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Abstract

Probabilistic and statistical temporal analyses have been developedas a means of determining the worst-case
execution and responsetimes of real-time software for decades. A number of such methodshave been proposed in
the literature, of which the majority claim tobe able to provide worst-case timing scenarios with respect to agiven
likelihood of a certain value being exceeded. Further, suchclaims are based on either some estimates associated
with a probability,or probability distributions with a certain level of confidence.However, the validity of the claims
are very much dependent on anumber of factors, such as the achieved samples and the adopteddistributions for
analysis.In this paper, we investigate whether the claims made are in facttrue as well as the establishing an
understanding of the factors thataffect the validity of these claims. The results are of importancefor two reasons:
to allow researchers to examine whether there areimportant issues that mean their techniques need to be refined;
andso that practitioners, including industrialists who are currently usingcommercial timing analysis tools based on
these types of techniques,understand how the techniques should be used to ensure theresults are fit for their
purposes.
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ABSTRACT

Probabilistic and statistical temporal analyses have been developed
as a means of determining the worst-case execution and response
times of real-time software for decades. A number of such methods
have been proposed in the literature, of which the majority claim to
be able to provide worst-case timing scenarios with respect to a
given likelihood of a certain value being exceeded. Further, such
claims are based on either some estimates associated with a proba-
bility, or probability distributions with a certain level of confidence.
However, the validity of the claims are very much dependent on a
number of factors, such as the achieved samples and the adopted
distributions for analysis. This paper is the first one that puts side
by side existing state of the art statistical and probabilistic analysis
techniques, using the probabilistic analysis as the ground truth in
order to asses the applicability and performance of the statistical
technique. The evaluation clearly shows that for the experiments
performed the approach can identify clear differences between a
range of techniques and that these differences can be considered
valid based on the trends expected from the academic theory.

1. INTRODUCTION

Edgar [13]] produced the first work that uses statistical analysis
methods, in the form of Extreme Value Analysis (EVA), to under-
stand the worst-case behaviour of software. In the case of Edgar’s
work, execution times were used to form a Gumbel distribution.
The distribution allowed a Worst-Case Execution Time (WCET) to
be selected at a given exceedance threshold level, i.e. how likely
it is for a certain value of WCET to be exceeded. The applica-
tion of EVA-based techniques to the WCET analysis problem was
extended to combine measurements with static analysis to form hy-
brid analysis [8] and the use of copulas to allow statistical analy-
ses results to account for possible dependencies between different
behaviours of the system [9]. Statistical analysis techniques, other
than fitting a Gumbel distribution, have been applied to improve the
results obtained including block maxima-based approaches [[17,26]
and theoretical analyses [34]. In addition to WCET, EVA-based
techniques have been applied in other areas of real-time systems re-
search including for Worst-Case Response Times (WCRT) of tasks
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[33]] and messages [37].

In this paper we are interested in assessing the correctness and
efficiency of statistical analyses in deriving exceedance probabil-
ities for response times that an arbitrary task in the system may
exhibit. This is based on some observed response times of that par-
ticular task. Correctness is when the technique predicts a value X
is exceeded with a probability of Y then the actual probability is
first and foremost less than Y (i.e. the approach tends to be pes-
simistic), and secondly the most correct approach is the one for
which the actual probability is as close as possible to Y. Efficiency
is a complementary property that builds an understanding of which
approach is most correct given a finite amount of effort. For exam-
ple, given Z observations which approach is both pessimistic and
has the closest actual probability to Y.

Recently, this problem was also highlighted in the 6th Real-
Time Scheduling Open Problems Seminar [23]] under the premises
that probabilistic worst case response time (pWCRT) distributions
would best be characterized using Gumbel distributions. In the
present paper, not only do we assess how well the Gumbel distribu-
tion characterized pWCRTS, but also how well other distributions
perform in comparison. It is hoped that the information obtained
from this work can be used in certification cases as part of the con-
fidence attributed to the claims made, concerning the timing re-
quirements being met, and then real-time systems can be designed
to compensate (e.g. through fault tolerance) for the fallibility of the
techniques used [[24].

The contributions of this work are as follows:

1. a methodology is proposed that when combined with a task
set simulator allows a controlled experiment to be performed,

2. a discussion about the correctness of Measurement Based

Techniques for deriving response time probability distribu-
tions based on traces collected at run-time, and

3. experimental results are presented, showing the ability of dif-

ferent statistical techniques to accurately predict the Worst-
Case Response Times (WCRT) of tasks

The structure of the paper is as follows. Firstly, in section 2] a
survey of related work is performed to better understand the anal-
yses that have been performed in the past. This is not intended to
be a comprehensive survey of probabilistic and statistical analysis
methods applied to the domain of real-time systems. Instead it is to
understand the broad categories of such techniques that have pre-
viously been used. That said, we believe the main pieces of work
have been covered. In Section [3| we present the system model and
terminology that we use throughout the paper, and then in Sectionf4]
we present a summary of the tools that we use in our investigation.
Next, in Section [} the experimental approach is outlined together
with the questions that we seek answers for, which is then followed
by the results of our evaluation in Section[6] Finally Section[7]con-



cludes the paper.

2. RELATED WORK

Looking at the development of temporal analysis for real-time

embedded systems using probabilistic (sometimes called stochas-
tic) methods and statistics using measurements, the related work
mainly lies in the areas of WCET (well established in the state of
the art) and WCRT (since very recently) analysis. The main differ-
ence between statistical and probabilistic methods lies in the fact
that statistical methods use samples to form distributions for analy-
sis whereas probabilistic methods use predicted distributions within
analysis. In this paper we focus on the second area of applicabil-
ity for probabilistic and statistical analyses, namely, we validate
statistical analysis for WCRT by using state of the art probabilis-
tic analysis. More details about probabilistic and statistical timing
analyses are given below. In the rest of the paper we will be using
the terms sample and trace interchangeably to represent a single
value (e.g. response time) taken from the simulation or execution
of the system.
Considering WCET analysis, it should be mentioned that, early
work on Static Probabilistic Timing Analysis (SPTA) [18] [31]] (for
deterministic systems) relied on knowing the probabilities that dif-
ferent paths would be taken. SPTA was later derived for systems
with a random replacement caches [[14]]. This analysis was based on
the reuse distance of memory accesses. It was superseded by anal-
ysis for the more effective evict-on miss policy (which dominates
the evict-on-access approach assumed by previous papers) [19]]. In
2014, a more effective SPTA [4]] was introduced based on cache
contention, and a precise analysis of a limited set of focussed cache
blocks. This method was further improved using cache simulation
techniques [3]. Comparisons between MBPTA [15] and the SPTA
methods based on reuse distance were shown in [[1]].

2.1 Probabilistic Timing Analysis

Probabilistic timing analysis and the associated methods model
the target parameters (e.g. the task’s WCET, Minimum Inter-arrival
Time (MIT)) by using random variables. For WCET analysis mul-
tiple avenues have been explored, starting in 1995 when [41]] intro-
duced an analysis for tasks that have periodic releases but variable
execution requirements. The algorithm, called Probabilistic Time
Demand Analysis (PTDA) computes the worst case probability that
a task misses its deadline by bounding the total amount of processor
time demanded by all higher priority tasks. Since the algorithm is
based on a bound of the processor demand of higher priority tasks,
it is highly pessimistic. The next step towards an exact probabilistic
analysis was made by [22] with the introduction of the Stochastic
Time Demand Analysis (STDA) for tasks that have probabilistic
execution times, computing a lower bound on the probability that
jobs of each task will meet their respective deadlines. Later on,
[21]], [29], [32] refined STDA into an exact analysis for real-time
systems that have random execution times. The execution time is
represented as a general random variable and the priorities may be
job-level or task-level. The analysis is proven to be bounded in
time and exact for both cases when the system utilisation is lower
or greater than one. Due to the resource costs (computation time
and memory) of convolution, the proposed analysis can only be ap-
plied for small task systems - this problem was later studied in [40]]
and [35]] with the introduction and refinement, respectively, of re-
sampling techniques meant to decrease the size of the distributions
that are convolved while introducing minimal pessimism.

Another branch of probabilistic analysis for real-time system
considers inter-arrival times as being described by random vari-
ables. Most notable is the work of Broster et al. [[11]] and [[12] where

jobs with random arrival times are generated by various sources,
e.g. external interrupts, network interfaces, etc.. In [15], the au-
thors introduce a framework for computing response time distribu-
tions in the case when in the system there are tasks that have ran-
dom arrivals, given as independent discrete random variables. The
rest of the parameters of the tasks are deterministic. The output of
the analysis is the response time probability distribution of the first
release of an analysed task, considering that all tasks are released
synchronously. Both frameworks mentioned have assumptions on
the system model that are different to ‘real’ systems. For exam-
ple Broster assumes Poisson arrivals whereas [[15] only assumes
the MIT is random and that the analysis stops when the deadline is
reached.

Very few contributions exist that take into consideration multi-
ple sources of variability in the tasks’ parameters. Lehoczky [30]
first extended queuing theory with real-time hypotheses, which was
later improved by Zhu [44]. Task instances have arrivals described
by a Poisson process and exponentially distributed execution times.
The main problem with these methods is using the same proba-
bility distributions to model the execution times and inter-arrival
times of all tasks is not realistic. In 2013 Maxim and Cucu [34]
extended the probabilistic timing analysis of Diaz et al. [21]] to the
case where tasks are allowed to have multiple sources of variability
in their parameters, that is, not just the execution time is given as
a random variable but the inter-arrival times and deadlines as well,
the analysis being able to cope with multiple probabilistic param-
eters given as random variables and returns a probability distribu-
tion representing the possible response times of the task if it were
to be instantiated at the same time as all higher priority tasks, i.e.
the synchronous case. This distribution is proven to be safe, since
the synchronous case is an upper-bound for all possible cases that
might arise in the system, i.e. in the non-synchronous cases there is
less interference from higher-priority tasks and hence the response
times can not be higher than in the synchronous case.

2.2 Statistical Timing Analysis

In recent years, Edgar and Hansen applied the Extreme Value
Theory (EVT), which is used to handle extreme scenarios of events,
to the problem of WCET analysis. Specifically, Edgar [[13]] presents
the initial work on using EVT for WCET estimation, by firstly fit-
ting the raw measured execution time sample to the Gumbel-Max
distribution based upon an unbiased estimator. A WCET estimate is
then calculated using an excess distribution function. Hansen [26]
improves the work by using a block maxima approach for the esti-
mation of the probabilistic WCET, rather than fitting the raw exe-
cution time sample to the Gumbel-Max distribution directly.

For WCRT analysis, Zeng [43] has presented a statistical method,
which computes probability distributions of message response times
in CAN by using a mixed model of the Gamma distribution and the
degenerate distribution. Lu [33]] has addressed limitations of EVT-
based analysis based on a systematic analysis framework. Further,
the analysis method generally can be applied on different systems,
since the target system is considered as a black box without requir-
ing estimates of parameters such as WCETS of tasks.

The state of practice in industry is that many companies devel-
oping their real-time embedded systems have no means for tim-
ing analysis and are forced to rely on testing to find timing-related
problems by using measurements [24]28]. Often, the maximum
observed execution and response-times (referred to as High-Water-
Mark (HWM) execution and response times) have a safety margin
based on experts’ experience. However for the purposes of certifi-
cation, the need to add such a margin undermines the integrity of
the analysis in the first place and the size of the margin is hard to



justify as the inaccuracy in the analysis is not known. That said,
there are recognized safety margins for existing systems however
these tend to be for simple processors (i.e. without caches and sim-
ple pipelines) and it would be difficult to justify revised safety mar-
gins if more modern processors are deployed [6,7].

3. SYSTEM MODEL AND TERMINOLOGY

A random variable X has a probability function (PF’) fx (-) with
fx(x) = P(X = z). The possible values of X; belong to the
interval [X™™  X™4%] In this paper we associate the probabilities
with the possible values of a random variable using the following

notation:

XO — X'mzn Xl Xk — xmaz

X = ; 1
( fX(Xnnn) fX(Xl) fX(Xmaac) ) ( )

where Zfl:o fx(X7?) = 1. A random variable may also be spec-
ified using its cumulative distribution function (CDF) Fx(z) =

Z::)(min fX(Z)

Definition 1. Two random variables X and ) are (probabilisti-
cally) independent if they describe two events such that the out-
come of one event does not have any impact on the outcome of the
other.

Definition 2. [32|] Let X1 and X5 be two random variables. We
say that X, is greater than X; if Fx, (x) < Fx,(z), Vz, and
denote it by X1 = Xo.

For example, in Figure[l] Ft, () never goes below Ft, (), mean-
ing that C; > Ca. Note that C2, C4 and C4 are not comparable with
each-other.

P(Cz2%)

—— C, (upperbound)

Probability

-----
.,
~— - —
— "y —
-....-.--‘!n—u“-_::.._.._,u‘-‘:...,-

k4

Value

Figure 1: Possible relations between the 1-CDFs of various random
variables

We consider a system of n synchronous tasks {71, 72,...,7n}
to be scheduled on one processor according to a preemptive fixed-
priority task-level scheduling policy. Without loss of generality,
we consider that 7; has a higher priority than 7; for i < j. We
denote by hp(i) the set of tasks’ indexes with higher priority than
7;. By synchronous tasks we understand that all tasks are released
simultaneously the first time at ¢t = 0.

Each task 7; generates an infinite number of successive jobs 7; ;,
with j = 1,...,00. All jobs are assumed to be independent of
other jobs of the same task and those of other tasks.

Each task 7; is a generalized sporadic task [36] and it is repre-
sented by a probabilistic worst case execution time (pWCET) de-
noted by C; (In this paper, we use calligraphic typeface to denote
random variables) and by a probabilistic minimal inter-arrival time
(pMIT) denoted by 7;. These notions are defined as follows.

Definition 3. The probabilistic execution time (pET) of a job of a
task describes the probability that the execution time of the job is
equal to a given value.

Definition 4. The probabilistic worst case execution time (p»WCET)
of a task describes the probability that the worst case execution
time of that task is equal to a given value.

A safe pWCET C; is an upper bound on the pETs Cf , V7 and it
may be described by the relation > as C; = Cf , Vj. Graphically
this means that the Complementary CDF (1-CDF) of C; is always
above the 1-CDF of C/, Vj. The 1-CDF describes how often a
particular variable is above the exceedance level.

Following the same reasoning the probabilistic minimal inter-
arrival time (pMIT) denoted by 7; describes the probabilistic min-
imal inter-arrival times of all jobs.

Definition 5. The probabilistic inter-arrival time (pIT) of a job of
a task describes the probability that the job’s arrival time occurs at
a given value.

Definition 6. The probabilistic minimal inter-arrival time (pMIT)
of a task describes the probability that the minimal inter-arrival
time of that task is equal to a given value.

A safe pMIT 7; is a bound on the pITs 7?, Vj and it may be
described by the relation > as '77 > Ti, Vj. Graphically this means
that the complementary CDF (1-CDF) of C; is always above the 1-
CDF of C}, Vj.

Hence, a task 7; is represented by a tuple (C;, 7;). A job of a
task must finish its execution before the arrival of the next job of
the same task, i.e., the arrival of a new job represents the deadline
of the current jolﬂ Thus, the task’s deadline may also be repre-
sented by a random variable D; which has the same distribution as
its pMIT, 7;. Alternatively, we can consider the deadline described
by a distribution different from the distribution of its pMIT if the
system under consideration calls for such model [2}{38]], or the sim-
pler case when the deadline of a task is given as one value. The
latter case is probably the most frequent in practice.

As stated in [16]], since we consider probabilistic worst case val-
ues (for MIT and WCET), then the random variables are (proba-
bilistically) independent.

Definition 7 (Job deadline miss probability). For a job T; ; the
deadline miss probability DMP; ; is the probability that the gth
Jjob of task T; misses its deadline and it is equal to:

DMPi,j = P(RZ’,]' > Dz) 2)

where R; ; is the response time distribution of the j th job of task
Ti.

It was shown in [34] that the case when tasks are simultaneously
released yields the greatest response time distribution for each task
respectively. Here, greatest is defined with respect to the relation
> and it indicates that the response time distribution of the first
job upper bounds the response time distribution of any other job of
that task. Since we are considering synchronous tasks, calculating
the response time distribution of the first job of a task provides the
worst case response time distribution of the task and, implicitly, its
worst case DMP.

4. DETAILS OF THE ANALYSIS TOOLS

In order to help us in our endeavour of quantifying the applica-
bility of statistical measurement based techniques to real-time sys-
tem we have developed a suite of tools including (i) probabilistic
task-set generators, (ii) simulator for the generated task-sets, (iii)

'In the analysis of GMF tasks this is known as the frame separation
constraint.



probabilistic analysis tool for the generated tasks and (iv) statisti-
cal analysis tool to analyse the traces collected during simulations.
These tools are freely available by email request to the authors. We
describe the tools in detail below.

4.1 Task-set Generator and Simulator

The purpose of the simulator is to allow a sufficiently complex
set of tasks to be simulated and a ground truth to be established. A
decision was taken to create a bespoke simulator rather than use an
existing simulator. The reason is existing simulators do not have
probabilistic task sets as inputs, i.e. featuring tasks that have their
WCET and/or their MIT given as random variables. The simulator
used has the following characteristics, which are chosen to be suit-
ably complex and relatively realistic. It was judged that absolute
realism is not critical. What is important is not introducing exper-
imental bias and whether the analysis approaches are able to deal
with whatever data was fed into them.

1. Task sets consist of a number N of sporadic tasks. Depend-
ing on the experiment performed and the properties that we
are looking to analyse, the number of tasks in the system is
varied. If not stated otherwise, the default number of tasks is
N =5.

2. All parameters of each task can be given as random variables.
For the sake of simplicity, only the execution times and inter-
arrival times are described by distributions (with a defined
profile between a minimum and maximum value), and are
called pWCET and pMIT.

3. The deadline is given as a single value taken from the theo-
retical distribution at the required exceedance threshold, i.e.
if we require a deadline that should only ever be exceeded 1
in a million times then the response time equating to 10~°
is taken from the Complimentary Distribution Function (1-
CDF). The 1-CDF gives the likelihood that a given value is
ever exceeded.

4. The number of values in each distribution can be given as
input to the random task set generator. If the number is 1
then the parameter has a single value (the worst case value)
and it is called a deterministic parameter. The simulator and
analyser employed in the present work can cope with any
combination of probabilistic and deterministic parameters of
tasks. If not stated otherwise, each random variable has 5
values.

5. The only parameters of each task are: pWCET, pMIT and
Deadline (D)

6. The task sets are scheduled according to a Fixed Priority Pre-
emptive Scheduling (FPPS) policy.

7. The task set generator generates two deterministic task sets
according to the Uunifast [[10] algorithm, one of the sets hav-
ing an utilisation equal to Uy,;» < 1 and the other set having
an utilisation equal to Upqz > 1. Both Uiy, and Uppq, are
given as input to the task set generator. For sake of simplic-
ity, in this work, we have fixed Ui, = 0.1 and Uy = 4.
The tasks in the two sets are then paired two by two and each
pair gives the minimum and maximum values of the pWCET
and pMIT of a probabilistic task.

8. The pWCET distribution is monotonically non-increasing,
i.e. an instance (job) of the task is more likely to have a
lower execution time than a large one.

9. The pMIT distribution is monotonically non-decreasing, i.e.
two instances (jobs) of the task are more likely to be sepa-
rated by a large inter-arrival time than a small one.

10. As the pWCET distributions are decreasing and the pMIT

distributions are increasing and the fact that the minimum

and maximum utilisation of the probabilistic task set can be
changed as necessary, task sets are generated with expected
utilisation less than 1, so that deadline misses are extremely
rare events. In this work, it is interesting to also understand
how the analysis copes with these cases.

11. When the simulator starts, all tasks in the system are instanti-
ated, hence, the first job is in a critical instant situation. Sub-
sequent jobs have random arrivals as described by their pMIT
distributions and the inter-arrival time between any two con-
secutive jobs is no less than the smallest value in the tasks’
pMIT distribution. Further critical instants may occur during
the run-time of the system.

The simulator represents the temporal operation of a real system
without being slowed down by executing any of the functionality.
The execution of these tasks using FPPS should be suitably com-
plex, although not necessarily representative of real systems.

4.2 Probabilistic Analysis Tool

The technique presented in [34] is implemented in a probabilistic
analysis tool and, in parallel to the simulator, is used to calculate
the probabilistic WCRT (pWCRT), R;, of each generated task. The
response time distribution thus computed is used as a ground truth
in our experiments. The analysis is summarized in the following
recurrence relation:

'R;’j _ (R:;Lhead & (Ri;l,tail ® Cfnr)) ® Ppr 3)

where:

e n is the index of the task under analysis;

e ¢ is the current step of the iteration;

e j represents the index of the current value taken into consid-
eration from the pMIT distribution of the preempting task;
Ri-1head is the part of the distribution that is not affected
by the current preemption under consideration;

o Ri~1tail jg the part of the distribution that may be affected
by the current preemption under consideration;

e m is the index of the higher priority task that is currently
taken into account as a preempting task;

e CP" is the execution time distribution of the currently pre-
empting task; and

e P, is a fake random variable used to scale the j*" copy of
the response time with the probability of the current value
1 from the pMIT distribution of the preempting task. This
variable has one unique value equal to 0 and its associated
probability is equal to the 5" probability in the pMIT distri-
bution of the preempting job.

For each value v, ; in 7., j) for which there exists at least one
value vy, ; in R~ ! so that v}, > vfm ;» the distribution Ri~1is split
in two parts:

o Ri; " which contains all values v, ; of Ri; " that are
less or equal than vfm ie., v;i < vfm, and

o Ri-Lteil which contains all values vi’i of RE™Y that are

I o |

The iterations end when there are no more arrival values v}, ;
of any job ¢ of any higher priority task 7, that is smaller than any
value of the response time distribution at the current step. A stop-
ping condition may be explicitly placed in order to stop the analysis
after a desired response time accuracy has been reached. For exam-
ple, the analysis can be terminated once an accuracy of 10~° has
been reached for the response time. Further details about the Prob-

abilistic Analysis Tool can be found in [34].

Ca ot j
greater than v, ;,i.e., v, ; > vy, ;.



4.3 Statistical Analysis Tool

Based on the literature survey in Section 2] the following statis-
tical analysis techniques are used:

1. fitting a Weibull (W) distribution;

2. fitting a Gumbel (G) distribution;

3. fitting a Normal (N) distribution; and

4. applying the Block-Maxima (BM) method presented in [33]]

The first three of these analyses are achieved using a standard
function in R, samlmu (part of the Imom package) [27]], which was
chosen as other fitting functions, e.g. fitdistr, were found not to be
robust (i.e. the analysis software often exited with unrecoverable
errors) due to careful selection of initial fitting parameters being
needed. The advantage of samlmu is that it did not require initial
parameters. The Block-Maxima analysis can be summarized by
the following steps with full details being available in [33]]. All the
values chosen in the algorithm are based on standard statistical test
tables [20] that have subsequently been validated through trials.

1. Firstly, a set RT of training data is randomly sampled from
the overall set of available data. Specifically, each sub-training
data (RT) is taken such that an i.i.d. assumption can be
made, and such that there are sufficient samples allowing for
appropriate tuning of the final analysis. Again the sam/mu
package is used for to fit a Gumbel distribution to the set
RT. The number of samples is progressively decreased (by
dividing the number of samples by 2) from the maximum,
191, until a suitable fit is achieved, i.e. a Goodness of Fit
(GoF) better than 0.95. The minimum number of samples in
set RT is 6. If a sufficient GoF is not achieved then the best
achieved is taken.

2. Then, a posterior statistical correction process is performed
to decompose the reliability target for the WCRT of tasks into
a number of probabilities to be used in the statistical analy-
sis, i.e. the GoF of 0.95, the statistical confidence associated
with the limited sampling, again 0.95, and the exceedance
threshold, £ Ty used in the final step of the analysis.

3. Given an appropriate task RT sub-training data, the statistical
analysis in the posterior statistical correction process is tuned
such that the maximum of a probability distribution (in this
case the Gumbel Max distribution) generated with a given
set of parameters is a sufficiently close match, at the required
confidence level, to the maximum of the actual distribution of
the sub-training data. At this step, a calibrated and tight PDF
histogram of the task WCRT consisting of the estimates of
the maximum of each task RT sub-training data, WC RTBwm,
is obtained at a given exceedance threshold, RTss.

4. The final stage is to fit a normal distribution, again using the
samlmu package, to the set of W C RT s values and then
read off the final WCRT at the chosen exceedance threshold,
i.e. RT'n which is taken as 0.95.

For each of the approaches, the following parameters are em-
ployed.

1. Number of samples used: 10000.

2. Confidence interval chosen: 99.9999%.

S. EXPERIMENTAL APPROACH

This section will first introduce and define the term Ground Truth
in the context of this work. It will then highlight possible confounds
of the chosen simulation approach in terms of validity leading to the
subsequent presentation of the objectives and research questions.

5.1 Establishing the Ground Truth

An important part of this work is knowing the ground truth of
the techniques that are compared. The ground truth is essentially

the accuracy of the approaches. In this work, a task set generator
combined with a task-level simulator is preferred over using real
software. The reasons for this decision are as follows:

1. Controllability - If real software is to be used then it would be
very difficult to control particular execution times of individ-
ual tasks, patterns of release of tasks etc. This would make
it difficult to perform evaluations that looked at how key pa-
rameters, e.g. task set utilization and number of samples,
affect the efficacy of the techniques. It is assumed that the
samples are (randomly) chosen from the set that are available
following the simulation of a task set. The strategy proposed
allows the key parameters to be decided a priori to each ex-
periment and if needed specific experiments to be repeated.

2. Comparison to the Ground Truth - With real software it is
widely recognized [42] that except for the simplest of soft-
ware the exact WCET cannot be established. For a real sys-
tem the same can be argued for the WCRT, principally be-
cause establishing the actual WCRT is dependent on exact
WCETs being known. Also real systems have overheads
which are hard to analyse, and most published pieces of work
do not account for them [39]. This means there is no way to
evaluate the efficacy of techniques. Having a ground truth is
the singularly most important factor in the decision process
and the whole purpose of the presented work is the ability to
provide this form of evaluation. The need to compare against
a ground truth, i.e. an exact result, means that a sufficient and
necessary schedulability test is needed. The work in this pa-
per is performed using a uniprocessor system.

3. Realism - It could be argued that the proposed approach is
not realistic as it doesn’t have the characteristics of real soft-
ware. However in practice any evaluation not performed on
the actual system is not realistic. In addition it is recog-
nised that many benchmarks used in real-time systems are
not realistic. For instance, the benchmarks used for most
WCET research are those supported by Mélardalen Univer-
sity (www.mrtc.mdh.se/projects/wcet/benchmarks.html) and
if real software were to be used then they would be the likely
choice. In fact the maintainers of these benchmarks recog-
nize that they are not realistic [25]] even though they are very
widely used. In contrast the proposed approach can be made
as realistic as required. For example execution times can be
drawn from any form of distribution including that of the
actual system with the significant advantage that large-scale
evaluations can be performed at comparatively low cost, and
can also be performed early on in the development lifecycle,
to gain confidence in any proposed approach.

Given the choice of a simulation-based approach, it is important
to consider the threats to validity that come from the use of a sim-
ulator, and argue why these are acceptable. This information can
also be used to reduce the size of the threat. The main threats are
as follows:

1. Unrealistic WCETs - A task set simulator will not normally
execute real software but instead each task will have release
conditions (e.g. periods, jitter and arrival rates) and execu-
tion times. The key issue is where a random function is used
to control a particular parameter (e.g. execution time, jitter
or arrival rate) the distribution is not real, however it will be
controllable such that the chosen distribution of samples is
attained.

2. Unrealistic Overheads - In a similar fashion to Unrealistic
WCETs the simulator will not execute a real-time operating
system, however overheads can be introduced into the system
and controlled.



3. Unrealistic Dependencies - Real systems have two types of
dependencies, implicit and explicit. Explicit dependencies

are considered here to be transactional requirements, e.g. prece-

dence constraints between tasks. Implicit dependencies are
those that come from the tasks sharing dependencies such
as caches and execution dependencies [33]]. Explicit depen-
dencies can easily be built into task set simulators. Some
implicit dependencies would be represented within the way
tasks’ execution times are generated but these can also be
modeled. Its questionable to what extent these need to be
modeled as they can be subsumed into the other randomized
parameters, e.g. the tasks’ execution times.

The reason these threats do not affect the validity of the results is
the fact that the threats can be incorporated into the simulators ac-
cording to a profile of our choosing, i.e. we can control the precise
profile of the system that is to be examined. Importantly, using a
simulator allows for the same data to be used across all the statisti-
cal techniques that we investigate as well as allowing ground truths
to be found.

Out of the two approaches that can be considered sound (Gum-
bel and Block-Maxima), Gumbel appears to give the tightest re-
sults. However, as noted in the previous research question, the
Gumbel distribution can be unsafe at times and would require post-
processing correction. As such correction has not be considered in
this evaluation, it is therefore not possible to definitively conclude
that the Gumbel technique is superior to the Block-Maxima tech-
nique. Regarding the Block-Maxima technique, further research
needs to be carried out to determine the level of pessimism that
it introduces, and if this level of pessimism will result in a false
positive rate (where it incorrectly classifies schedulable task sets as
unschedulable) which is too high.

5.2 Experimental Objectives

The objectives of this paper are to develop an experimental method
for understanding how well a number of statistical techniques pre-
dict the WCRT of tasks and how various parameters affect this
ability, and present the results of applying the method to show the
forms of insight that are obtained. The following are the objec-
tives that are used to judge their relative abilities. For each of these
objectives specific research questions are presented (in italics).

1. RQI - Do any of the statistical analysis approaches provide
sound results? This is assessed by inspecting the 1-CDF for
the analysis approach and judging whether it always gives a
value greater than or equal to the theoretical analysis [34].

2. RQ2 - Which of the sound analysis approaches gives the
tightest bound? This is assessed by comparing the WCRT
obtained by the analysis method, W C ET 3" T with that
from the theoretical analysis, WCRTZ“**™T, at a given
exceedance threshold, RT, i.e.

) WCRT'm,ethodT
— R
tightness(RT) = VORI aETT

Normal, Weibull, Gumbel or Block-Maxima.
It is expected the tightness of the analysis method is depen-
dent on RT'.

where method can be

6. EVALUATION RESULTS

The starting point of this investigation is the hypothesis that the
exact response time probability distribution of a task (like its exe-
cution time probability distribution) can be approximated by taking
measurements at run-time and fitting them to distributions, such as
Gumbel-Max, Weibull, etc.

In order to asses this claim we have randomly generated, sim-
ulated and analysed several thousands of task-sets using the tools

and procedures outlined in Section f] Due to lack of space we
present here only small batches of task-sets, which we think are
representative for how well different statistical techniques perform.

For clarity we will present each statistical technique separately,
side by side with the theoretical analysis to see its performance.

For this section we have generated 100 task-sets, each with 5
tasks and each random variable (pWCET and pMIT) of each task
having 5 values. We have collected 10000 traces for the least prior-
itary task in each set, i.e. task on priority level 5 in this case. Five
tasks per task set and five values per random variable is enough to
have significant results without the need to use approximation tech-
niques such as re-sampling [35]] to speed up the probabilistic analy-
sis. Indeed, the probabilistic analysis is highly time consuming and
a way to make it tractable is to use techniques such as re-sampling,
but this kind of techniques introduces inaccuracy in the obtained re-
sults, and we are interested in having an exact theoretical response
time distribution that matches the empirical distribution of response
times observed during simulation.

The minimum utilizations of the 100 analysed task-sets are be-
tween 0.1 and 0.3, the maximum utilizations between 0.8 and 4,
and the expected utilizations are between 0.2 and 0.8. With such
large worst case utilisations, if the task-sets were to be analysed
using existing state of the art (deterministic) response time anal-
ysis, they would mostly be deemed unschedulable, but since the
expected utilisation is much less than the worst case one, then, the
probability that any job actually misses its deadline is vanishingly
small, the average DMP among all the 100 task-sets being 0.04
with a maximum of 0.71, with more than half of the analysed task-
sets having DMPs smaller than 10~%. We have chosen a wide range
of utilizations and failure probabilities in order to see how the sta-
tistical techniques perform for different types of task-sets.

6.1 Applicability and Performance of the
Gumble-Max Distribution

The first statistical technique that we take a closer look at is fit-
ting the collected response time traces to the Gumbel distribution.
Figure [2| depicts the DMPs of the 100 task-sets, as they are com-
puted by the theoretical analysis and derived by the Gumbel sta-
tistical technique. We can see that the two curves overlap almost
completely, indicating that Gumbel does a very good job of ap-
proximating the theoretical probability of deadline miss (for each
task).
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Figure 2: DMPs of 100 task-sets as derived by Gumbel and com-
puted theoretically

A better way of seeing how close the two sets of results are is to
plot the Gumbel ones as a ratio of the theoretical ones, as described
in RQ2 in Section[5.2] That is, for each task, the DMP derived by



Gumbel is divided by the DMP computed theoretically. In this way
we see how many times larger (or smaller) the statistical results are
compared to the theoretical ones. This relative representation can
be seen in Figure [3] which has a logarithmic Y-axis. The theoret-
ical DMPs are also divided by themselves, resulting in a straight
line corresponding to 1 on the Y-axis and it serves as the base-line
for the statistical results. That is, if the DMP derived by Gum-
bel for a task is above the base-line, then Gumbel provides a DMP
larger than the theoretical one, and this pessimism means that the
result can be treated as sound. The size of the Gumbel bar with re-
spect to the base-line represents the accuracy of the statistical tech-
nique, i.e., the larger the bar, the less accurate the statistical result
is. Similarly, if a bar is below the base-line, the statistical technique
has produced an optimistic result, i.e., smaller than the exact DMP
computed by the theoretical analysis.
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Figure 3: DMPs of 100 task-sets as derived by Gumbel relative to
the DMPs computed theoretically

Concerning the tightness of the statistical technique we note that
the smaller the theoretical DMP gets, the less tight the statistical
results are. This is explained by the fact that Gumbel is a contin-
uous function, having a constant slope, while the response time
probability distribution has abrupt decreases every time there is
a potential preemption and hence it gets further and further away
from the Gumbel function (this phenomenon can be observed in
Figure [T2] of Section [6.3). For example in Figure 3] the result re-
turned by Gumbel for task-set 18 seems to be very pessimistic, but
this is not necessarily true. The theoretical DMP of the task-set is
5.9843e10~ 7 but the DMP derived by Gumbel is 2.925¢10~2
and, while it does have a considerable pessimism, it is still accurate
enough to correctly qualify the task-set as schedulable according
to any certification standard in place to date (for instance, accord-
ing to the aerospace standards, a task at the highest level of crit-
icality must not have a failure rate larger than 10~° per hour of
operation [S]]). This is similar for task-sets 2,31,43,57 and 78,
which all have extremely small theoretical DMPs (between 1070
and 107'1%), and so the statistical analysis will still classify them
as schedulable even with a large amount of pessimism.

In order to see for how many task-sets the statistical analysis de-
rives optimistic results and the degree of this optimism, we need to
take a closer look at the lower part of Figure[3] Figure[d provides a
zoomed in view around the baseline of Figure[3] We can see that 11
out of the 100 analysed task-sets have been optimistically analysed,
but the degree of inaccuracy is very small. For example, the most
optimism can be observed for task-set 59, but even in this case the
difference between the statistical result (2.93e10™2) and the exact
one (4.98e107?) is very small, both results being in the range of
1073, The other 10 optimistical results are even closer to the exact
ones, so we can consider them as tight approximations. Note that

the average theoretical DMP of the 100 task-sets is 3.93682107
and the average statistical DMP is 4.0602x10 2.
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Figure 4: Close-up around the baseline of the relative DMPs de-
rived with the Gumbel technique for 100 tasks

For all these reasons we consider that the Gumbel distribution is
adequate to be used in deriving response time distributions based
on execution traces, providing tight approximations of the theoret-
ical deadline miss probabilities even in the cases where it might be
optimistic.

6.2 Applicability and Performance of the
Block-Maxima Technique

We have done the same investigation for the Block-Maxima tech-
nique in order to asses its applicability for real-time system anal-
ysis. In Figure [5] the DMPs of the 100 task-sets are plotted, as
derived by the statistical and the theoretical analysis. It is easy to
see that Block-Maxima (labelled as Lu in all figures) is not as accu-
rate as Gumbel-Max, the amount of pessimism introduced by only
considering the subset of the largest observed response times being
considerable. A visual representation of this pessimism is depicted
in Figure[6]
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Figure 5: DMPs of 100 task-sets as derived by Block-Maxima (la-
belled as Lu) and computed theoretically

The close look on the baseline for the Block-Maxima results
(Figure [7) shows that there is no task-set for which the technique
provides optimistic results, as all the statistical results are above the
baseline given by the theoretical analysis.

6.3 Applicability and Performance of the
Normal and Weibull Distributions
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Figure 6: DMPs of 100 task-sets as derived by Block-Maxima rel-
ative to the DMPs computed theoretically
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Figure 7: Close-up around the baseline of the relative DMPs de-
rived with the Block-Maxima technique for 100 tasks

Figure [8] presents the DMPs derived using the Normal distribu-
tion compared to the exact DMPs. We see that the two curves are
almost overlapping, indicating a good performance of the normal
distribution for deriving response-time distributions for real-time
tasks, but this is not necessarily the case. In Figure [§] present-
ing the ratios of the statistical DMPs relative to the exact DMPs,
it is clear that for almost all the task-sets the Normal distribution
provides optimistic results, unusable for validating real-time sys-
tems. In some cases this optimism leads to statistical DMPs of up
to 50 orders of magnitude smaller than the exact DMP, potentially
declaring as schedulable a task-set which is in fact unschedulable.
For these reasons we consider that the Normal distributions is inad-
equate to be used in deriving response time distributions based on
execution traces of real-time systems.

Similar to the Normal distribution, the Weibull distribution pro-
vides mostly optimistic results. This can be seen in Figure [T0]
where the statistical curve is below the theoretical one, and in Fig-
ure[[T]where most relative DMPs are below the baseline. For these
reasons we consider that the Weibull distribution should not be used
in deriving response time distributions for real-time systems.

6.4 Comparison of the four Techniques

After seeing each of the statistical techniques separately, we can
now take a look at all of them together and provide answers to the
questions raised in Section@

1. RQI - Do any of the statistical analysis approaches provide
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Figure 8: DMPs of 100 task-sets as derived using the Normal dis-
tribution and computed theoretically
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Figure 9: DMPs of 100 task-sets as derived using the Normal dis-
tribution relative to the DMPs computed theoretically
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Figure 10: TDMPs of 100 task-sets as derived using the Weibull
distribution and computed theoretically

sound results? We have seen that the Block-Maxima ap-
proach always provides safe results, though at the price of
an increased amount of pessimism caused by the fact that
only a subset of the larger response time traces are used in
the analysis, shifting in this way the resulting distribution
towards larger values. The Gumbel technique can also be
considered to provide sound and safe results, even though at
times it may be slightly optimistic, but this optimism can be
countered with some post-processing correction, i.e., by in-
troducing on purpose some extra pessimism as a measure of
safety. It is evident that the Normal and Weibull distributions
are not adequate for use in the statistical analysis of real-time
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Figure 11: DMPs of 100 task-sets as derived using the Weibull
distribution relative to the DMPs computed theoretically

systems.

2. RQ2 - Which of the sound analysis approaches gives the
tightest bound? Out of the two approaches that can be con-
sidered sound (Gumbel and Block-Maxima), Gumbel appears
to give the tightest results. However, as noted in the previous
research question, the Gumbel distribution can be unsafe at
times and would require post-processing correction. As such
correction has not be considered in this evaluation, it is there-
fore not possible to definitively conclude that the Gumbel
technique is superior to the Block-Maxima technique. Re-
garding the Block-Maxima technique, further research needs
to be carried out to determine the level of pessimism that it
introduces, and if this level of pessimism will result in a false
positive rate (where it incorrectly classifies schedulable task
sets as unschedulable) which is too high.

6.5 A closer look at a single task-set

In order to intuitively understand the presented results, we think
that is is useful to take a look at the response time distributions of a
single task-set. In Figure[I2] a task-set of 5 tasks and 5 values per
distribution is randomly generated and analysed (both probabilis-
tically and statistically). Of the statistical distributions we present
here only Gumbel and Block-Maxima since they are the relevant
ones. Note that the Y-axis of the figure is logarithmic in order to
emphasize the differences between the distributions. We can see
that the Gumbel distributions does not always upper-bound the ex-
act response time distribution, but instead it may intersect it for
small values of response times, i.e. on the left side of the distribu-
tion. On the other hand, the Block-Maxima distribution is a strict
upper-bound on the exact response time distribution. We can see
the difference in accuracy for a deadline of 216 (the tasks min-
imum inter-arrival time), which increases even further for larger
deadlines. A question that may be raised is if Block-Maxima could
be made tighter by better choosing its parameters. It is not clear if
there is an universal set of parameters which would make the tech-
nique tight for all possible task-sets, since the parameters may be
system dependent, and different types of systems may require dif-
ferent settings. Of course this requires knowing additional details
about the system under analysis. This is a further direction in which
our investigation may advance and it is part of our future work.

7. CONCLUSIONS

We have addressed the problem of statistically deriving response
time distributions and deadline miss probabilities of tasks, only
by taking measurements of the systems behaviour (response time
traces) at run-time. The system is treated like a black-box, mean-
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Figure 12: The theoretical, Gumbel and Block-Maxima response
time distribution of a single task-set, as 1-CDF on a logarithmic
Y-axis

ing that no other information (such as arrival frequencies of exe-
cution times) are required in order to apply the statistical analysis.
This is an important and practical problem, as it greatly reduces the
analysis effort when designing a system or modifying it (for ex-
ample adding new functionalities), since the validation of the sys-
tem can be made by simply running it for an amount of time and
passing the measured response times through the statistical analy-
sis. We have investigated four statistical analysis techniques that
we have compared against the state of the art probabilistic analysis
which computes the exact worst case response time of the task-
set. Our investigation revealed that the analysis technique based
on Block-Maxima produces the safest results, though it may be too
pessimistic to be effective in practice. Alternatively, the technique
based on the Gumbel distribution produces much more accurate re-
sults even though it may be slightly optimistic at times (making it
potentially still unsafe), but this optimism can be counter-balanced
with post processing correction.

The results obtained are as expected based on the academic liter-
ature. Hence the framework developed provides valuable empirical
evidence that is useful to industrial users who may wish to adopt the
techniques and need evidence (e.g. as part of certification) that the
techniques are fit for purpose, and for academic researchers who
may also want to understand the correctness and efficiency of their
techniques. That said, it is acknowledged the trials presented are
limited and therefore more evaluation is needed to show the frame-
work also provides valid insight for the context relevant to potential
users.
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