S |

IPP HURRAY!

A y- 4
www.hurraw.pt /

Technical Report

Slow Down or Race to Halt: Towards
Managing Complexity of Real-Time Energy
Management Decisions

Stefan M. Petters
Muhammad Ali Awan

HURRAY-TR-100502
Version:
Date: 05-24-2010

Technical Report HURRAY-TR-100502 Slow Down or Race to Halt: Towards Managing Complexity of RealTime
Energy Management Decisions

Slow Down or Race to Halt: Towards Managing Complexity of Real-Time
Energy Management Decisions

Stefan M. Petters, Muhammad Ali Awan

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://www.hurray.isep.ipp.pt

Abstract

Existing work in the context of energy management for real-time systems often ignores the substantial cost of making
DVFS and sleep state decisions in terms of time and energy and/or assume very simple models. Within this paper we
attempt to explore the parameter space for such decisions and possible constraints faced.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Slow Down or Race to Halt: Towards Managing Complexity of
Real-Time Energy Management Decisions *

Stefan M. Petters Muhammad Ali Awan

ICISTER
ISEP-IPP
Porto — Portugal

{smp, maan}@isep.ipp.pt

Abstract. Existing work in the context of energy management for real-time sys-
tems often ignores the substantial cost of making DVFS and sleep state decisions
in terms of time and energy and/or assume very simple models. Within this pa-
per we attempt to explore the parameter space for such decisions and possible
constraints faced.

1. Introduction

Currently we observe a number of trends in the way embedded systems and in particular
embedded real-time systems are deployed. Firstly, such systems have become ubiquitous
and we become increasingly dependent on them. The computing capability of the process-
ing cores is increasing at a dramatic pace leading to the change towards multi-functional
and multi-criticality devices, where hard real-time and best-effort tasks share resources.
Finally, while traditionally embedded systems were isolated single purpose devices, they
have become often networked and/or mobile.

In particular mobile devices have inherently limited energy supply in terms of bat-
teries. Also tightly packed multicore systems have increasingly thermal issues. In the past
we have developed a method to accurately predict time and energy consumption under dy-
namic frequency and voltage scaling (DFVS) based on online measurements [Snowdon
et al. 2007, Lawitzky et al. 2008, Snowdon et al. 2009]. However, a fundamental chal-
lenge is the substantial search space for online decision making. For example, our imple-
mentation [Lawitzky et al. 2008] of using DVFES in a RBED [Brandt et al. 2003] required
14 multiplications and eight additions per frequency set-point, leading for 22 set points
available in our XScale [XScale 2004] platform to a maximum observed of 26,000 cycles.
Our observations also indicated frequency and voltage scaling times of 500 to 600 ys.

On the other hand it has been shown that models used in theoretical DVFS work on
real-time systems are substantially off the mark. This covers the following assumptions:
The power model, where the power consumption is solely dependent on frequency and
voltage as given in Equation 1 does not take application dependencies into account.

P x fV? (1)
C = cxf 2

*This work was supported by CISTER FCT-608 and CooperatES QoS-Aware Cooperative Embedded
Systems PTDC/EIA/71624/2006

A constant number of cycles required to execute a task as provided in Equation 2 does not
take into account the number of wait states on external devices like main memory, which
changes when the core frequency is changed. Frequency switch costs are frequently con-
sidered negligible in terms of time and energy, which it is clearly not. Often frequency
and voltage is considered continuously scalable, while it in fact only changeable in dis-
crete steps. In particular frequency is often only coarsely scalable for higher frequency
set-points, which lower frequency set points can be site on a finer granularity. Individ-
ual issues have been tackled in mostly academic work, but a comprehensive approach
taking all these factors into account is outstanding. For example, [Aydin et al. 2006]
used a non constant number of execution cycles by considering an off-chip and an on-
chip component of the execution time, but did not consider the overhead of transitioning
into a different frequency set point and using an evaluation by simulation the problem
is not exposed. [Cheng and Goddard 2005] used discrete frequencies, but a application
independent power consumption, as well as assuming negligible voltage and frequency
switch cost.

The problem is acerbated when sleep states are considered. The number of differ-
ent sleep states available is processor dependent. This reaches from a simple clock gating,
where the CPU core is separated from the system clock, to deep sleep states, which power
off substantial parts of the chip. The former is available instantaneous (within a CPU core
clock cycle), while the latter requires substantial time and energy to get into and out off.

Within this work we will identify all the parameters to be considered to make
energy efficient frequency decisions in a real-time context, as well as looking into ways
to reduce the search space for such decisions. In the following section we will introduce
our system model before discussing implications for DVFES and sleep state decision taking
on a static basis and taking knowledge about system dynamic slack into account.

2. System Model

In terms of power management models we draw on our previous work [Snowdon et al.
2007], with a few generalizations. While it is not essential for the discussion to use these
models, they give an overall sense of the complexity of the task faced.

The worst-case execution time (WCET) of a task under DVFS is subject to vari-
ous components. Some time is spent actively performing computations in the CPU core,
some time is spent waiting for access to a bus, another part is contributed by the response
time of memory, which can be changed by modifying the memory frequency, some time
is spent waiting for I/O devices and so forth. Assuming all of these are subject to indi-
vidual frequency settings, we get an overall execution time C' being a function of various
application dependent coefficients C' e

o Ccpu + C’bus + Cmem +
fcpu fbus fmem o

In the original work, we have identified the coefficients using measurements of certain
hardware events, but for generality sake we limit ourselves to identify the makeup of
the base equations. Throughout the paper we assume C;; to be the execution time at top
speed in the understanding that for DVFS considerations the actual C'(f) of the frequency
setpoint f has to be considered.

C

3)

The energy consumed by a task on a given execution path is also subject to var-
ious components as identified in Equation 4. The first component is the energy spent
in the CPU core with the core voltage squared. In relation to the XScale processor the
circuitry in the CPU core is switched with 3 different frequencies and essentially covers
the switching cost of the clock circuitry. The execution time dependence is encoded in
the multiplication of C', but beyond that the coefficients ~, are only architecture and not
application dependent. Certain operations are dependent on the core voltage, but not on
the CPU core frequency. An example is a multiplication function, where the same number
of transistors switches irrespective of the core frequency.

Certain other operations are independent of the core voltage and frequency. An
example could be a DMA packet transfer to the network interface, which will have a
memory frequency dependent and a memory frequency independent part. The memory
frequency independent part might still be subject to a specific frequency, for example
internal to the network interface, which might not be scalable. Similar the voltage of the
memory would be part of the coefficients. In Equation 4 this is encoded in the parameters
a and [respectively. As final components are the static power consumption Py, and
the memory is subject to switching over the time C'. Again the voltage of the memory is
considered immutable and is part of the coefficient ;.

E= chpu<71fcpu + 72fbus + ’YSfmem) * C + ‘/c?pua + ﬁ + ’74fmemc + Pstaticc (4)

We have shown [Snowdon et al. 2007, Lawitzky et al. 2008] how the parameters can
be obtained runtime. In later work [Snowdon et al. 2009] we have demonstrated an
approximation scheme for non RT systems, but this is concentrating on managing the
performance to battery life trade-off with no consideration for RT systems. We assume a
number of sleep states, which have monotonically increased power reduction, as well as
monotonically increased time required to enter ¢* and leave t* the respective state.

Beyond the model for the power management aspects we also assume a sporadic
task model with x independent tasks in which the minimum inter-arrival time 7; of a task
7; 1s known. We assume form of temporal isolation, which may be achieved using con-
stant bandwidth servers (CBS) [Abeni and Buttazzo 1998] or RBED [Brandt et al. 2003].
Slack is caused by the difference in worst-case assumption used during analysis and ac-
tual behavior at run-time. In later section we assume slack management as an important
tool. It identifies the room to maneuver for power management in rate based real-time
environments [Lin and Brandt 2005, Lawitzky et al. 2008]. For ease of representation
we also assume implicit deadline model, where a job has to be completed before a new
release is initiated.

3. Static Decision Taking

The least costly decision base is to statically assign frequencies and/or sleep states per
task to be performed at start or on completion of the execution respectively. Generally
speaking we have to consider the following scenarios: In a race to halt solution tasks are
executed as fast as possible and the CPU is sent to a sleep state on conclusion of a job of
the task. Alternatively a task may be subjected to DVFES to consume less execution time.

In a first step we rule out sleep states which lead to a potential violation of a
deadline even when considering only a single task. This can be motivated by a job re-
lease of a task being triggered just after a transition into a given sleep state has been

initiated. Once initiated the transition into the sleep state has to be completed, be-
fore a wakeup is triggered by the ISR corresponding to the task release. This implies
a blocking time of up to t; + ¢ for sleep state n. Since it does not matter which
task has initiated the sleep state transition we can used the rule expressed in Equa-
tion 5 to express this. Any sleep state violating Equation 5 may not be used, as it may
cause a deadline miss regardless of scheduling algorithm or schedulability analysis used.

In a second step we examine whether it is economical to use such a measure. One
observation in this context is that all tasks in the system have to follow the same rule, as
to which sleep states are economical. This is caused by the general assumption that while
one task initiates a sleep state, the processor may be transitioned into the waking state by
any other task as we do not assume in this section any knowledge of past releases of any
given task.

As such we compute the average expected idle time G produced by the system. Let
[denote the hyper period and r; represents release time per task 7; as given in equations
Equation 6, Equation 7 respectively. During a hyper period [of the average-case inter-
arrival time’s Tj of all tasks we have a total of r; releases per task 7;,. We also need to
compute how many releases of tasks will happen while another task is executing, as this
means that the previous job completion will not lead to a transition into a sleep state.

[T Z j T ZT*C
| = len(Ty,....T,) (© po= el)

l
o= TL 7 o= (l=p) s 9
As such we expzect r’ to be the number of releases of 7; which happen dur-
ing idle intervals. Equation 9 determines the ;. Where p; given by Equation 8
compute the probability of one release of 7; happening while any other task is ex-
ecuting.. The number of idle time task releases r] will be a real number. How-
ever, for the average idle time computation this is of no concern. Now G can
be computed by Equation 10 where C; denotes the average-case execution time.

In this we assume to get approximately » ;! transitions into a given sleep state.
= —Zx =
0"
In order to check on the economic switching to sleep states we need to consider
the break even time ¢{, of a sleep state. As the transitions into and out of a sleep state do

not produce progress in the computation, but consume energy and time, the system needs
to spend at least the break even time in that state.

(10)

The break even time can be estimated using the energy quantum to transition into
and out of the sleep state E;, E’, the power consumed while in a given sleep state
P,, and the idle power consumption of the system F,;.. Here Equation 11 quantify
the energy of sleep states along with energy of switching cost. Now a valid sleep state
which saves on energy when switching to this sleep state needs to satisfy Equation 12.

Pae * (t, +1, +1)) = Ej+E/+1t, « B, (1D
O A (12)

Additionally, the energy consumption of the system needs to be checked against
the energy consumption under DVFS, as well as against the general schedulability test
used in the system. For the latter only the switching time required to enter and leave sleep
states need to be considered.

4. Slack Management

In this section we assume that online slack information is available. In general we only
assume the difference between WCET and actual execution time is known, while the slack
caused by sporadic release of tasks is much harder to identify at runtime. A particular
concern is that tasks may obtain slack after being preempted and thus already having
some of their execution completed. This is of relevance as it adds another dimension in
the decision space. In this section we will not assume that the previous release times of
all other tasks is known and considered.

Similar to the previous section we assume that infeasible sleep states, which fail
to guarantee that all deadlines are met because of the extensive transition time, have been
removed. Opposed to the previous section, where a global decision on whether to scale
or sleep can be taken, the system has more degrees of freedom for this. We assume the
amount of slack passed to as task 7; from previous tasks is labeled S. We will first discuss
the scenario where a task receives S at release time and there are no other tasks in the
ready queue. In this scenario the DVFS solution has to be computed using this S. In
order to avoid the costly computation of the optimal frequency setpoint, which has to take
into account the switching overhead etc, we assume this can be obtained with a number
of comparisons S against pre-computed values, deciding on the frequency setpoint to
be used. Furthermore the number of setpoints can likely be reduced, depending on the
type of application. In our example hardware platform, a memory intensive application
will use generally higher memory and bus frequencies when compared to a CPU bound
application.

In the case of sleep modes, the algorithm can not only consider the slack being
passed in, but also the expected slack generated by the task in question, (C; — C;) or
even the average idle time GG generated in the previous section. Since the expected slack
generated by the task is not changing we can consider that as a constant in the trade-off
between DVFS and using sleep modes.

When slack is passed in after preemption by a higher priority task we have to
distinguish two scenarios. If the previous decision was to opt for a race to halt than the
situation got actually more in favor of continuing the approach. However, if the previous
decision was to opt for DVFS than the situation needs to be reassessed. In a first approxi-
mation the same trade off rules as used in the previous case may be used, ignoring any but
the slack passed in after the preemption. When keeping track of the amount of execution
completed it may happen that the actual execution time used so far is already more than
the average-case execution time C; has been executed in which case the trade-off would
be more tuned towards DVFS.

In the case where there are more tasks in the ready queue, the situation becomes
slightly more complicated. In this case we see the following possible scenarios. Estab-
lishing from the tasks in the ready queue the cumulative average-case slack generated by
the tasks can be used to drive the decision. It is a fairly minimal extra effort, as the ex-

pected slack to be generated is inserted and removed, the same way a task is added and
removed from the ready queue.

Another approach we envisage is to keep track of the number of jobs executed
without any idle interval to reason about the expected idle interval after all jobs in the
ready queue have been completed. The reasoning for this behavior is that the presence
of many jobs executed in succession indicates that the next releases of the corresponding
tasks will only happen at a later time. Note, that this is only a heuristic, which does not
require to keep track of exact points of jobs releases in the past. However the exploration
of these issues is future work.

5. Conclusion

In this paper we have explored a number of parameters that we need to consider for energy
efficient DVFS and sleep states decision in a real-time context. Our proposed approach
aims to reduce the design space for making such decision and lighten the runtime over-
head for making energy efficient decisions. Future research will tackle work in the area of
online DVFS and sleep state decisions and possible heuristics which allow for an efficient
trade-off between the two. In particular we will explore how more information about
past releases of tasks can be incorporated without causing prohibitive decision making
overhead. Furthermore we will explore the impact the proposed methods will have on
schedulability analysis methods.

References

Abeni, L. and Buttazzo, G. (1998). Integrating multimedia applications in hard real-time systems.
In 79th RTSS, pages 4-13.

Aydin, H., Devadas, V., and Zhu, D. (2006). System-level energy management for periodic real-
time tasks. In 27th RTSS, pages 313-322, Rio de Janeiro, Brazil. Comp. Soc. Press.

Brandt, S. A., Banachowski, S., Lin, C., and Bisson, T. (2003). Dynamic integrated scheduling of
hard real-time, soft real-time and non-real-time processes. In 24¢th RTSS, Cancun, Mexico.

Cheng, H. and Goddard, S. (2005). Integrated device scheduling and processor voltage scaling for
system-wide energy conservation. In 2005 WS Power Aware Real-time Comput.

Lawitzky, M. P, Snowdon, D. C., and Petters, S. M. (2008). Integrating real time and power
management in a real system. In 4th OSPERT, Prague, Czech Republic.

Lin, C. and Brandt, S. A. (2005). Improving soft real-time performance through better slack
management. In 26¢th RTSS, Miami, FL, USA.

Snowdon, D. C., Le Sueur, E., Petters, S. M., and Heiser, G. (2009). Koala: A platform for
OS-level power management. In 4th EuroSys Conf., Nuremberg, Germany.

Snowdon, D. C., Petters, S. M., and Heiser, G. (2007). Accurate on-line prediction of processor
and memory energy usage under voltage scaling. In 7th EMSOFT, pages 84-93, Salzburg,
Austria.

XScale (2004). Intel PXA 255 Processor Developer’s Manual. Intel Corp. URL http://www.
xscale—-freak.com/XSDoc/PXA255/27869302.pdf.

http://www.xscale-freak.com/XSDoc/PXA255/27869302.pdf
http://www.xscale-freak.com/XSDoc/PXA255/27869302.pdf

