•

•

•

. . .

. . .

. . .

a →b:go

a →b:go

c →b:stop

Team Automaton

Synchronisation (§2)
Communication
Properties (§4)

Synchronised
Parallel Processes

Logical Formulas|=

Verification (§4)

Systems with Variability (§6)

encode

lift

Fig. 2: Aspects of team automata addressed in this paper

3

2 Team Automata in a Nutshell

Team automata were originally introduced by Ellis [82] and formally defined
in [41]. They form an automaton model for systems of reactive components
that differentiate input (passive), output (active), and internal (privately active)
actions. In this section, we recall the basic notions of (extended) team automata.

A labelled transition system (LTS) is a tuple L = (Q, q0, Σ, E) such that Q is
a finite set of states, q0 ∈ Q is the initial state, Σ is a finite set of action labels,
and E ⊆ Q × Σ × Q is a transition relation. Given an LTS L, we write q

a
−→L q′,

or shortly q
a
−→ q′, to denote (q, a, q′) ∈ E. Similarly, we write q

a
−→L to denote

that a is enabled in L at state q, i.e., there exists q′ ∈ Q such that q
a
−→ q′. For

Γ ⊆ Σ, we write q
Γ
−→∗ q′ if there exist q

a1−→ q1
a2−→ · · ·

an−−→ q′ for some n ≥ 0

and a1, . . . , an ∈ Γ . A state q ∈ Q is reachable by Γ if q0
Γ
−→∗ q, it is reachable if

q0
Σ
−→∗ q. The set of reachable states of L is denoted by R(L).

CA A component automaton (CA) is an LTS A = (Q, q0, Σ, E) such that
Σ = Σ? ⊎ Σ! ⊎ Στ is a set of action labels with disjoint sets Σ? of input actions,
Σ! of output actions, and Στ of internal actions. Cf. Fig. 1 for examples of CA.

Systems A system is a pair S = (N , (An)n∈N), with N a finite, nonempty
set of names and (An)n∈N an N -indexed family of CA An = (Qn, q0,n, Σn, En).
Any system S induces an LTS defined by lts(S) = (Q, q0, Λ(S), E(S)), where
Q =

∏

n∈N Qn is the set of system states, q0 = (q0,n)n∈N is the initial system
state, Λ(S) is the set of system labels, and E(S) is the set of system transitions.
Each system state q ∈ Q is an N -indexed family (qn)n∈N of local CA states
qn ∈ Qn. The definitions of Λ(S) and E(S) follow after that of system action.

System Actions The set of system actions Σ =
⋃

n∈N Σn determines ac-
tions that will be part of system labels. Within Σ we identify Σ• =

⋃

n∈N Σ?
n ∩

⋃

n∈N Σ!
n as the set of communicating actions. Hence, an action a ∈ Σ is com-

municating if it occurs in (at least) one set Σk of action labels as an input action
and in (at least) one set Σℓ of action labels as an output action. The system
is closed if all non-communicating actions are internal component actions. For
ease of presentation, we assume in this paper that systems are closed.

System Labels We use system labels to indicate which components participate
(simultaneously) in the execution of a system action. There are two kinds of
system labels. In a system label of the form (out, a, in), out represents the set of
senders of outputs and in the set of receivers of inputs that synchronise on the
action a ∈ Σ•. Either out or in can be empty, but not both. A system label of
the form (n, a) indicates that component n executes an internal action a ∈ Στ

n .
Formally, the set Λ(S) of system labels of S is defined as follows:

Λ(S) = { (out, a, in) | ∅ ̸= (out ∪ in) ⊆ N , ∀n∈out · a ∈ Σ!
n, ∀n∈in · a ∈ Σ?

n }

∪ { (n, a) | n ∈ N , a ∈ Στ
n }

Note that Λ(S) depends only on N and on the sets Σn of action labels for each
n ∈ N . If out = {n} is a singleton, we write (n, a, in) instead of ({n}, a, in), and

4

similarly for singleton sets in. In all figures and examples, interactions (out, a, in)
are presented by the notation out → in : a and internal labels (n, a) by n : a. Sys-
tem labels provide an appropriate means to describe which components in a
system execute, possibly together, a computation step, i.e., a system transition.

System Transitions A system transition t∈E(S) has the form (qn)n∈N
λ
−→lts(S)

(q′
n)n∈N such that λ ∈ Λ(S) and

– either λ = (out, a, in) and:
• qn

a
−→An

q′
n, for all n ∈ out ∪ in, and qm = q′

m, for all m ∈ N \(out ∪ in);
– or λ = (n, a), a ∈ Στ

n is an internal action of some component n ∈ N , and:
• qn

a
−→An

q′
n and qm = q′

m, for all m ∈ N \{n}.

We write Λ and E instead of Λ(S) and E(S), respectively, if S is clear from the
context. Surely, at most the components that are in a local state where action a
is locally enabled can participate in a system transition for a. Since, by definition
of system labels, (out∪in) ̸= ∅, at least one component participates in any system

transition. Given a system transition t = q
λ
−→lts(S) q′, we write t.λ for λ.

Example 1. The Race system in Fig. 1 has both, desired system transitions

such as (0, 0, 0)
(Ctrl,start,{R1,R2})
−−−−−−−−−−−→ (1, 1, 1) and (1, 2, 2)

(R1,finish,Ctrl)
−−−−−−−−→ (2, 0, 2), and

undesired ones like (0, 0, 0)
(Ctrl,start,∅)
−−−−−−−−→ (1, 0, 0), and (1, 2, 2)

({R1,R2},finish,Ctrl)
−−−−−−−−−−−−→

(2, 0, 0). The LTS of the Race system, denoted by lts(Race), contains all pos-
sible system transitions. As mentioned in the Introduction, the latter two are
undesired since the controller is supposed to start both runners simultaneously,
whereas they should finish individually. These and other system transitions will
be discarded based on synchronisation restrictions for teams considered next. ▷

Team Automata Synchronisation types specify which synchronisations of
components are admissible in a specific system S. A synchronisation type (O, I) ∈
Intv×Intv is a pair of intervals O and I which determine the number of outputs
and inputs that can participate in a communication. Each interval has the form
[min, max] with min ∈ N and max ∈ N ∪ {∗} where ∗ denotes 0 or more partic-
ipants. We write x ∈ [min, max] if min ≤ x ≤ max and x ∈ [min, ∗] if x ≥ min.

A synchronisation type specification (STS) over S is a function st : Σ• →
Intv×Intv that assigns to any communicating action a an individual synchroni-
sation type st(a). A system label λ = (out, a, in) satisfies st(a) = (O, I), denoted
by λ |= st(a), if |out| ∈ O ∧ |in| ∈ I . Each STS st generates the following subsets
Λ(S, st) of system labels and E(S, st) of corresponding system transitions.

Λ(S, st) = { λ ∈ Λ | λ = (out, a, in) ⇒ λ |= st(a) }

E(S, st) = { t ∈ E | t.λ ∈ Λ(S, st) }

Thus, for communicating actions, the set of system transitions is restricted to
those transitions whose labels respect the synchronisation type of their commu-
nicating action. For internal actions no restriction is applied, since an internal
action of a component can always be executed when it is locally enabled.

5

0, 0, 0 1, 1, 1 1, 2, 2

1, 2, 1

1, 1, 2

2, 0, 1

2, 1, 0

2, 0, 2

2, 2, 0

Ctrl → {R1, R2} : start R1 : run

R2 : run

R1 → Ctrl : finish

R2 : run

R2 → Ctrl : finish

R1 : run

R1 → Ctrl : finish
R2 → Ctrl : finish

R2 : run

R1 : run

R2 → Ctrl : finish

R1 → Ctrl : finish

Fig. 3: Team automaton of the Race system example in Fig. 1

Components interacting in accordance with an STS st over a system S are
seen as a team whose behaviour is represented by the (extended) team automaton
(TA) ta(S, st) generated over S by st and defined by the LTS

ta(S, st) = (Q, q0, Λ(S, st), E(S, st)).4

We write Λ(st) and E(st) instead of Λ(S, st) and E(S, st), respectively, if S
is clear from the context, and assume that Λ(st) ̸= ∅. Labels in Λ(st) are called
team labels and transitions in E(st) are called team transitions.

Example 2. For the Race system SRace in Fig. 1. we define the runners to start

simultaneously and finish individually by the STS stRace = {start 7→ ([1, 1], [2, 2]),
finish 7→ ([1, 1], [1, 1])}. The resulting TA ta(stRace, SRace) is shown in Fig. 3, with
interactions (n, a, m) written as n → m : a and internal labels (n, a) as n : a. ▷

3 Related Coordination Formalisms

In this section, we introduce a selection of formal coordination models and lan-
guages and compare them to team automata by providing, for each formalism,
(1) the definition of the variant considered here, (2) the definition of composition
(via synchronisation), (3) a possible model of our Race example in the formalism,
(4) a brief relation with team automata, and (5) existing tool support.

3.1 Reo via Port Automata

Reo [2, 96] is a coordination language to specify and compose connectors, i.e.,
patterns of valid synchronous interactions of ports of components or other con-
nectors. For example, a FIFO1 connector has two ports: a source port to receive
data and a sink port to send data. It initially allows the source port to interact
while blocking the sink port, after which it allows the sink port to interact while
blocking the source port. The duplicator connector has a single source port and
two sink ports, only allowing all ports to interact at the same time or none.

Constraint automata [7] is a reference model for Reo’s semantics [96]. We use
a simplified variant called port automata [102], which abstracts away from data
constraints, focusing on synchronisation and composition.

4 Starting with [44], we use the system labels (out, a, in) in Λ(S, st) as the actions in
team transitions of what we coined extended team automata (ETA). This is the main
difference with the ‘classical’ team automata from [41, 82] and subsequent papers,
where actions a ∈ Σ have been used in team transitions. However, to study commu-
nication properties [36], compositionality [44] and realisability [47], explicit rendering
of the CA that actually participate in a transition of the team turned out useful.

6

Definition A port automaton (PA) P = (Q, Σ, →, Q0) consists of a set of
states Q, a set of ports Σ, a transition relation → ⊆ Q × 2Σ × Q, and a set of
initial states Q0 ⊆ Q. We have (q, {a, b}, q′) ∈ → when the PA can evolve from
state q to q′ by simultaneously executing ports a and b.

Composition Two PA (Q1, Σ1, →1, Q0,1) and (Q2, Σ2, →2, Q0,2) with shared
ports and disjoint states can be composed by forcing the shared ports to synchro-
nise. Then the composition yields a new PA (Q1 × Q2, Σ1 ∪ Σ2, →, Q0,1 × Q0,2)
where → is defined by the following rules (and the symmetric of the second rule):

q1
σ1−→1 q′

1 q2
σ2−→2 q′

2 σ1 ∩ Σ2 = σ2 ∩ Σ1

⟨q1, q2⟩
σ1∪σ2−−−−→ ⟨q′

1, q′
2⟩

q1
σ1−→1 q′

1 σ1 ∩ Σ2 = ∅

⟨q1, q2⟩
σ1−→ ⟨q′

1, q2⟩

Note that the condition σ1 ∩ Σ2 = σ2 ∩ Σ1 intuitively means that any shared
action of σ1 must be available in σ2 as well, and vice versa.

Race in Port Automata Unlike TA, Reo’s focus is on building connectors
by composing simpler connectors, instead of composing components, to produce
a system. Hence one could produce a Reo connector by composing a set of
simpler primitive connectors that, once composed, would allow only the valid
interaction patterns of our Race example. A possible connector is depicted in
Fig. 4, borrowed from [120], which composes two FIFO1 connectors (), two
synchronous barriers (), three replicators (after startCtrl, finishR1, and
finishR2), and one interleaving merger (before finishCtrl). Each has a PA for
its semantics, and their composition yields the PA depicted on the right of Fig. 4.

Ctrl

R1

R2

startCtrl

finishCtrl

finishR1

startR1

finishR2

startR2

0

3

2

1
{startCtrl, startR1, startR2}

{finishCtrl, finishR1}{finishCtrl, finishR2}

{finishCtrl, finishR2}{finishCtrl, finishR1}

Fig. 4: Reo connector for the Race example (left) and its semantics as a PA
(right), after hiding internal ports shared among sub-connectors

Brief Relation with TA Many variants of constraint automata exist [96,
Sect. 3.2.2], some distinguishing inputs from outputs as in TA. Synchronisation
types in TA restrict the number of inputs and outputs of ports with shared
names; synchronisation in PA force how. No variant uses a similar notion to TA’s
synchronisation types, although they can be expressed using intermediate ports.

Tool Support There are tools to analyse, edit, visualise, and execute Reo
connectors. Analyses include model checking, using either the dedicated model
checker Vereofy [101] or encoding Reo into mCRL2 [103,119], and simulation of
extensions with parameters [121] and with reactive programming notions [123],
many accessible online at http://arcatools.org/reo. Editors and visualisation en-
gines include an Eclipse-based implementation [4] and editors based on JavaScript
that run in a browser [76, 131]. Execution engines for Reo include a Java-based
implementation [78] and a distributed engine using actors in Scala [122,124].

7

http://arcatools.org/reo

3.2 BIP without Priorities

BIP [26, 64] is formal language to specify architectures for interacting compo-
nents. A program describes the Behaviour of each component, the valid Inter-
actions between their ports, and the Priority among interactions. Multiple formal
models for specifying interactions exist, such as an algebra of connectors [64]. We
follow the formalisation of the operational semantics of Bliudze and Sifakis [64],
disregarding the priority aspect for simplicity. In this paper, ports of BIP are
called actions to facilitate the comparison with TA.

Definition A local behaviour B is given by an LTS (Q, q0, Σ, E), with set Q of
states, initial state q0, labels Σ for actions, and transition relation E : Q×Σ×Q.

Composition into a BIP Program A BIP program without priorities is
a pair consisting of (1) an N -indexed family of local behaviours (Bn)n∈N =
(Qn, q0,n, Σn, En), with pairwise disjoint action sets Σn, one for each agent n,
and (2) a set of valid interactions I where each interaction a ∈ I is a family
(an)n∈N such that N ⊆ N and an ∈ Σn, for all n ∈ N , and I is a set of
such interactions. The semantics of a BIP program BP is given by an LTS
lts(BP) = (

∏

n∈N Qn, (q0,n)n∈N , I, E), where E is defined by the following rule:

a = (an)n∈N ∈ I ∧ ∀n ∈ N :
(

qn
an−−→Bn

q′
n

)

∧ ∀n ∈ N \ N : qn = q′
n

(qn)n∈N
a
−→lts(BP) (q′

n)n∈N

Race in BIP The encoding of our Race example in BIP without priorities is de-
picted in Fig. 5. It consists of the three components on the left, where we use a set
notation for each interaction in I. This set I of valid interactions generalises the
synchronisation policies of TA, imposing all start actions to synchronise and the
finish actions to synchronise two at a time between the controller and one runner.
The LTS of the BIP program is the same as the PA on the right side of Fig. 4,
omitting the internal action run included in the TA model of the Race example.

0

2

1

startCtrl

finishCtrlfinishCtrl

Ctrl 0 2

startR1

finishR1

R1

0 2

startR2

finishR2

R2

startCtrl

finishCtrl

startR1

finishR1

startR2

finishR2

N = {Ctrl, R1, R2}

BP = ({BCtrl, BR1, BR2} , I)

I =

{

{startCtrl, startR1, startR2},
{finishCtrl, finishR1},
{finishCtrl, finishR2}

}

Fig. 5: Race example in BIP: individual components are labelled by actions,
restricted to the interactions allowed by I, imposed by the (stateless) connector

Brief Relation with TA We have previously [31] compared TA with BIP [26],
describing how some explicit patterns of interaction of BIP, such as broadcasts,
are modelled in TA. In this paper, we used precise formalisations of TA and BIP
without priorities [104], presented in a similar style to facilitate the comparison.

8

There are some technical core differences between these formalisations of BIP
and TA. BIP’s formalisation does not include explicit internal actions, although
they do exist at implementation level (e.g., in JavaBIP [63]). BIP’s synchronisa-
tion mechanism ignores inputs and outputs. However, the flow of data at each
interaction is sometimes described orthogonally [63], where ports can either be
enforceable by the environment (similar to input actions) or spontaneous by the
components (similar to output actions). A more thorough comparison of the ex-
pressiveness of different BIP formalisations is given by Baranov and Bliudze [8].
These differences reflect a different focus: less emphasis on communication prop-
erties (Sect. 4), internal behaviour of local components, and realisability notions
(Sect. 5); yet more focus on the exploration of different formalisms to compose in-
teractions and programs, supported by tools to connect to running systems [63].

Similar to TA’s synchronisation types, BIP has a formalisation parameterised
on the number of components [111]. Ports can have multiple instances, and are
enriched with a bound on the number of allowed agents they can synchronise
with, and a bound on the number of interactions they can be involved in.

Tool Support Several tools exist for BIP, including verification tools that tra-
verse the state space of BIP programs [62] or use the VerCors model checker [61],
and a toolset LALT-BIP for verifying freedom from global and local deadlocks [6].
BIP also has a C++ reference engine [27] and a Java engine called JavaBIP [63].

3.3 Contract Automata

Contract automata [18,24] are a finite state automata dialect proposed to model
multi-party composition of contracts that can perform request or offer actions,
which need to match to achieve agreement among a composition of contracts.
Contract automata have been equipped with variability in [15,19] by modalities
to specify when an action must be matched (necessary) and when it may be
withdrawn (optional) in a composition, and with real-time constraints in [17]. We
first give a definition without modalities, silent actions or variability constraints.

Definition Let v = [e1, . . . , en] be a vector of rank n ≥ 1 and let v(i) denote its
ith element. A contract automaton of rank n ≥ 1 is a tuple (Q, q0, Σr, Σo, →, F)
such that Q = Q1 × . . . × Qn is the product of finite sets of states, q0 ∈ Q is
the initial state, Σr is a finite set of requests, Σo is a finite set of offers, → ⊆
Q × (Σr ∪ Σo ∪ {−})n × Q is a set of transitions constrained as follows next, and
F ⊆ Q a the set of final states. A transition (q, a, q′) ∈ → is such that a is either
a single offer (i.e., ∃i . a(i) = !a ∈ Σo and ∀j ̸= i . a(j) = −), a single request
(i.e., ∃i . a(i) = ?a ∈ Σr and ∀j ̸= i . a(j) = −) or a single pair of matching
request and offer (i.e., ∃i, j . a(i) = !a ∧ a(j) = ?a and ∀k ̸= i, j . a(k) = −), and
∀i . a(i) = − =⇒ q(i) = q′(i).

Next we define contract automata with committed states as introduced in [21]:
whenever a state q has a committed element q(i), then all outgoing transitions
of q have a label a such that a(i) ̸= −, i.e., whenever the intermediate state
of two concatenated transitions is committed, the two transitions are executed
atomically: after the first transition has been executed, the second transition is
executed prior to any other transition of any other service in the composition.

9

Composition Composition of contracts is rendered through the composition
of their contract automaton models by means of the composition operator ⊗, a
variant of the synchronous product, which interleaves or matches the transitions
of the component (contract) automata such that whenever two components are
enabled to execute their respective request/offer action, then the match must
happen. A composition is in agreement if each request is matched with an offer.

Race in Contract Automata We use contract automata with committed
states to mimick multi-party synchronisation (cf. Fig. 6). In their composition in
Fig. 7, states [C, 1, 0] and [C, 0, 1] have a committed state, meaning that only out-
going transitions in which Ctrl changes state are permitted. In [21], silent (τ) ac-
tions are introduced, but we choose to model internal run actions as offer actions
!run (which do not interfere with agreement) rather than silent actions τrun.

Ctrl = 0

C

2

1

!start !start

?finish?finish

R1 = 0

1

2

?start !run

!finish

R2 = 0

1

2

?start !run

!finish

Fig. 6: Contract automata with committed states for the Race example

Brief Relation with TA In [25], contract automata are compared with com-
municating machines [66]. To guarantee that a composition corresponds to a
well-behaving (i.e., realisable) choreography, a branching condition is used. This
condition requires contract automata to perform their offers independently of the
other component automata in the composition. As noted in [15], this condition
is related to the phenomenon of state sharing in team automata [83], meaning
that system components influence potential synchronisations through their local
(component) states even if not involved in the actual global (system) transition.
While a synchronous product of (I/O) automata can directly be seen as a Petri
net, for team automata this only holds for non-state-sharing vector team au-
tomata [52, 68]. The relation between the branching condition of contract au-
tomata and (non-)state-sharing in (vector) team automata needs further study.

Tool Support Contract automata are supported by a software API called Con-
tract Automata Library (CATLib) [14], which a developer can exploit to spec-
ify contract automata and perform operations like composition and synthesis.
The synthesis operation uses supervisory control theory [125], properly revisited
in [23] for synthesising orchestrations and choreographies of contract automata.
An application developed with CATLib is thus formally validated by-construction
against well-behaving properties from the theory of contract automata [15,18,23].
CATLib was designed to be easily extendable to support related formalisms; it
currently supports synchronous communicating machines [105].

3.4 Choreography Automata

Choreography Automata (ChorAut) [10] are automata with labels that describe
interactions, including a sender, a receiver, and a message name. This section is
less detailed than the previous ones due to the similarity with contract automata.

10

0
0
0

C

1
0

C

0
1

1
1
1

1
2
1

1
1
2

2
0
1

1
2
2

2
1
0

2
0
2

2
2
0

[!start, ?start, −]

[!start, −, ?start]

[!start, −, ?start]

[!start, ?start, −]

[−, !run, −]

[−, −, !run]

[?fin, !fin, −] [−, −, !run]
[−, −, !run] [?fin, !fin, −]

[?fin, −, !fin][−, !run, −]

[?fin, −, !fin] [−, !run, −]

[?fin, −, !fin]

[?fin, !fin, −]

Fig. 7: Composition Ctrl ⊗ R1 ⊗ R2 of contract automata

Race in ChorAut A ChorAut model of our Race example without the internal
run actions is depicted in Fig. 8.

0

2

1

3

5

4
Ctrl → R1 : start

Ctrl → R2 : start

Ctrl → R2 : start

Ctrl → R1 : start

R1 → Ctrl : finish

R2 → Ctrl : finish

R2 → Ctrl : finish

R1 → Ctrl : finish

Fig. 8: ChorAut of the Race example (without internal run actions)

Brief Relation with TA Internal actions are not captured by ChorAut (as in
Reo and BIP’s formalisations) and only binary synchronisations are supported
(as in contract automata): each interaction has a single sender (the agent that
offers) and a single receiver (the agent that requests). Desirable properties of
ChorAut include deadlock-freedom, among others, focused on the language ac-
cepted by these automata [11]. Consequently, properties that rely on observa-
tional equivalence notions such as bisimilarity are not covered by these analyses.

Tool Support Corinne [118] can be used to visualise ChorAut and to automa-
tise operations like projection, composition, and checking for well-formedness.

3.5 Synchronous Multi-Party Session Types

Multi-Party Session Types (MPST) [127] are a family of formalisms based on cal-
culi to describe communication protocols between multiple agents (multi-party).
A session in these calculi represents a communication channel shared by a group
of agents, to which they can read or write data. In MPST, each agent has a be-
havioural type, which describes the allowed patterns of reading-from and writing-
to sessions, providing some compile-time guarantees for the concrete agents to
follow the communication patterns. Most approaches distinguish (1) a global
type, often a starting point, describing the composed system; and (2) the local
types, often derived from the global type, describing the local view of each agent.

This paper uses the definitions of a simple synchronous MPST (SyncMPST)
used by Seviri and Dezani-Ciancaglini [128] that only supports binary synchro-
nisations. Other SyncMPST exist, some supporting multiple receivers [58] or
multiple senders [95]. We opt to use a simpler model that can be compactly
described and provides enough insights to relate SyncMPST with TA.

Definition The syntax of a global type G, a local type L, and a system S are
given by the grammars below. G and L definitions are interpreted coinductively,

11

i.e., their solutions are both minimal and maximal fixpoints.

G ::= end | p → q : Γ L ::= 0 | p!Λ | p?Λ S ::= p ▷ L

Γ ::= {ai.Gi}1≤i≤k Λ ::= {ai.Li}1≤i≤k | S ∥ S

The following conditions must hold: (1) branches Γ and Λ must have disjoint
initial messages ai; (2) agents p in S appearing in the left of p ▷ L must be dif-
ferent and each L must not include p; and (3) for every p → q : Γ and r /∈ {p, q},
r should not distinguish any choice in Γ . The third point captures projectabil-
ity [128], which is not formalised here and is closely related to realisability (cf.
Sect. 5). Whenever clear we omit curly brackets and trailing end and 0.

The semantics of a global type is given by the rules below. The semantics
of a system is given by the composition of local types presented in the next
paragraph. The system obtained by projecting a global type is guaranteed to
accept the same language as the global type [128].

p → q : {a.G, . . . }
p→q:a
−−−−→ G

{p, q} ∩ {r, s} = ∅ ∀1≤i≤k : Gi
p→q:b
−−−−→ G′

i

r → s : {ai.Gi}1≤i≤k
p→q:b
−−−−→ r → s : {ai.G

′
i}1≤i≤k

Composition A system S of agents, each with a given local type, evolves
according to the following rule:

p ▷ q!{a.Lp, . . .} ∥ q ▷ p?{a.Lq, . . .} ∥ S
p→q:a
−−−−→ p ▷ Lp ∥ q ▷ Lq ∥ S

Race in SyncMPST The Race example cannot be directly modelled using
this SyncMPST. We model a variant in Fig. 9, using only binary synchronisation
and using distinct start1 and start2 to differentiate the choice in the branch. Some
other SyncMPST approaches also consider non-binary synchronisations [58,95],
which could support the synchronisation of start with all three participants.
There is also a need to prefix every choice with a concrete message between
participants, leading to the need for distinguishing start1 from start2. This re-
quirement is common among most MPST, which lead to our variant of the Race
where an early choice is taken with start1 or start2 about which runner finishes
first. For simplicity our variation assumes that R1 receives the start earlier. Al-
ternatively we could have allowed either runners to start, as done with contract
automata (Fig. 6) and choreography automata (Fig. 8). This would lead to a
duplication of the code (one for each option) and to the introduction of a new
initial action that prefixes the choice of which runner starts.

Brief Relation with TA SyncMPSTs support a relatively strict subset of
interaction patterns. Consequently, many useful properties may be syntactically
verified, like deadlock-freedom or the preservation of behaviour after projection,
at the cost of expressivity.

Regarding internal behaviour, neither global nor local types support internal
actions. As an alternative to internal actions in types, many MPST variations
describe a separate syntax for processes with data and control structures, and
define well-typedness w.r.t. local types (cf., e.g., Bejleri and Yoshida [58]).

12

G = Ctrl → R1 : start.Ctrl → R2 :

{

start1.(R1 → Ctrl : finish.R2 → Ctrl : finish.G),
start2.(R2 → Ctrl : finish.R1 → Ctrl : finish.G)

}

S = Ctrl ▷ LCtrl ∥ R1 ▷ LR1 ∥ R2 ▷ LR2

LCtrl = R1!start.R2!
{

start1.(R1?finish.R2?finish.LCtrl) , start2.(R2?finish.R1?finish.LCtrl)
}

LR1 = Ctrl?start.Ctrl!finish.LR1

LR2 = Ctrl?
{

start1.Ctrl!finish.LR2 , start2.Ctrl!finish.LR2

}

Fig. 9: Global type (G) and system (S) of a Race example variant in SyncMPST

A rich variety of tools are built over variants of MPST. A recent survey by
Yoshida [135] of MPST implementations over different programming languages
reflects the focus on producing trustworthy distributed implementations.

3.6 Other Coordination Formalisms

Many other coordination formalisms involve similar notions of composition and
synchronisation of agent behaviour. These include the specification languages
provided by model checkers such as Uppaal [57,107] and mCRL2 [5,85], as well
as more generic formalisms like Petri nets [60,126], message sequence charts [89,
93], event structures [116,134] and I/O automata [99,110]. Without pretending
completeness, we discuss some of these in this section.

Uppaal accepts systems modelled by (stochastic, timed) automata, with match-
ing input-output actions that must synchronise (either 1-to-1 or 1-to-many).
The latter requires a sender to synchronise with all, possibly zero, avail-
able receivers at that time, which differs from the synchronisation policies
of TA. Contract automata’s committed states stem from Uppaal’s concept
of committed states. Uppaal also provides partial support for priorities over
actions, but not over interactions as in BIP.

mCRL2 accepts systems modelled as a parallel composition of algebraic pro-
cesses, with special operators to allow the synchronous execution of groups
of actions, and the restriction of given actions. This is powerful enough to
enumerate all valid synchronisations between concurrent agents, yet quite
verbose, which we exploited to verify communication properties of TA [36].

Petri nets come in many flavours, and provide a compact representation of a
global model of interaction that avoids the explosion of states caused by the
interleaving of independent actions. In [52], a subclass of TA—non-state-
sharing vector team automata—has been encoded into Individual Token Net
Controllers—a model of vector-labeled Petri nets—covering TA in which
the synchronisation of a set of agents cannot be influenced by the remaining
agents (cf. Sect. 3.3). Zero-safe nets are another extension of Petri nets with
a transactional mechanism that distinguishes observable from hidden states,
used to formalise Reo [74]. This extension could also be used to model TA’s
synchronisation mechanism, although the analysis of these nets is non-trivial.

13

MSC (Message Sequence Charts) are visual dia-
grams commonly used to describe scenarios with
interacting agents which have historically been
used to describe telecommunication protocols.
They are not always precise, and can be en-
riched with constructs to denote loops, choices,
and parallel threads. On the right, we include
an informal MSC that captures our Race exam-
ple, using a loop and a parallel block. Katoen
and Lambert [98] have used pomsets to formalise
MSC, where each possible trace is described as a
(multi-)set of actions with a partial order. Guan-
ciale and Tuosto used a pomset semantics for
choreographies to reason over realisability [87],
and we extended pomsets with a hierarchical

start

start

run

finish

run

finish

par

loop

Ctrl R1 R2

structure [80], reasoned over realisability, and compared it to event struc-
tures [116] (often used to give semantics to Petri nets). How to use a pomset
variation to represent global models for TA is currently being investigated.

I/O automata and related formalisms like I/O systems [97], interface automa-
ta [77], reactive transition systems [70], interacting state machines [117], and
component-interaction (CI) automata [67] all distinguish input, output, and
internal actions. However, I/O automata are input-enabled: in every state
of the automaton every input action of the automaton is enabled (i.e., exe-
cutable). In fact, team automata are a generalisation of I/O automata [50].
All formalisms define composition as the synchronous product of automata
except for interface automata [77], which restrict product states to compat-
ible states, and CI automata, which were specifically designed to have this
distinguishing feature of team automata. CI automata however restrict com-
munication to binary synchronisation between a pair of input and output
actions. Contrary to ‘classical’ team automata, CI automata use system la-
bels to preserve the information about their communication, a feature which
inspired the introduction of extended team automata in [44] (cf. Footnote 4).

4 Communication Properties

Compatibility of components is an important issue for systems to guarantee suc-
cessful (safe) communication [13, 31, 32, 46, 65, 69, 71, 79], i.e., free from message
loss (output actions not accepted as input by some other component) and in-
definite waiting (for input to be received in the form of an appropriate output
action provided by another component). In [31], we identified representative syn-
chronisation types to classify synchronisation policies that are realisable in team
automata (e.g., binary, multicast and broadcast communication, synchronous
product) in terms of ranges for the number of sending and receiving components
participating in synchronisations. Moreover, we provided a generic procedure
to derive, for each synchronisation type, requirements for receptiveness and for
responsiveness of team automata that prevent outputs not being accepted and
inputs not being provided, respectively, i.e., guaranteeing safe communication.

14

This allowed us to define a notion of compatibility for team automata in terms
of their compliance with communication requirements, i.e., receptiveness and
responsiveness. A team automaton was said to be compliant with a given set
of communication requirements if in each of its reachable states, the desired
communications can immediately occur; it was said to be weakly compliant if
the communication can eventually occur after some internal actions have been
performed (akin to weak compatibility [28, 90] or agreement of lazy request ac-
tions [15]). Since communication requirements are derived from synchronisation
types, we get a family of compatibility notions indexed by synchronisation types.

We revisited the definition of safe communication in terms of receptive- and
responsiveness requirements in [44,46], due to limitations of our earlier approach.

First, the assignment of a single synchronisation type to a team automata was
deemed too restrictive, so we decided to fine tune the number of synchronising
sending and receiving components per action. For this purpose we introduced,
in [44], synchronisation type specifications which assign a synchronisation type
individually to each communicating action. As we have seen in Section 2, such
specifications uniquely determine a team automaton. Any synchronisation type
specification generates communication requirements to be satisfied by the team.

Receptiveness Here is the idea. If, in a reachable state q of ta(S, st), a group
{ An | n ∈ out } of CA with ∅ ̸= out ⊆ N is (locally) enabled to perform an out-

put action a, i.e., for all n ∈ out holds a ∈ Σ!
n and qn

a
−→An

, and if moreover both
(1) the number of CA in out fits that of the senders allowed by the synchronisa-
tion type st(a) = (O, I), i.e., |out| ∈ O, and (2) the CA need at least one receiver
to join the communication, i.e., 0 /∈ I , then we get a receptiveness requirement,
denoted by rcp(out, a)@q. If out = {n}, we write rcp(n, a)@q for rcp({n}, a)@q.

Responsiveness For input actions, one can formulate responsiveness require-
ments with the idea that enabled inputs should be served by appropriate outputs.
The expression rsp(in, a)@q is a responsiveness requirement if q ∈ R(ta(S, st)),

for all n ∈ in we have a ∈ Σ?
n and qn

a
−→An

, and |in| ∈ I , 0 /∈ O for st(a) = (O, I).

Second, we realised that even the weak compliance notion is too restrictive
for practical applications. So, in [44], we introduced a much more liberal notion.

Compliance The TA ta(S, st) is compliant with a receptiveness requirement
rcp(out, a)@q if the group of components (with names in out) can find partners
in the team which synchronise with the group by taking (receiving) a as input. If
reception is immediate, then we speak of receptiveness; if the other components
may still perform arbitrary intermediate actions (i.e., not limited to internal
ones) before accepting a, then we speak of weak receptiveness. We now formally
define (weak) compliance, (weak) receptiveness and (weak) responsiveness.

The TA ta(S, st) is compliant with rcp(out, a)@q if ∃in . q
(out,a,in)
−−−−−→ta(S,st)

while it is weakly compliant with rcp(out, a)@q if ∃in . q
(Λ(st)\out)

∗ ; (out,a,in)
−−−−−−−−−−−−−→ta(S,st),

where Λ(st)\out denotes the set of team labels in which no component of out

participates. Formally, Λ(st)\out = { (out′, a, in) ∈ Λ(st) | (out′ ∪ in) ∩ out = ∅ }
∪ { (n, a) ∈ Λ(st) | n /∈ out }.

15

The TA ta(S, st) is compliant with rsp(in, a)@q if ∃out . q
(out,a,in)
−−−−−→ta(S,st),

while it is weakly compliant with rsp(in, a)@q if ∃out . q
(Λ(st)\in)∗ ; (out,a,in)
−−−−−−−−−−−−−→ta(S,st),

where st(Λ)\in = {(out, a, in′) ∈ st(Λ) | (out ∪ in′) ∩ in = ∅} ∪ {(n, a) ∈ st(Λ) |
n /∈ in} denotes the set of team labels in which no component of in participates.

TA: (Weak) Receptiveness The TA ta(S, st) is (weakly) receptive if for all
reachable states q ∈ R(ta(S, st)), the TA ta(S, st) is (weakly) compliant with
all receptiveness requirements rcp(out, a)@q established for q.

Example 3 (Receptiveness and Compliance). In the initial state (0, 0, 0) of the
Race team (cf. Fig. 3), there is a receptiveness requirement of the controller
who wants to start the competition, expressed by rcp(Ctrl, start)@(0, 0, 0) The
TA ta(Race, stRace) is compliant with this requirement. When the first runner
is in state 2, the desire to send finish leads to three receptiveness requirements:
rcp(R1, finish)@(1, 2, 1), rcp(R1, finish)@(1, 2, 2), and rcp(R1, finish)@(2, 2, 0). If
the second runner is in state 2, we get three more receptiveness requirements:
rcp(R2, finish)@(1, 1, 2), rcp(R2, finish)@(1, 2, 2), and rcp(R2, finish)@(2, 0, 2). The
TA ta(Race, stRace) is compliant also with these. ▷

Unlike output actions, the selection of an input action of a component is not
controlled by the component but by the environment, i.e., there is an external
choice. If, for a choice of enabled inputs {a1, . . . , an}, only one of them can
be supplied with a corresponding output of the environment this suffices to
guarantee progress of each component waiting for input.

TA: (Weak) Responsiveness The TA ta(S, st) is (weakly) responsive if for all
reachable states q ∈ R(ta(S, st)) and for all n ∈ N the following holds: if there
is a responsiveness requirement rsp(in, a)@q established for q with n ∈ in, then
the TA ta(S, st) is (weakly) compliant with at least one of these requirements.5

Example 4 (Responsiveness and Compliance). In the initial state (0, 0, 0) of
the Race team, there is a responsiveness requirement of the two runners who
want the competition to start, expressed by rsp({R1, R2}, start)@(0, 0, 0). The
TA ta(Race, stRace) is compliant with this requirement. When the controller is in
state 1, there are responsiveness requirements rsp(Ctrl, finish)@(1, q1, q2) for any
q1, q2 ∈ {1, 2}. In state (1, 1, 1), at least one run must happen before a finish is
sent; in all other cases, this requirement is immediately fulfilled. Hence, the TA
ta(Race, stRace) is weakly compliant. There are four more responsiveness require-
ments when the controller is in state 2, two of which are only weakly fulfilled. ▷

As far as we know, such powerful compliance notions for I/O-based, syn-
chronous component systems were not studied before. In case of open systems
the arbitrary immediate actions before a desired communication happens may
be output or input actions open to the environment. Then local communica-
tion properties could be violated upon composition with other team automata.

5 This version of (weak) responsiveness is slightly stronger than in our previous work,
driven by the comparison with local deadlock-freedom below.

16

This led us to consider composition of open team automata and to investigate
conditions ensuring compositionality of communication properties [33,44,45].

Roadmap A third limitation has so far not been tackled. In [46], we argued that
it may be the case that (local) enabledness of an action indicates only readiness
for communication and not so much that communication is required. Therefore,
to make this distinction between possible and required communication explicit,
we proposed to add designated final states to components, where execution can
stop but may also continue, in addition to states where progress is required. The
addition of final states to component automata has significant consequences for
the derivation of communication requirements and for our compliance notions,
which would have to be be adjusted accordingly.

Verification and Tool Support Automatically verifying communication prop-
erties is non-trivial, as it may involve traversing networks of interacting automata
with large state spaces. We pursued a different approach by providing a log-
ical characterisation of receptiveness and responsiveness in terms of formulas
of a (test-free) propositional dynamic logic [88] using (complex) interactions as
modalities (cf. [35, 36]). Verification of communication properties then relies on
model checking receptive- and responsiveness formulas against a system of com-
ponent automata taking into account a given synchronisation type specification.

We developed an open-source prototypical tool [56] to support our theory.
It implements a transformation of CA, systems, and TA into mCRL2 [5] pro-
cesses and of the characterising dynamic logic formulas into µ-calculus formulas.
The latter is straightforward, whereas the former uses mCRL2’s allow opera-
tor to suitably restrict the number of multi-action synchronisations such that
the semantics of systems of CA is preserved. Then we can automatically check
communication properties with the model-checking facilities offered by mCRL2,
which outputs the result of the formula as well as a witness or counterexample.

Related Work The genericity of our approach w.r.t. synchronisation policies
allows us to capture compatibility notions for various multi-component coor-
dination strategies. In the literature, compatibility notions are mostly consid-
ered for systems relying on peer-to-peer communication, i.e., all synchronisation
types are ([1,1],[1,1]). Our notion of receptiveness is inspired by the compat-
ibility notion of interface automata [77] and indeed both notions coincide for
closed systems and 1-to-1 communication. It also coincides with receptiveness
in [70]. Weak receptiveness is inspired by the notion of weak compatibility in [28]
and also corresponds to unspecified reception in the context of n-protocol com-
patibility in [79] and lazy request in contract automata [15]. We are not aware
of compatibility notions concerning responsiveness. In [70], it is captured by
deadlock-freedom and in [79] it is expressed by part of the definition of bidirec-
tional complementary compatibility which, however, does not support choice of
inputs as we do.

The relationship between deadlock-freedom, used in different variations in the
literature, and our communication properties is subtle. Note that the distinction
between input and output actions is not relevant for the deadlock notions and

17

that two types of deadlocks are often distinguished: global and local deadlocks
(cf., e.g., [6]). For the following discussion, we assume that the components
of a system have no final state (i.e., for each local state there is an outgoing
transition). We further assume that all local actions are external, i.e., input or
output, and that the synchronisation types of all output actions are ([1,1],[1,*])
and ([1,*],[1,1]) for all input actions. Then weak receptiveness together with
weak responsiveness of team automata implies (global) deadlock-freedom in the
sense of BIP [84] and the equivalent notion of stuck-freeness in MPST [127].
The weaker notion of deadlock-freedom in ChorAut [10] is also implied by the
combination of weak receptiveness with weak responsiveness.

Global deadlock-freedom does, however, not imply weak receptiveness. For
instance, assume that there are two CA A1 and A2 such that in the initial state
q1 of A1 there is a choice of two outputs a and b, and in the initial state q2 of A2

there is only one outgoing transition with input a. Then the system state (q1, q2)
is not a deadlock state but the receptiveness requirement for b is violated at state
(q1, q2) since the autonomous choice of output b by the first component would
not be accepted by the second. Also weak responsiveness is not implied by global
deadlock-freedom. For a counterexample we would need three components, two
with a single input, say a for the first and b for the second, and one with a single
output, say a. Assume that all components have loops around the initial state.
Then the system, considered under 1-to-1 communication, would be (globally)
deadlock-free but not (weakly) responsive, since the second component would
never receive b.

This example points out the crucial difference between global and local dead-
locks, covered by the notions of “individual deadlock” in BIP [84], “lock” in
ChorAut [10], and “strong lock” in MPST [127]. The difference between the lat-
ter two is that [10] assumes fair runs. The notion of individual deadlock in [84]
is defined differently, but seems equivalent to a “lock” in [10] for 1-to-1 com-
munication. Weak receptiveness together with weak responsiveness is equivalent
to individual deadlock-freedom in BIP if the interaction model fits to the syn-
chronisation types assumed above. Hence, this is also equivalent to lock-freedom
in [10]. Strong lock-freedom in MPST [127] is indeed a stronger requirement.

The compatibility notions above formalise general requirements for safe com-
munication. Some approaches prefer to formulate individual compatibility re-
quirements tailored to particular applications by formulas in a logic for dynamic
systems using model-checking tools for verification (cf., e.g., [3, 101,103,119]).

5 Realisability

In this section, we consider a top-down method where first a global model M
for the intended interaction behaviour of a system is provided on the basis of
a given system signature and synchronisation type specification (STS) st. Then
our goal is to construct a system S of component automata from which a team
automaton ta(S, st) can be generated that complies with the global model M.

For this purpose, we instantiate the generic approach investigated in [47].
This instantiation applies the localisation style with so-called “poor” local ac-

18

Global

Model

M

Signature

& STS

Θ, st

N -Equivalences

≡ = (≡n)n∈N

RC(M, ≡)
such

that

System

S = (M/≡n)n∈N

ta(S, st) ∼ M
such

that

build

equivalence

relations

build

model

group

equivalent

states

Fig. 10: Realisation method

tions of the form !a for outputs and ?a for inputs; localisations with “rich” local
actions, which mention in the local context of a component n the name of a
receiver m of a message (e.g., by nm!a) or the sender m of a message (e.g., by
mn?a), are treated in [47] as well, but they are not relevant for team automata.

We assume the notions of component automaton (CA), system S, synchroni-
sation type specification st, and generated team automaton ta(S, st), as provided
in Sect. 2. Our realisation method is summarised in Fig. 10 and will be explained
in more detail in the next sections.

5.1 Global Models of Interaction

Our method starts with a system signature Θ = (N , (Σn)n∈N), where N is a
finite, nonempty set of component names and (Σn)n∈N is an N -indexed family
of action sets Σn = Σ?

n ⊎ Σ!
n split into disjoint sets Σ?

n of input actions and Σ!
n

of output actions. As in Sect. 2, let Σ• =
⋃

n∈N Σ?
n ∩

⋃

n∈N Σ!
n be the set of

communicating actions. We do not consider internal actions here and we assume
that all system actions a ∈

⋃

n∈N Σn are communicating.
Together with the system signature a synchronisation type specification st

must be provided assigning to each a ∈ Σ• a pair of intervals st(a) = (O, I), as
explained in Sect. 2. The system signature Θ together with the STS st determine
the following set Λ(Θ, st) of (multi-)interactions respecting the constraints of the
given synchronisation types:

Λ(Θ, st) = { (out, a, in) | ∅ ̸= (out ∪ in) ⊆ N , ∀n∈out · a ∈ Σ!
n, ∀n∈in · a ∈ Σ?

n,

st(a) = (O, I) ⇒ |out| ∈ O ∧ |in| ∈ I }

We model the global interaction behaviour of the intended system by an
LTS whose labels are (multi-)interactions in Λ(Θ, st). Hence, a global interaction
model over Θ and st is an LTS of the form M = (Q, q0, Λ(Θ, st), E).

Example 5. To develop the Race system we would start with system signature
ΘRace with component names Ctrl, R1, R2 and action sets Σ?

Ctrl = {finish} =
Σ!

R1 = Σ!
R2 and Σ!

Ctrl = {start} = Σ?
R1 = Σ?

R2. We do not consider the internal run

action. As in Example 2, we use the STS stRace with stRace(start) = ([1, 1], [2, 2])
and stRace(finish) = ([1, 1], [1, 1]). Fig. 11 shows on the left the induced interaction
set Λ(ΘRace, stRace) (abbreviated by ΛRace) and on the right a global interaction
model MRace. It imposes the system to start in a (global) state, where the
controller starts both runners at once. Each runner separately sends a finish

signal to the controller (in arbitrary order). After that a new run can start. ▷

Remark 1. Our development methodology can be extended by providing first
an abstract specification of desired and forbidden interaction properties from a

19

ΛRace =

{

Ctrl → {R1, R2} : start ,
R1 → Ctrl : finish ,
R2 → Ctrl : finish

}

0

2

3

1
Ctrl → {R1, R2} : start

R1 → Ctrl : finish

R2 → Ctrl : finish

R2 → Ctrl : finish

R1 → Ctrl : finish

Fig. 11: Interaction set ΛRace and global interaction model MRace

global perspective. In [47], we proposed a propositional dynamic logic for this
purpose where interactions are used as atomic actions in modalities such that we
can express safety and (a kind of) liveness properties. For instance, we could ex-
press the following requirements for the Race system by dynamic logic formulas,
using the usual box modalities [·] and ⟨·⟩, sequential composition (;), choice (+),
and iteration (·∗):

1. “For any started runner, it should be possible to finish her/his run.”
[

some∗; Ctrl → {R1, R2} : start
]

(

⟨some∗; R1 → Ctrl : finish⟩ true ∧
⟨some∗; R2 → Ctrl : finish⟩ true

)

2. “No runner should finish before she/he was started by the controller.”
[

(

− (Ctrl → {R1, R2} : start)
)∗

;

(

R1 → Ctrl : finish +

R2 → Ctrl : finish

)]

false
▷

To check that a global interaction model satisfies a specification, we propose
to use the mCRL2 toolset [5, 85]. For this purpose, as explained in [36], we can
use the translation from LTS models into process expressions and the translation
from our interaction-based dynamic logic into the syntax used by mCRL2.

5.2 Realisation of Global Models of Interaction

Our central task concerns the realisation (decomposition) of a global interaction
model M in terms of a (possibly distributed) system S of component automata
which are coordinated according to the given synchronisation type specification.

In order to formulate our realisation notion, we briefly recall the standard
notion of bisimulation. Let Ln = (Qn, qn,0, Σ, En) be two LTS (for n = 1, 2) over
the same action set Σ. A bisimulation relation between L1 and L2 is a relation
B ⊆ Q1 × Q2 such that for all (q1, q2) ∈ B and for all a ∈ Σ the following holds:

1. if q1
a
−→L1

q′
1, then there exist q′

2 ∈ Q2 and q2
a
−→L2

q′
2 such that (q′

1, q′
2) ∈ B;

2. if q2
a
−→L2

q′
2, then there exist q′

1 ∈ Q1 and q1
a
−→L1

q′
1 such that (q′

1, q′
2) ∈ B.

L1 and L2 are bisimilar, denoted by L1 ∼ L2, if there exists a bisimulation
relation B between L1 and L2 such that (q1,0, q2,0) ∈ B.

Now, we assume given a system signature Θ = (N , (Σn)n∈N), an STS st and
a global interaction model M with labels Λ(Θ, st). A system S = (N , (An)n∈N)
of component automata An with actions Σn is a realisation of M w.r.t. st if
the team automaton ta(S, st) generated over S by st (as defined in Sect. 2) is
bisimilar to M, i.e., ta(S, st) ∼ M. We note that the team labels Λ(S, st) of
ta(S, st) are exactly the interactions in Λ(Θ, st), i.e., the actions of the LTS M.
The global model M is called realisable if such a system S exists.

20

Remark 2. Technically, the definition of realisability in [47] uses a synchronous
Γ -composition ⊗Γ (An)n∈N [47, Def. 7] of the component automata. Trans-
ferred to the context of synchronisation types, Γ would be Λ(Θ, st). Moreover,
⊗Γ (An)n∈N contains only reachable states, which need not to be the case for
the team automaton ta(S, st). However, we can restrict ta(S, st) to its reachable
sub-LTS which coincides with ⊗Γ (An)n∈N . Note also that any LTS is bisimilar
to its reachable sub-LTS, such that this restriction does not harm. ▷

Since our realisability notion relies on bisimulation, we are able to deal with
non-deterministic behaviour. Note that, according to the invariance of proposi-
tional dynamic logic under bisimulation (cf. [59]), we obtain that global models
and their realisations satisfy the same propositional dynamic logic formulas when
(multi-)interactions are used as atomic actions as proposed in [36,47].

Next, we consider the following two important questions:

1. How can we check whether a given global model M is realisable?
2. If it is, how can we build/synthesise a concrete realisation?

To tackle the first question, we propose to find a family ≡ = (≡n)n∈N of
equivalence relations on the global state space Q of M such that, for each com-
ponent name n ∈ N and states q, q′ ∈ Q, q ≡n q′ expresses that q and q′ are
indistinguishable from the viewpoint of i. It is required that at least any two

global states q, q′ ∈ Q which are related by a global transition q
(out,a,in)
−−−−−→M q′

should be indistinguishable for any i ∈ N which does not participate in the in-
teraction, i.e., q ≡n q′ for all n /∈ out ∪ in. A family ≡ = (≡n)n∈N of equivalence
relations ≡n ⊆ Q × Q with this property is called an N -equivalence.

We can now formulate our realisability condition for the global model
M = (Q, q0, Λ(Θ, st), E). Our goal is to find an N -equivalence ≡ = (≡n)n∈N

over M such that the following realisability condition RC(M, ≡) holds.

RC(M, ≡): For each interaction (out, a, in) ∈ Λ(Θ, st), whenever there is (1) a
map ℓ : out ∪ in → Q assigning a global state qn = ℓ(n) to each n ∈ out ∪ in

together with (2) a global “glue” state g, i.e., qn ≡n g for each n ∈ out ∪ in,

then we expect: for all n ∈ out∪ in and global transitions qn
(outn,a,inn)
−−−−−−−→M q′

n

in which n participates (i.e., n ∈ outn ∩ inn), there is be a global transition

g
(out,a,in)
−−−−−→M g′ such that q′

n ≡n g′ for each n ∈ out ∪ in.

The intuition for this requirement is that if component n can participate in
executing an action a in state qn, then n should also be able to participate in
executing a in state g, since n cannot distinguish qn and g. Because this should
hold for all n ∈ out ∪ in, the interaction (out, a, in) should be enabled in g and
preserve indistinguishability of states for all n ∈ out ∪ in.

As a consequence of our results in [47], in particular Thm. 3, we obtain that
if there is an N -equivalence ≡ = (≡n)n∈N such that the realisability condition
RC(M, ≡) holds, then the global model M = (Q, q0, Λ(Θ, st), E) can indeed be
realised by the system S≡ = (M/≡n)n∈N of component automata constructed
as local quotients of M, i.e., ta(S≡, st) ∼ M. More precisely, the local n-quotient
of M is the component automaton M/≡n = (Q/≡n, [q0]≡n

, Σn, (E/≡n), where

21

– Q/≡n = { [q]≡n
| q ∈ Q },

– E/≡n is the least set of transitions generated by the rule

q
(out,a,in)
−−−−−→M q′ n ∈ out ∪ in

[q]≡n

a
−→(M/≡n) [q′]≡n

Example 6. Take the global LTS MRace in Fig. 11. We use the family of equiv-
alences ≡ = (≡n)n∈{Ctrl,R1,R2} that obeys RC(MRace, ≡) (see below) and parti-
tions the state space Q in Q/≡Ctrl = {{0}, {1}, {2, 3}}, Q/≡R1 = {{0, 2}, {1, 3}},
and Q/≡R2 = {{0, 3}, {1, 2}}. Using these equivalences, the local quotients are:

(M/≡Ctrl) =
{0} {1}

{2, 3}

!start

?finish?finish

(M/≡R1) = {0, 2} {1, 3}
?start

!finish

(M/≡R2) = {0, 3} {1, 2}
?start

!finish

So we obtained a system that is a realisation of MRace. This means the
team automaton ta(S≡, stRace) generated by S≡ and stRace is bisimilar to MRace.
Indeed, both are the same LTS up to renaming of states: state ({0}, {0, 2}, {0, 3})
in ta(S≡, stRace) instead of state 0 in MRace, ({1}, {1, 3}, {1, 2}) instead of 1,
({2, 3}, {0, 2}, {1, 2}) instead of 2, and ({2, 3}, {1, 3}, {0, 3}) instead of 3.

We now show how to check RC(MRace, ≡) using interaction R1 → Ctrl : finish

as example. We have 1
R1 → Ctrl : finish
−−−−−−−−−→MRace

2 and 1
R2 → Ctrl : finish
−−−−−−−−−→MRace

3. Taking

1 as a (trivial) glue state, we thus have, as required, 1
R1 → Ctrl : finish
−−−−−−−−−→MRace

2, but
also it is required that 2 ≡Ctrl 3 must hold, which is the case. Note that we would
not have succeeded here if we had taken the identity for ≡Ctrl. ▷

Tool Support We implemented a prototypical tool, called Ceta, to perform re-
alisability checks and system synthesis (cf. [47,48]). It is open source, available at
https://github.com/arcalab/choreo/tree/ceta, and executable by navigating to
https://lmf.di.uminho.pt/ceta. It provides a web browser where one can input a
global protocol described in a choreographic language, resembling regular expres-
sions of interactions. It offers automatic visualisation of the protocol as a state
machine representing a global model and it includes examples with descriptions.

Ceta implements a constructive approach to the declarative description of
the realisability conditions. It builds a family of equivalence relations, starting
with one that groups states connected by transitions in which the associate par-
ticipant is not involved. This family of minimal equivalence relations is checked
for satisfaction of the realisability condition w.r.t. the global model. If it fails, a
new attempt is started after extending the equivalence relations appropriately.
If no failure occurs, then the realisability condition is satisfied and the resulting
equivalence classes are used to join equivalent states in the global model, yielding
local quotients which can again be visualised. Thus a realisation of the global
model is constructed. There are several widgets that provide further insights,
such as the intermediate equivalence classes, the synchronous composition of lo-
cal components, and bisimulations between global models and team automata.
Readable error messages are given when a realisability condition does not hold.

22

https://github.com/arcalab/choreo/tree/ceta
https://lmf.di.uminho.pt/ceta

5.3 Related Work

Our approach is driven by specified sets of multi-interactions supporting any
kind of synchronous communication between multiple senders and multiple re-
ceivers. To the best of our knowledge, realisations of global models with arbi-
trary multi-interactions have not yet been studied in the literature. There are,
however, specialised approaches that deal with realisations of global models or
decomposition of transition systems. In this section, we first provide a revised
and extended comparison of our approach with that of Castellani et al. [73],
followed by a brief comparison with other approaches.

Relationship to [73] Our realisability condition RC(M, ≡), based on the
notion of N -equivalence ≡, is strongly related to a condition for implementability
in [73, Theorem 3.1]. The main differences are:

1. In [73], there is no distinction between input and output actions.
2. In [73], interactions are always full synchronisations on an action a, while

we deal with individual multi-interactions (out, a, in) specified by an STS.
Of course, we can also use an STS stfull for full synchronisation. Then we
define, for each action a, stfull(a) = ([#out(a), #out(a)], [#in(a), #in(a)]),
where #out(a) = |{n ∈ N | a ∈ Σ!

n}| is the number of components having
a as an output action and #in(a) = |{n ∈ N | a ∈ Σ?

n}| is the number of
components having a as an input action.

3. In [73], they provide a characterisation of implementability up to isomor-
phism, while we provide a criterion for realisability modulo bisimulation,
thus supporting non-determinism. To achieve this, we basically omitted con-
dition (ii) of [73, Theorem 3.1] which requires that whenever two global states
q and q′ are n-equivalent for all n ∈ N , then q = q′. In [48, Example 8],
we provide a simple example for a global interaction model which satisfies
our realisability condition but for which there is no realisation up to isomor-
phism. Note that [73, Theorem 6.2] provides a proposal to deal with a char-
acterisation of implementability modulo bisimulation under the assumption
of deterministic product transition systems. The authors also report on a re-
sult to characterise implementability for non-deterministic product systems
which uses infinite execution trees and is thus, unfortunately, not effective.

Relationship to Other Approaches

1. Our correctness notion for realisation of global models by systems of commu-
nicating local components is based on bisimulation, beyond language-based
approaches like [11,72] with realisability expressed by language equivalence.

2. For realisable global models, we construct realisations in terms of systems of
local quotients. This technique differs from projections used, e.g., in the field
of MPST, where projections are partial operations depending on syntactic
conditions (cf., e.g., [58]). In our approach, no restrictions on the form of
global models are assumed. On the other hand, the syntactic restrictions
used for global types guarantee some kind of communication properties of a
resulting system which we consider separately (cf. Sect. 4).

23

3. There are other papers in the literature in the context of different formalisms
dealing with decomposition of port automata [102], Petri nets, or algebraic
processes into (indecomposable) components [109,113] used for the efficient
verification and parallelisation of concurrent systems [75, 86] or to obtain
better (optimised) implementations [132,133].

Roadmap

1. Our current realisability approach does not deal with internal actions, which
are however also an ingredient of the team automata framework and repre-
sented by system labels of the form (n, a) (cf. Sect. 2). They naturally appear
when we build a team of CA which have internal actions. We believe, how-
ever, that internal actions should not be part of a global interaction model
whose purpose is to present the observable interaction behaviour of an in-
tended system. To bridge the gap, the idea is to relax the realisation notion
by requiring only a weak bisimulation relation between a global model and
the team automaton of a system realisation with internal actions.

2. Another aspect concerns the fact that, in general, it may happen that a
global interaction model does not satisfy the realisability condition but is
nevertheless realisable. Therefore, we want to look for a weaker version of
our realisability condition making it necessary and sufficient for realisations
based on bisimulation. The following example shows that our current realis-
ability condition is only sufficient.

Example 7. Consider the system signature Θ with component names N =
{p, q, r} and with the action sets Σ!

n = {a}, Σ?
n = ∅ for n ∈ N and

We use the STS with st(a) = ([2, 2], [0, 0]). Then the interaction set is
Λ(Θ, st) =

{

{p, q} →∅ : a, {q, r} →∅ : a, {p, r} →∅ : a
}

. The global model M
in Table 2 (left) is realisable by the system S = {Mp, Mq, Mr}, whose CA
are shown in Table 2 (middle). To see this, we compute the team automaton
ta(S, st) shown in Table 2 (right). Obviously, M and ta(S, st) are bisimilar
and hence M is realisable. However, there is no N -equivalence ≡ such that
the realisability condition holds. We now prove this by contradiction.
Assume that ≡ = {≡p, ≡q, ≡r} is an N -equivalence such that RC(M, ≡)
holds. Now consider the interaction {p, q} →∅ : a, the global state 0 of M

and the transition 0
{p,q} → ∅ : a
−−−−−−−−→M 1. Obviously, 0 ≡p 1 and 1 ≡q 0 must hold

because of the transition 0
{q,r} → ∅ : a
−−−−−−−−→M 1 in which p does not participate

and the transition 0
{p,r} → ∅ : a
−−−−−−−−→M 1 in which q does not participate. So we

can take 1 as a glue state between the global states q1 = 0 and q2 = 0. Then
we consider the interaction {p, q} →∅ : a one time for q1 and one time for q2.

Since we assumed RC(M, ≡), there must be a transition 1
{p,q} →∅ : a
−−−−−−−−→M

leaving the glue state, which is not the case. Contradiction! ▷

3. We are interested in a compositional approach to construct larger realisations
from smaller ones. Then compositionality of realisability is important.

4. We want to study under which conditions on global models and synchronisa-
tion types our communication properties can be guaranteed for realisations.

24

Table 2: Global M does not satisfy RC(M,≡), but S={Mp, Mq, Mr} realises M

global M local Mp local Mq Local Mr ta(S, st)

0

1

{p, r} →∅ : a

{q, r} →∅ : a

{p, q} →∅ : a

0

11

!a

0

11

!a

0

11

!a

0, 0, 0

0, 1, 11, 1, 0 1, 0, 1

{p, q} →∅ : a

{q, r} →∅ : a

{p, r} →∅ : a

6 Further Aspects

Recently, we also proposed featured team automata [34] to support variability in
the development and analysis of teams, capable of concisely capturing a family
of concrete product (automaton) models for specific configurations determined
by feature selection, as is common in software product line engineering [1]. Vari-
ability has also been studied for several related coordination models, such as
BIP [104, 112], Contract automata [15, 16, 19], Reo [121], Petri nets [114, 115],
and I/O automata [106, 108]. We did not address data, for which Reo and BIP
provide native support, since team automata cannot currently deal with that.

In the past, we studied in detail the computations and behaviour of team
automata in relation to that of their constituting component automata [49, 51],
identifying several types of team automata that satisfy compositionality in terms
of (synchronised) shuffles of their computations (i.e., formal languages). In [42,
43], a process calculus for modelling team automata was introduced, extending
some classical results on I/O automata as well as the family of team automata
that guarantee a degree of compositionality. Finally, team automata were used
for the analysis of security aspects in communication protocols [29,54,55,81], in
particular for spatial and spatio-temporal access control [40,94].

7 Conclusion

We provided an overview of team automata, a model for capturing a variety of
notions related to coordination in distributed systems of systems with decades of
history (cf. Appendix A) as witnessed by 25+ publications by 25+ researchers6,
and compared them rather informally with related models for coordination
(cf. Table 1). A single running example modelled in the various formalisms eases
their comparison. We focused on differences in synchronisation and composition,
but also addressed communication properties, realisability, verification, and tool
support—all aspects we investigated during the last five years. Team automata
support very flexible types of synchronous communication. They are not de-
signed for asynchronous communication (yet), like asynchronous multiparty ses-
sion types [92] or systems of communicating finite state machines [66], for which
other kinds of compositions and communication properties are relevant [9].

6 http://fmt.isti.cnr.it/~mtbeek/TA.html

25

http://fmt.isti.cnr.it/~mtbeek/TA.html

Acknowledgements

We thank Davide Basile, Simon Bliudze and the three anonymous reviewers for their
comments and suggestions that helped us to improve this paper.

Maurice ter Beek was funded by MUR PRIN 2020TL3X8X project T-LADIES
(Typeful Language Adaptation for Dynamic, Interacting and Evolving Systems) and
CNR project “Formal Methods in Software Engineering 2.0”, CUP B53C24000720005.

José Proença was supported by the CISTER Research Unit (UIDP/UIDB/04234/
2020), financed by National Funds through FCT/MCTES (Portuguese Foundation
for Science and Technology), and by project IBEX (PTDC/CCI-COM/4280/2021) fi-
nanced by national funds through FCT.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer (2013). https://doi.org/10.1007/
978-3-642-37521-7

2. Arbab, F.: Reo: a channel-based coordination model for component composi-
tion. Math. Struct. Comput. Sci. 14(3), 329–366 (2004). https://doi.org/10.1017/
S0960129504004153

3. Arbab, F., Kokash, N., Meng, S.: Towards Using Reo for Compliance-
Aware Business Process Modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA
2008. CCIS, vol. 17, pp. 108–123. Springer (2008). https://doi.org/10.1007/
978-3-540-88479-8_9

4. Arbab, F., Krause, C., Maraikar, Z., Moon, Y.J., Proença, J.: Modeling, Testing
and Executing Reo Connectors with the Eclipse Coordination Tools. Tool demo
session of FACS 2008 (2008)

5. Atif, M., Groote, J.F.: Understanding Behaviour of Distributed Systems Using
mCRL2. Springer (2023). https://doi.org/10.1007/978-3-031-23008-0

6. Attie, P.C., Bensalem, S., Bozga, M., Jaber, M., Sifakis, J., Zaraket, F.A.: Global
and Local Deadlock Freedom in BIP. ACM Trans. Softw. Eng. Methodol. 26(3),
9:1–9:48 (2018). https://doi.org/10.1145/3152910

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006).
https://doi.org/10.1016/J.SCICO.2005.10.008

8. Baranov, E., Bliudze, S.: Expressiveness of component-based frameworks: A study
of the expressiveness of BIP. Acta Inform. 57, 761–800 (2020). https://doi.org/
10.1007/s00236-019-00337-7

9. Barbanera, F., de’Liguoro, U., Hennicker, R.: Connecting open systems of com-
municating finite state machines. J. Log. Algebr. Methods Program. 109 (2019).
https://doi.org/10.1016/j.jlamp.2019.07.004

10. Barbanera, F., Lanese, I., Tuosto, E.: Choreography Automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer
(2020). https://doi.org/10.1007/978-3-030-50029-0_6

11. Barbanera, F., Lanese, I., Tuosto, E.: Formal Choreographic Languages. In: ter
Beek, M.H., Sirjani, M. (eds.) COORDINATION 2022. LNCS, vol. 13271, pp.
121–139. Springer (2022). https://doi.org/10.1007/978-3-031-08143-9_8

12. Barbanera, F., Lanese, I., Tuosto, E.: A Theory of Formal Choreographic Lan-
guages. Log. Meth. Comp. Sci. 19(3), 9:1–9:36 (2023). https://doi.org/10.46298/
LMCS-19(3:9)2023

26

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-540-88479-8_9
https://doi.org/10.1007/978-3-031-23008-0
https://doi.org/10.1007/978-3-031-23008-0
https://doi.org/10.1145/3152910
https://doi.org/10.1145/3152910
https://doi.org/10.1016/J.SCICO.2005.10.008
https://doi.org/10.1016/J.SCICO.2005.10.008
https://doi.org/10.1007/s00236-019-00337-7
https://doi.org/10.1007/s00236-019-00337-7
https://doi.org/10.1007/s00236-019-00337-7
https://doi.org/10.1007/s00236-019-00337-7
https://doi.org/10.1016/j.jlamp.2019.07.004
https://doi.org/10.1016/j.jlamp.2019.07.004
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.46298/LMCS-19(3:9)2023
https://doi.org/10.46298/LMCS-19(3:9)2023
https://doi.org/10.46298/LMCS-19(3:9)2023
https://doi.org/10.46298/LMCS-19(3:9)2023

13. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in Behavioural Contracts: A
Brief Survey. In: Bodei, C., Ferrari, G.L., Priami, C. (eds.) Programming Lan-
guages with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121.
Springer (2015). https://doi.org/10.1007/978-3-319-25527-9_9

14. Basile, D., ter Beek, M.H.: Contract Automata Library. Sci. Comput. Program.
221 (2022). https://doi.org/10.1016/j.scico.2022.102841

15. Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S., Di
Giandomenico, F.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

16. Basile, D., ter Beek, M.H., Di Giandomenico, F., Gnesi, S.: Orchestration of
Dynamic Service Product Lines with Featured Modal Contract Automata. In:
Proceedings of the 21st International Systems and Software Product Line Con-
ference (SPLC 2017). vol. 2, pp. 117–122. ACM (2017). https://doi.org/10.1145/
3109729.3109741

17. Basile, D., ter Beek, M.H., Legay, A.: Timed service contract automata.
Innov. Syst. Softw. Eng. 2(16), 199–214 (2020). https://doi.org/10.1007/
s11334-019-00353-3

18. Basile, D., Degano, P., Ferrari, G.L.: Automata for Specifying and Orchestrating
Service Contracts. Log. Meth. Comp. Sci. 12(4:6), 1–51 (2016). https://doi.org/
10.2168/LMCS-12(4:6)2016

19. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specifying
Variability in Service Contracts. In: Proceedings of the 11th International Work-
shop on Variability Modelling of Software-intensive Systems (VaMoS 2017). pp.
20–27. ACM (2017). https://doi.org/10.1145/3023956.3023965

20. Basile, D., ter Beek, M.H.: A Clean and Efficient Implementation of Choreog-
raphy Synthesis for Behavioural Contracts. In: Damiani, F., Dardha, O. (eds.)
COORDINATION 2021. LNCS, vol. 12717, pp. 225–238. Springer (2021). https:
//doi.org/10.1007/978-3-030-78142-2_14

21. Basile, D., ter Beek, M.H.: Advancing orchestration synthesis for contract au-
tomata. J. Log. Algebr. Methods Program. (2024)

22. Basile, D., ter Beek, M.H., Pugliese, R.: Bridging the Gap Between Su-
pervisory Control and Coordination of Services: Synthesis of Orchestrations
and Choreographies. In: Nielson, H.R., Tuosto, E. (eds.) COORDINATION
2019. LNCS, vol. 11533, pp. 129–147. Springer (2019). https://doi.org/10.1007/
978-3-030-22397-7_8

23. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of Orchestrations and Chore-
ographies: Bridging the Gap between Supervisory Control and Coordination of
Services. Log. Meth. Comp. Sci. 16(2), 9:1–9:29 (2020). https://doi.org/10.23638/
LMCS-16(2:9)2020

24. Basile, D., Degano, P., Ferrari, G., Tuosto, E.: From Orchestration to Choreog-
raphy through Contract Automata. In: Lanese, I., Lluch Lafuente, A., Sokolova,
A., Torres Vieira, H. (eds.) Proceedings of the 7th Interaction and Concurrency
Experience (ICE 2014). EPTCS, vol. 166, pp. 67–85 (2014). https://doi.org/10.
4204/EPTCS.166.8

25. Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Relating two automata-based mod-
els of orchestration and choreography. J. Log. Algebr. Methods Program. 85(3),
425–446 (2016). https://doi.org/10.1016/J.JLAMP.2015.09.011

26. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: Proceedings of the 4th IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2006). pp. 3–12. IEEE (2006). https:
//doi.org/10.1109/SEFM.2006.27

27

https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1016/j.scico.2022.102841
https://doi.org/10.1016/j.scico.2022.102841
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1145/3109729.3109741
https://doi.org/10.1145/3109729.3109741
https://doi.org/10.1145/3109729.3109741
https://doi.org/10.1145/3109729.3109741
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.4204/EPTCS.166.8
https://doi.org/10.4204/EPTCS.166.8
https://doi.org/10.4204/EPTCS.166.8
https://doi.org/10.4204/EPTCS.166.8
https://doi.org/10.1016/J.JLAMP.2015.09.011
https://doi.org/10.1016/J.JLAMP.2015.09.011
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27

27. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis,
J.: Rigorous Component-Based System Design Using the BIP Framework. IEEE
Softw. 28(3), 41–48 (2011). https://doi.org/10.1109/MS.2011.27

28. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Com-
patibility, Refinement, and the MIO Workbench. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer (2010). https:
//doi.org/10.1007/978-3-642-12002-2_15

29. ter Beek, M., Lenzini, G., Petrocchi, M.: Team Automata for Security Analysis
of Multicast/Broadcast Communication. In: Proceedings of the ICATPN Work-
shop on Issues in Security and Petri Nets (WISP 2003). pp. 57–71. Eindhoven
University of Technology (2003)

30. ter Beek, M.H.: Team Automata—A Formal Approach to the Modeling of Col-
laboration Between System Components. Ph.D. thesis, Leiden University (2003),
https://hdl.handle.net/1887/29570

31. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication Re-
quirements for Team Automata. In: Jacquet, J.M., Massink, M. (eds.) CO-
ORDINATION 2017. LNCS, vol. 10319, pp. 256–277. Springer (2017). https:
//doi.org/10.1007/978-3-319-59746-1_14

32. ter Beek, M.H., Carmona, J., Kleijn, J.: Conditions for Compatibility of Compo-
nents: The Case of Masters and Slaves. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 784–805. Springer (2016). https://doi.org/10.1007/
978-3-319-47166-2_55

33. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Featured Team Automata.
Tech. rep., arXiv (Aug 2021), https://doi.org/10.48550/arXiv.2108.01784

34. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Featured Team Automata.
In: Huisman, M., Pǎsǎreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp.
483–502. Springer (2021). https://doi.org/10.1007/978-3-030-90870-6_26

35. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we Communicate?
Using Dynamic Logic to Verify Team Automata (Extended Version). Tech. rep.,
Zenodo (Dec 2022). https://doi.org/10.5281/zenodo.7418074

36. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we Communicate?
Using Dynamic Logic to Verify Team Automata. In: Chechik, M., Katoen, J.P.,
Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 122–141. Springer (2023).
https://doi.org/10.1007/978-3-031-27481-7_9

37. ter Beek, M.H., Csuhaj-Varjú, E., Mitrana, V.: Teams of Pushdown Au-
tomata. Int. J. Comput. Math. 81(2), 141–156 (2004). https://doi.org/10.1080/
00207160310001650099

38. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in Team
Automata for Groupware Systems. Tech. Rep. TR-99-12, Leiden Institute of Ad-
vanced Computer Science, Leiden University (1999)

39. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Team Automata for CSCW.
In: Proceedings of the 2nd International Colloquium on Petri Net Technologies
for Modelling Communication Based Systems. pp. 1–20. Fraunhofer ISST (2001)

40. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Team Automata for Spatial
Access Control. In: Prinz, W., Jarke, M., Rogers, Y., Schmidt, K., Wulf, V. (eds.)
Proceedings of the 7th European Conference on Computer-Supported Coopera-
tive Work (ECSCW 2001). pp. 59–77. Kluwer (2001). https://doi.org/10.1007/
0-306-48019-0_4

41. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in Team
Automata for Groupware Systems. Comput. Sup. Coop. Work 12(1), 21–69
(2003). https://doi.org/10.1023/A:1022407907596

28

https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15
https://hdl.handle.net/1887/29570
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-47166-2_55
https://doi.org/10.1007/978-3-319-47166-2_55
https://doi.org/10.1007/978-3-319-47166-2_55
https://doi.org/10.1007/978-3-319-47166-2_55
https://doi.org/10.48550/arXiv.2108.01784
https://doi.org/10.1007/978-3-030-90870-6_26
https://doi.org/10.1007/978-3-030-90870-6_26
https://doi.org/10.5281/zenodo.7418074
https://doi.org/10.5281/zenodo.7418074
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1080/00207160310001650099
https://doi.org/10.1080/00207160310001650099
https://doi.org/10.1080/00207160310001650099
https://doi.org/10.1080/00207160310001650099
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1023/A:1022407907596
https://doi.org/10.1023/A:1022407907596

42. ter Beek, M.H., Gadducci, F., Janssens, D.: A calculus for team automata. In:
Ribeiro, L., Moreira, A.M. (eds.) Proceedings of the 9th Brazilian Symposium on
Formal Methods (SBMF 2006). pp. 59–72. Istituto de Informatica da UFRGS,
Porto Alegre (2006)

43. ter Beek, M.H., Gadducci, F., Janssens, D.: A calculus for team automata. Elec-
tron. Notes Theor. Comput. Sci. 195, 41–55 (2008). https://doi.org/10.1016/j.
entcs.2007.08.022

44. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of Safe Communi-
cation in Systems of Team Automata. In: Pun, V., Simão, A., Stolz, V. (eds.)
ICTAC 2020. LNCS, vol. 12545, pp. 200–220. Springer (2020). https://doi.org/
10.1007/978-3-030-64276-1_11

45. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of Safe Communi-
cation in Systems of Team Automata. Tech. rep., Zenodo (Sep 2020). https:
//doi.org/10.5281/zenodo.4050293

46. ter Beek, M.H., Hennicker, R., Kleijn, J.: Team Automata@Work: On Safe Com-
munication. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol.
12134, pp. 77–85. Springer (2020). https://doi.org/10.1007/978-3-030-50029-0_5

47. ter Beek, M.H., Hennicker, R., Proença, J.: Realisability of Global Models of
Interaction. In: Ábrahám, E., Dubslaff, C., Tapia Tarifa, S.L. (eds.) ICTAC
2023. LNCS, vol. 14446, pp. 236–255. Springer (2023). https://doi.org/10.1007/
978-3-031-47963-2_15

48. ter Beek, M.H., Hennicker, R., Proença, J.: Realisability of Global Models of
Interaction (Extended Version). Tech. rep., Zenodo (September 2023). https://
doi.org/10.5281/zenodo.8377188

49. ter Beek, M.H., Kleijn, J.: Team Automata Satisfying Compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer (2003). https://doi.org/10.1007/978-3-540-45236-2_22

50. ter Beek, M.H., Kleijn, J.: Modularity for Teams of I/O Automata. Inf. Process.
Lett. 95(5), 487–495 (2005). https://doi.org/10.1016/j.ipl.2005.05.012

51. ter Beek, M.H., Kleijn, J.: Associativity of Infinite Synchronized Shuffles and
Team Automata. Fundam. Inform. 91(3-4), 437–461 (2009). https://doi.org/10.
3233/FI-2009-0051

52. ter Beek, M.H., Kleijn, J.: Vector Team Automata. Theor. Comput. Sci. 429,
21–29 (2012). https://doi.org/10.1016/j.tcs.2011.12.020

53. ter Beek, M.H., Kleijn, J.: On Distributed Cooperation and Synchronised Collab-
oration. J. Autom. Lang. Comb. 19(1-4), 17–32 (2014). https://doi.org/10.25596/
jalc-2014-017

54. ter Beek, M.H., Lenzini, G., Petrocchi, M.: Team Automata for Security – A
Survey –. Electron. Notes Theor. Comput. Sci. 128, 105–119 (2005). https://doi.
org/10.1016/j.entcs.2004.11.044

55. ter Beek, M.H., Lenzini, G., Petrocchi, M.: A Team Automaton Scenario for the
Analysis of Security Properties in Communication Protocols. J. Autom. Lang.
Comb. 11(4), 345–374 (2006). https://doi.org/10.25596/jalc-2006-345

56. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we Communicate?
Using Dynamic Logic to Verify Team Automata (Software Artefact) (2022). https:
//doi.org/10.5281/zenodo.7338440, http://arcatools.org/feta

57. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer
(2004). https://doi.org/10.1007/978-3-540-30080-9_7

29

https://doi.org/10.1016/j.entcs.2007.08.022
https://doi.org/10.1016/j.entcs.2007.08.022
https://doi.org/10.1016/j.entcs.2007.08.022
https://doi.org/10.1016/j.entcs.2007.08.022
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.5281/zenodo.4050293
https://doi.org/10.5281/zenodo.4050293
https://doi.org/10.5281/zenodo.4050293
https://doi.org/10.5281/zenodo.4050293
https://doi.org/10.1007/978-3-030-50029-0_5
https://doi.org/10.1007/978-3-030-50029-0_5
https://doi.org/10.1007/978-3-031-47963-2_15
https://doi.org/10.1007/978-3-031-47963-2_15
https://doi.org/10.1007/978-3-031-47963-2_15
https://doi.org/10.1007/978-3-031-47963-2_15
https://doi.org/10.5281/zenodo.8377188
https://doi.org/10.5281/zenodo.8377188
https://doi.org/10.5281/zenodo.8377188
https://doi.org/10.5281/zenodo.8377188
https://doi.org/10.1007/978-3-540-45236-2_22
https://doi.org/10.1007/978-3-540-45236-2_22
https://doi.org/10.1016/j.ipl.2005.05.012
https://doi.org/10.1016/j.ipl.2005.05.012
https://doi.org/10.3233/FI-2009-0051
https://doi.org/10.3233/FI-2009-0051
https://doi.org/10.3233/FI-2009-0051
https://doi.org/10.3233/FI-2009-0051
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.25596/jalc-2014-017
https://doi.org/10.25596/jalc-2014-017
https://doi.org/10.25596/jalc-2014-017
https://doi.org/10.25596/jalc-2014-017
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.25596/jalc-2006-345
https://doi.org/10.25596/jalc-2006-345
https://doi.org/10.5281/zenodo.7338440
https://doi.org/10.5281/zenodo.7338440
https://doi.org/10.5281/zenodo.7338440
https://doi.org/10.5281/zenodo.7338440
http://arcatools.org/feta
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7

58. Bejleri, A., Yoshida, N.: Synchronous Multiparty Session Types. Electr. Notes
Theor. Comput. Sci. 241, 3–33 (2008). https://doi.org/10.1016/j.entcs.2009.06.
002

59. van Benthem, J., van Eijck, J., Stebletsova, V.: Modal Logic, Transition Systems
and Processes. J. Log. Comput. 4(5), 811–855 (1994). https://doi.org/10.1093/
logcom/4.5.811

60. Best, E., Devillers, R.: Petri Net Primer: A Compendium on the Core
Model, Analysis, and Synthesis. Springer (2024). https://doi.org/10.1007/
978-3-031-48278-6

61. Bliudze, S., van den Bos, P., Huisman, M., Rubbens, R., Safina, L.: JavaBIP meets
VerCors: Towards the Safety of Concurrent Software Systems in Java. In: Lam-
bers, L., Uchitel, S. (eds.) FASE 2023. LNCS, vol. 13991, pp. 143–150. Springer
(2023). https://doi.org/10.1007/978-3-031-30826-0_8

62. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang,
Q.: Formal Verification of Infinite-State BIP Models. In: Finkbeiner, B., Pu, G.,
Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer (2015).
https://doi.org/10.1007/978-3-319-24953-7_25

63. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordi-
nation of concurrent software components with JavaBIP. Softw. Pract. Exper.
47(11), 1801–1836 (2017). https://doi.org/10.1002/spe.2495

64. Bliudze, S., Sifakis, J.: The Algebra of Connectors: Structuring Interaction in
BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/
TC.2008.26

65. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web
Services Compatible? In: Shan, M.C., Dayal, U., Hsu, M. (eds.) TES
2004. LNCS, vol. 3324, pp. 15–28. Springer (2005). https://doi.org/10.1007/
978-3-540-31811-8_2

66. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. J. ACM
30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

67. Brim, L., Cerná, I., Vareková, P., Zimmerova, B.: Component-Interaction Au-
tomata as a Verification-Oriented Component-Based System Specification. ACM
Softw. Eng. Notes 31(2) (2006). https://doi.org/10.1145/1118537.1123063

68. Carmona, J., Kleijn, J.: Interactive Behaviour of Multi-Component Systems. In:
Proceedings of the ICATPN Workshop on Token-Based Computing (ToBaCo
2004). pp. 27–31. Università di Bologna (2004)

69. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013). https://doi.org/10.1016/j.tcs.2013.03.006

70. Carmona, J., Cortadella, J.: Input/Output Compatibility of Reactive Systems. In:
Aagaard, M., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377.
Springer (2002). https://doi.org/10.1007/3-540-36126-X_22

71. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009). https://doi.org/10.
1145/1538917.1538920

72. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On Global Types and Multi-
Party Sessions. Log. Meth. Comp. Sci. 8(1), 24:1–24:45 (2012). https://doi.org/
10.2168/LMCS-8(1:24)2012

73. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing Distributed Transi-
tion Systems from Global Specification. In: Rangan, C.P., Raman, V., Ramanu-
jam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 219–231. Springer (1999).
https://doi.org/10.1007/3-540-46691-6_17

30

https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/978-3-031-48278-6
https://doi.org/10.1007/978-3-031-30826-0_8
https://doi.org/10.1007/978-3-031-30826-0_8
https://doi.org/10.1007/978-3-319-24953-7_25
https://doi.org/10.1007/978-3-319-24953-7_25
https://doi.org/10.1002/spe.2495
https://doi.org/10.1002/spe.2495
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/1118537.1123063
https://doi.org/10.1145/1118537.1123063
https://doi.org/10.1016/j.tcs.2013.03.006
https://doi.org/10.1016/j.tcs.2013.03.006
https://doi.org/10.1007/3-540-36126-X_22
https://doi.org/10.1007/3-540-36126-X_22
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1007/3-540-46691-6_17
https://doi.org/10.1007/3-540-46691-6_17

74. Clarke, D.: Coordination: Reo, Nets, and Logic. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 226–
256. Springer (2007). https://doi.org/10.1007/978-3-540-92188-2_10

75. Corradini, F., Gorrieri, R., Marchignoli, D.: Towards parallelization of concurrent
systems. RAIRO Theor. Informatics Appl. 32(4-6), 99–125 (1998). https://doi.
org/10.1051/ita/1998324-600991

76. Cruz, R., Proença, J.: ReoLive: Analysing Connectors in Your Browser. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 336–350.
Springer (2018). https://doi.org/10.1007/978-3-030-04771-9_25

77. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proceedings of the 8th
European Software Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE
2001). pp. 109–120. ACM (2001). https://doi.org/10.1145/503209.503226

78. Dokter, K., Arbab, F.: Treo: Textual Syntax for Reo Connectors. In: Bliudze, S.,
Bensalem, S. (eds.) Proceedings of the 1st International Workshop on Methods
and Tools for Rigorous System Design (MeTRiD 2018). EPTCS, vol. 272, pp.
121–135 (2018). https://doi.org/10.4204/EPTCS.272.10

79. Durán, F., Ouederni, M., Salaün, G.: A generic framework for n-protocol com-
patibility checking. Sci. Comput. Program. 77(7-8), 870–886 (2012). https://doi.
org/10.1016/j.scico.2011.03.009

80. Edixhoven, L., Jongmans, S.S., Proença, J., Castellani, I.: Branching pomsets: de-
sign, expressiveness and applications to choreographies. J. Log. Algebr. Methods
Program. 136 (2024). https://doi.org/10.1016/j.jlamp.2023.100919

81. Egidi, L., Petrocchi, M.: Modelling a Secure Agent with Team Automata. Elec-
tron. Notes Theor. Comput. Sci. 142, 111–127 (2006). https://doi.org/10.1016/
j.entcs.2004.12.046

82. Ellis, C.A.: Team Automata for Groupware Systems. In: Proceedings of the In-
ternational ACM SIGGROUP Conference on Supporting Group Work: The In-
tegration Challenge (GROUP 1997). pp. 415–424. ACM (1997). https://doi.org/
10.1145/266838.267363

83. Engels, G., Groenewegen, L.P.J.: Towards Team-Automata-Driven Object-
Oriented Collaborative Work. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa,
A. (eds.) Formal and Natural Computing, LNCS, vol. 2300, pp. 257–276. Springer
(2002). https://doi.org/10.1007/3-540-45711-9_15

84. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55, 161–183 (2005). https://doi.org/10.1016/j.scico.2004.05.014

85. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

86. Groote, J.F., Moller, F.: Verification of Parallel Systems via Decomposition. In:
Cleaveland, R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 62–76. Springer (1992).
https://doi.org/10.1007/BFb0084783

87. Guanciale, R., Tuosto, E.: Realisability of pomsets. J. Log. Algebr. Methods Pro-
gram. 108, 69–89 (2019). https://doi.org/10.1016/J.JLAMP.2019.06.003

88. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing, MIT
Press (2000). https://doi.org/10.7551/mitpress/2516.001.0001

89. Harel, D., Thiagarajan, P.S.: Message Sequence Charts. In: Lavagno, L., Martin,
G., Selic, B. (eds.) UML for Real: Design of Embedded Real-Time Systems, pp.
77–105. Kluwer (2003). https://doi.org/10.1007/0-306-48738-1_4

90. Hennicker, R., Bidoit, M.: Compatibility Properties of Synchronously and Asyn-
chronously Communicating Components. Log. Meth. Comp. Sci. 14(1), 1–31
(2018). https://doi.org/10.23638/LMCS-14(1:1)2018

31

https://doi.org/10.1007/978-3-540-92188-2_10
https://doi.org/10.1007/978-3-540-92188-2_10
https://doi.org/10.1051/ita/1998324-600991
https://doi.org/10.1051/ita/1998324-600991
https://doi.org/10.1051/ita/1998324-600991
https://doi.org/10.1051/ita/1998324-600991
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1145/503209.503226
https://doi.org/10.1145/503209.503226
https://doi.org/10.4204/EPTCS.272.10
https://doi.org/10.4204/EPTCS.272.10
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1016/j.jlamp.2023.100919
https://doi.org/10.1016/j.jlamp.2023.100919
https://doi.org/10.1016/j.entcs.2004.12.046
https://doi.org/10.1016/j.entcs.2004.12.046
https://doi.org/10.1016/j.entcs.2004.12.046
https://doi.org/10.1016/j.entcs.2004.12.046
https://doi.org/10.1145/266838.267363
https://doi.org/10.1145/266838.267363
https://doi.org/10.1145/266838.267363
https://doi.org/10.1145/266838.267363
https://doi.org/10.1007/3-540-45711-9_15
https://doi.org/10.1007/3-540-45711-9_15
https://doi.org/10.1016/j.scico.2004.05.014
https://doi.org/10.1016/j.scico.2004.05.014
https://doi.org/10.1007/BFb0084783
https://doi.org/10.1007/BFb0084783
https://doi.org/10.1016/J.JLAMP.2019.06.003
https://doi.org/10.1016/J.JLAMP.2019.06.003
https://doi.org/10.7551/mitpress/2516.001.0001
https://doi.org/10.7551/mitpress/2516.001.0001
https://doi.org/10.1007/0-306-48738-1_4
https://doi.org/10.1007/0-306-48738-1_4
https://doi.org/10.23638/LMCS-14(1:1)2018
https://doi.org/10.23638/LMCS-14(1:1)2018

91. ’t Hoen, P.J., ter Beek, M.H.: A Conflict-Free Strategy for Team-Based Model
Development. In: Proceeedings of the International Workshop on Process support
for Distributed Team-based Software Development (PDTSD 2000). pp. 720–725.
IIIS (2000)

92. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008. pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.1328472

93. International Telecommunication Union (ITU): Message Sequence Chart (MSC).
Recommendation ITU-T Z.120 (Feb 2011), http://www.itu.int/rec/T-REC-Z.120

94. Jaisankar, N., Veeramalai, S., Kannan, A.: Team Automata Based Framework for
Spatio-Temporal RBAC Model. In: Das, V.V., Vijayakumar, R., Debnath, N.C.,
Stephen, J., Meghanathan, N., Sankaranarayanan, S., Thankachan, P.M., Gaol,
F.L., Thankachan, N. (eds.) BAIP 2010. CCIS, vol. 70, pp. 586–591. Springer
(2010). https://doi.org/10.1007/978-3-642-12214-9_106

95. Ji, Z., Wang, S., Xu, X.: Session Types with Multiple Senders Single Receiver.
In: Hermanns, H., Sun, J., Bu, L. (eds.) SETTA 2023. LNCS, vol. 14464, pp.
112–131. Springer (2023). https://doi.org/10.1007/978-981-99-8664-4_7

96. Jongmans, S.S.T.Q., Arbab, F.: Overview of Thirty Semantic Formalisms for Reo.
Sci. Ann. Comput. Sci. 22(1), 201–251 (2012). https://doi.org/10.7561/SACS.
2012.1.201

97. Jonsson, B.: Compositional Verification of Distributed Systems. Ph.D. thesis, Up-
psala University (1987)

98. Katoen, J.P., Lambert, L.: Pomsets for Message Sequence Charts. In: Lahav, Y.,
Wolisz, A., Fischer, J., Holz, E. (eds.) Proceedings of the 1st Workshop of the SDL
Forum Society on SDL and MSC (SAM 1998). pp. 197–207. Humboldt-Universität
zu Berlin (1998)

99. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Distributed Computing Theory, Springer, 2 edn.
(2010). https://doi.org/10.1007/978-3-031-02003-2

100. Kleijn, J.: Team Automata for CSCW – A Survey –. In: Ehrig, H., Reisig, W.,
Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based
Systems: Advances in Petri Nets, LNCS, vol. 2472, pp. 295–320. Springer (2003).
https://doi.org/10.1007/978-3-540-40022-6_15

101. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical Modeling and Formal
Verification: An Industrial Case Study Using Reo and Vereofy. In: Salaün, G.,
Schätz, B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer (2011).
https://doi.org/10.1007/978-3-642-24431-5_17

102. Koehler, C., Clarke, D.: Decomposing Port Automata. In: Shin, S.Y., Ossowski,
S. (eds.) Proceedings of the 24th ACM Symposium on Applied Computing (SAC
2009). pp. 1369–1373. ACM (2009). https://doi.org/10.1145/1529282.1529587

103. Kokash, N., Krause, C., de Vink, E.P.: Data-Aware Design and Verification of
Service Compositions with Reo and mCRL2. In: Proceedings of the 25th ACM
Symposium on Applied Computing (SAC 2010). pp. 2406–2413. ACM (2010).
https://doi.org/10.1145/1774088.1774590

104. Konnov, I.V., Kotek, T., Wang, Q., Veith, H., Bliudze, S., Sifakis, J.: Param-
eterized Systems in BIP: Design and Model Checking. In: Desharnais, J., Ja-
gadeesan, R. (eds.) CONCUR 2016. LIPIcs, vol. 59, pp. 30:1–30:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/
LIPICS.CONCUR.2016.30

105. Lange, J., Tuosto, E., Yoshida, N.: From Communicating Machines to Graphical
Choreographies. In: Proceedings of the 42nd ACM SIGPLAN-SIGACT Sympo-

32

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
http://www.itu.int/rec/T-REC-Z.120
https://doi.org/10.1007/978-3-642-12214-9_106
https://doi.org/10.1007/978-3-642-12214-9_106
https://doi.org/10.1007/978-981-99-8664-4_7
https://doi.org/10.1007/978-981-99-8664-4_7
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.1007/978-3-031-02003-2
https://doi.org/10.1007/978-3-031-02003-2
https://doi.org/10.1007/978-3-540-40022-6_15
https://doi.org/10.1007/978-3-540-40022-6_15
https://doi.org/10.1007/978-3-642-24431-5_17
https://doi.org/10.1007/978-3-642-24431-5_17
https://doi.org/10.1145/1529282.1529587
https://doi.org/10.1145/1529282.1529587
https://doi.org/10.1145/1774088.1774590
https://doi.org/10.1145/1774088.1774590
https://doi.org/10.4230/LIPICS.CONCUR.2016.30
https://doi.org/10.4230/LIPICS.CONCUR.2016.30
https://doi.org/10.4230/LIPICS.CONCUR.2016.30
https://doi.org/10.4230/LIPICS.CONCUR.2016.30

sium on Principles of Programming Languages (POPL 2015). pp. 221–232. ACM
(2015). https://doi.org/10.1145/2676726.2676964

106. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer (2007). https://doi.org/10.1007/978-3-540-71316-6_6

107. Larsen, K.G., Lorber, F., Nielsen, B.: 20 Years of Real Real Time Model Val-
idation. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E.P. (eds.) FM
2018. LNCS, vol. 10951, pp. 22–36. Springer (2018). https://doi.org/10.1007/
978-3-319-95582-7_2

108. Lauenroth, K., Pohl, K., Töhning, S.: Model Checking of Domain Artifacts in
Product Line Engineering. In: Proceedings of the 24th International Conference
on Automated Software Engineering (ASE 2009). pp. 269–280. IEEE (2009).
https://doi.org/10.1109/ASE.2009.16

109. Luttik, B.: Unique parallel decomposition in branching and weak bisimulation
semantics. Theor. Comput. Sci. 612, 29–44 (2016). https://doi.org/10.1016/j.tcs.
2015.10.013

110. Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. CWI Q.
2(3), 219–246 (1989), https://ir.cwi.nl/pub/18164

111. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Architecture Diagrams: A
Graphical Language for Architecture Style Specification. In: Proceedings of the
9th Interaction and Concurrency Experience (ICE 2016). EPTCS, vol. 223, pp.
83–97 (2016). https://doi.org/10.4204/EPTCS.223.6

112. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Architecture Diagrams: A
Graphical Language for Architecture Style Specification. In: Bartoletti, M., Hen-
rio, L., Knight, S., Torres Vieira, H. (eds.) Proceedings of the 9th Interaction
and Concurrency Experience (ICE 2016). EPTCS, vol. 223, pp. 83–97 (2016).
https://doi.org/10.4204/eptcs.223.6

113. Milner, R., Moller, F.: Unique Decomposition of Processes. Theor. Comput. Sci.
107(2), 357–363 (1993). https://doi.org/10.1016/0304-3975(93)90176-T

114. Muschevici, R., Proença, J., Clarke, D.: Modular Modelling of Software Product
Lines with Feature Nets. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM
2011. LNCS, vol. 7041, pp. 318–333. Springer (2011). https://doi.org/10.1007/
978-3-642-24690-6_22

115. Muschevici, R., Proença, J., Clarke, D.: Feature Nets: behavioural modelling of
software product lines. Softw. Sys. Model. 15(4), 1181–1206 (2016). https://doi.
org/10.1007/s10270-015-0475-z

116. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Do-
mains, Part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/
0304-3975(81)90112-2

117. von Oheimb, D.: Interacting State Machines: A Stateful Approach to Prov-
ing Security. In: Abdallah, A.E., Ryan, P.Y.A., Schneider, S.A. (eds.) FASec
2002. LNCS, vol. 2629, pp. 15–32. Springer (2002). https://doi.org/10.1007/
978-3-540-40981-6_4

118. Orlando, S., Pasquale, V.D., Barbanera, F., Lanese, I., Tuosto, E.: Corinne,
a Tool for Choreography Automata. In: Salaün, G., Wijs, A. (eds.) FACS
2021. LNCS, vol. 13077, pp. 82–92. Springer (2021). https://doi.org/10.1007/
978-3-030-90636-8_5

119. Proença, J., Madeira, A.: Taming Hierarchical Connectors. In: Hojjat, H.,
Massink, M. (eds.) FSEN 2019. LNCS, vol. 11761, pp. 186–193. Springer (2019).
https://doi.org/10.1007/978-3-030-31517-7_13

33

https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/978-3-319-95582-7_2
https://doi.org/10.1007/978-3-319-95582-7_2
https://doi.org/10.1007/978-3-319-95582-7_2
https://doi.org/10.1007/978-3-319-95582-7_2
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1109/ASE.2009.16
https://doi.org/10.1016/j.tcs.2015.10.013
https://doi.org/10.1016/j.tcs.2015.10.013
https://doi.org/10.1016/j.tcs.2015.10.013
https://doi.org/10.1016/j.tcs.2015.10.013
https://ir.cwi.nl/pub/18164
https://doi.org/10.4204/EPTCS.223.6
https://doi.org/10.4204/EPTCS.223.6
https://doi.org/10.4204/eptcs.223.6
https://doi.org/10.4204/eptcs.223.6
https://doi.org/10.1016/0304-3975(93)90176-T
https://doi.org/10.1016/0304-3975(93)90176-T
https://doi.org/10.1007/978-3-642-24690-6_22
https://doi.org/10.1007/978-3-642-24690-6_22
https://doi.org/10.1007/978-3-642-24690-6_22
https://doi.org/10.1007/978-3-642-24690-6_22
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/978-3-540-40981-6_4
https://doi.org/10.1007/978-3-540-40981-6_4
https://doi.org/10.1007/978-3-540-40981-6_4
https://doi.org/10.1007/978-3-540-40981-6_4
https://doi.org/10.1007/978-3-030-90636-8_5
https://doi.org/10.1007/978-3-030-90636-8_5
https://doi.org/10.1007/978-3-030-90636-8_5
https://doi.org/10.1007/978-3-030-90636-8_5
https://doi.org/10.1007/978-3-030-31517-7_13
https://doi.org/10.1007/978-3-030-31517-7_13

120. Proença, J.: Overview on Constrained Multiparty Synchronisation in Team Au-
tomata. In: Cámara, J., Jongmans, S.S. (eds.) FACS 2023. LNCS, vol. 14485, pp.
194–205. Springer (2023). https://doi.org/10.1007/978-3-031-52183-6_10

121. Proença, J., Clarke, D.: Typed connector families and their semantics. Sci. Com-
put. Program. 146, 28–49 (2017). https://doi.org/10.1016/j.scico.2017.03.002

122. Proença, J., Clarke, D., de Vink, E., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: Proceedings of the 27th ACM Sympo-
sium on Applied Computing (SAC 2012). pp. 1510–1515. ACM (2012). https:
//doi.org/10.1145/2245276.2232017

123. Proença, J., Cledou, G.: ARx: Reactive Programming for Synchronous Connec-
tors. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134,
pp. 39–56. Springer (2020). https://doi.org/10.1007/978-3-030-50029-0_3

124. Proença, J.: Synchronous Coordination of Distributed Components. Ph.D. thesis,
Leiden University (2011), https://hdl.handle.net/1887/17624

125. Ramadge, P.J., Wonham, W.M.: Supervisory Control of a Class of Discrete Event
Processes. SIAM J. Control Optim. 25(1), 206–230 (1987). https://doi.org/10.
1137/0325013

126. Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013). https://doi.org/10.1007/978-3-642-33278-4

127. Scalas, A., Yoshida, N.: Less Is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang. 3, 30:1–30:29 (2019). https://doi.org/10.1145/3290343

128. Severi, P., Dezani-Ciancaglini, M.: Observational Equivalence for Multiparty
Sessions. Fundam. Inform. 170(1-3), 267–305 (2019). https://doi.org/10.3233/
FI-2019-1863

129. Sharafi, M.: Extending Team Automata to Evaluate Software Architectural De-
sign. In: Proceedings of the 32nd IEEE International Computer Software and
Applications Conference (COMPSAC 2008). pp. 393–400. IEEE (2008). https:
//doi.org/10.1109/COMPSAC.2008.57

130. Sharafi, M., Aliee, F.S., Movaghar, A.: A Review on Specifying Software Ar-
chitectures Using Extended Automata-Based Models. In: Arbab, F., Sirjani,
M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 423–431. Springer (2007). https:
//doi.org/10.1007/978-3-540-75698-9_30

131. Smeyers, M.: A Browser-Based Graphical Editor for Reo Networks. Master’s the-
sis, Leiden University (2018), https://theses.liacs.nl/1536

132. Teren, V., Cortadella, J., Villa, T.: Decomposition of transition systems into
sets of synchronizing state machines. In: Proceedings of the 24th Euromicro
Conference on Digital System Design (DSD 2021). pp. 77–81. IEEE (2021).
https://doi.org/10.1109/DSD53832.2021.00021

133. Teren, V., Cortadella, J., Villa, T.: Decomposition of transition systems into sets
of synchronizing Free-choice Petri Nets. In: Proceedings of the 25th Euromicro
Conference on Digital System Design (DSD 2022). pp. 165–173. IEEE (2022).
https://doi.org/10.1109/DSD57027.2022.00031

134. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer
(1988). https://doi.org/10.1007/BFB0013026

135. Yoshida, N.: Programming Language Implementations with Multiparty Session
Types. In: de Boer, F.S., Damiani, F., Hähnle, R., Johnsen, E.B., Kamburjan, E.
(eds.) Active Object Languages: Current Research Trends, LNCS, vol. 14360, pp.
147–165. Springer (2024). https://doi.org/10.1007/978-3-031-51060-1_6

34

https://doi.org/10.1007/978-3-031-52183-6_10
https://doi.org/10.1007/978-3-031-52183-6_10
https://doi.org/10.1016/j.scico.2017.03.002
https://doi.org/10.1016/j.scico.2017.03.002
https://doi.org/10.1145/2245276.2232017
https://doi.org/10.1145/2245276.2232017
https://doi.org/10.1145/2245276.2232017
https://doi.org/10.1145/2245276.2232017
https://doi.org/10.1007/978-3-030-50029-0_3
https://doi.org/10.1007/978-3-030-50029-0_3
https://hdl.handle.net/1887/17624
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.1109/COMPSAC.2008.57
https://doi.org/10.1109/COMPSAC.2008.57
https://doi.org/10.1109/COMPSAC.2008.57
https://doi.org/10.1109/COMPSAC.2008.57
https://doi.org/10.1007/978-3-540-75698-9_30
https://doi.org/10.1007/978-3-540-75698-9_30
https://doi.org/10.1007/978-3-540-75698-9_30
https://doi.org/10.1007/978-3-540-75698-9_30
https://theses.liacs.nl/1536
https://doi.org/10.1109/DSD53832.2021.00021
https://doi.org/10.1109/DSD53832.2021.00021
https://doi.org/10.1109/DSD57027.2022.00031
https://doi.org/10.1109/DSD57027.2022.00031
https://doi.org/10.1007/BFB0013026
https://doi.org/10.1007/BFB0013026
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6

A Selected publications from 25+ years of team automata

Year Title Venue

2023 [47] Realisability of Global Models of Interaction ICTAC’23
2023 [120] Overview on Constrained Multiparty Synchronisation in

Team Automata
FACS’23

2023 [36] Can we Communicate? Using Dynamic Logic to Verify Team
Automata

FM’23

2021 [34] Featured Team Automata FM’21
2020 [46] Team Automata@Work: On Safe Communication COORDI-

NATION’20
2020 [44] Compositionality of Safe Communication in Systems of Team

Automata
ICTAC’20

2017 [31] Communication Requirements for Team Automata COORDI-
NATION’17

2016 [32] Conditions for Compatibility of Components: The Case of
Masters and Slaves

ISoLA’16

2014 [53] On Distributed Cooperation and Synchronised Collaboration JALC
2013 [69] Compatibility in a multi-component environment TCS
2012 [52] Vector Team Automata TCS
2010 [94] Team Automata Based Framework for Spatio-Temporal

RBAC Model
BAIP’10

2009 [51] Associativity of Infinite Synchronized Shuffles and Team Au- Fundam.
Inform.tomata

2008 [129] Extending Team Automata to Evaluate Software Architec- COMP-
SAC’08tural Design

2008 [43] A calculus for team automata ENTCS
2007 [130] A Review on Specifying Software Architectures Using Ex-

tended Automata-Based Models
FSEN’07

2006 [81] Modelling a Secure Agent with Team Automata ENTCS
2006 [55] A Team Automaton Scenario for the Analysis of Security

Properties in Communication Protocols
JALC

2005 [54] Team Automata for Security – A Survey – ENTCS
2005 [50] Modularity for Teams of I/O Automata IPL
2004 [37] Teams of Pushdown Automata IJCM
2004 [68] Interactive Behaviour of Multi-Component Systems Workshop
2003 [30] Team Automata: A Formal Approach to the Modeling of Col-

laboration Between System Components
PhD thesis

2003 [49] Team Automata Satisfying Compositionality FME’03
2003 [29] Team Automata for Security Analysis of Multicast/Broadcast

Communication
Workshop

2003 [100] Team Automata for CSCW – A Survey – LNCS
2003 [41] Synchronizations in Team Automata for Groupware Systems CSCW
2002 [83] Towards Team-Automata-Driven Object-Oriented Collabora-

tive Work
LNCS

2001 [40] Team Automata for Spatial Access Control ECSCW’01
2001 [39] Team Automata for CSCW Workshop
2000 [91] A Conflict-Free Strategy for Team-Based Model Development Workshop
1999 [38] Synchronizations in Team Automata for Groupware Systems Tech. Rep.
1997 [82] Team Automata for Groupware Systems GROUP’97

35

	Team Automata: Overview and Roadmap

