

Service-Oriented Computing in Robotic

Book Chapter

CISTER-TR-190201

2020

Anis Koubâa

Book Chapter CISTER-TR-190201 Service-Oriented Computing in Robotic

© 2020 CISTER Research Center
www.cister-labs.pt

1

Service-Oriented Computing in Robotic

Anis Koubâa

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: aska@isep.ipp.pt

https://www.cister-labs.pt

Abstract

In this entry, we present an overview on the use of service-oriented architecture and Web services in developing
robotics applications and software integrated with the Internet and the Cloud. This is a recent trend that emerged
since 2010 from the concept of cloud robotics, which leverages the use of cloud infrastructures for robotics
applications following a service-oriented architecture approach. In particular, we distinguish two main categories:
(i) virtualization of robotics systems and (ii) computation offloading from robots to cloud-based services. We
discuss the main approaches proposed in the literature to design robotics systems through the Web and their
integration to the cloud through service-oriented computing framework.

S

Service-Oriented Computing
in Robotic

Anis Koubaa

Prince Sultan University, Riyadh, Saudi Arabia

CISTER Research Centre ISEP, Polytechnic

Institute of Porto, Porto, Portugal

Gaitech Robotics, Shanghai, China

Synonyms

Service-oriented software architecture for cloud

robotics

Definitions

• Service-oriented architecture (SOA): it is

a software design methodology based on the

interaction of software components with each

other through service interfaces. It allows to

build complex software systems that produce

and consume services with each other.

• Web services: it is an instantiation of service-

oriented architecture that provides a standard

approach to expose services through the In-

ternet using Web technologies such as XML

and JSON. It is based on the Simple Object

Access Protocol (SOAP) protocol to exchange

data and on the Web Services Description

Language (WSDL) for service description.

• RESTful Web services: REpresentational

State Transfer (REST) is an architecture

style of Stateless Web services based on the

HTTP protocol to provide interoperability

between machines on the Internet. A stateless

Web service means that each request is

treated independently of its previous or future

requests.

• Cloud: In computing, the cloud refers to a

large data center with several powerful com-

puter machines organized into clusters and

connected through networks to provide com-

puting and storage resources.

• Cloud robotics: it refers to the concept of

integrating robots into cloud environments to

take benefits of cloud resources in processing

computation-extensive applications of robots

on the cloud.

• Virtualization: it consists in creating virtual

environments of resources from physical re-

sources to allow their sharing and virtual ac-

cess. In the context of robotics computing,

virtualization refers to the techniques that al-

low seamless access to robots anytime and

anywhere through Web services and network

interfaces.

• Computation offloading: In the context of

cloud robotics, computation offloading refers

to migrating extensive computations from the

robot to the cloud to leverage the high com-

puting resources of the cloud.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

M. H. Ang et al. (eds.), Encyclopedia of Robotics,

https://doi.org/10.1007/978-3-642-41610-1_1-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-642-41610-1_1-1&domain=pdf
http://link.springer.com/Service-oriented software architecture for cloud robotics
https://doi.org/10.1007/978-3-642-41610-1_1-1

2 Service-Oriented Computing in Robotic

Why Service-Oriented Robotics
Computing

Service-oriented robotics computing leverages

the use of service-oriented architecture (SOA)

to build robotics software systems at large scale

and through the Internet. It consists in using Web

technologies to define services through which

(i) robots can be accessed and/or (ii) robots can

access the resources of other machines that are

typically deployed on the cloud. This paradigm

allows to expand the use of robots for a larger

number of users because it becomes easier to

access them through user-friendly interfaces. It

also promotes the interaction between robots and

other machines through the Internet using the

concept of service. Indeed, the use of robots at

very large public has been restricted so far due to

several factors, including:

1. Robots have typically been used as stand-

alone systems for very specific and dedicated

missions in controlled environments, such

as in industrial manufacturing, hospitals, or

homes. Even in the case of cooperative and

multi-robots applications, robots communi-

cate with users or robots to perform specific

pre-programmed and pre-defined missions

but are isolated from the external world and

cannot learn from other contexts.

2. The complexity of configuration and

maintenance of the robots makes the use of

robots challenging for nontechnical and non-

computer savvy users.

3. The relatively high cost of sophisticated ser-

vice robots in particular for professional use

and some domestic applications.

Addressing the aforementioned factors would

help to promote the expansion of robots use

at a much larger scale. Indeed, there is an

increasing demand and interest in using the

Internet infrastructure as a means to promote

robots and robotics applications as services

in several perspectives: first, through exposing

robotics resources as Internet services to end

users; second to foster the worldwide interaction

between robots themselves and between robots

and users through the Internet. In addition, with

the emergence of cloud computing, service-

oriented architecture and Internet of Things

(IoT), robots may also take benefit from the

huge computing resources available through the

Internet to increase its processing capabilities for

computation intensive applications. The cloud

robotics paradigm, coined in 2010 by James

Kuffner (2010), seems to be the missing building

block toward jumping to a new frontier of the

public use of robots.

Service-oriented architecture is a basic build-

ing block in the integration of computing sys-

tems that allow heterogeneous systems to ex-

pose their resources and use the resources of

other systems through services. A service can be

seen as an abstract software interface between

two end systems that allow them to exchange

messages. Recently, this concept has been ap-

plied widely between robotics systems and other

systems/users interacting with them, which con-

tributed to several approaches of service-oriented

robotics systems. This chapter presents the main

concepts for building service-oriented computing

frameworks and provides a review of the main

approaches.

Two Major Categories

The integration of robotics applications through

the IoT and the Cloud brings several benefits

to robotics computing systems. We categorize

service-oriented robotics computing from

two perspectives: (i) virtualization, which

means providing seamless access to robots

through service interfaces, and (ii) computation

offloading also known as remote brains, where

computation is offloaded from robots to the cloud

through service interfaces.

Robots typically need to process a large

amount of data coming from its sensors to

transform these data into a knowledge that

allows the robot to execute specific actions,

such as 3D map reconstruction from different

sensor data sources, or object recognition and

tracking using computer vision and 3D point

Service-Oriented Computing in Robotic 3

S

cloud extensive computations. These types of

applications typically require high processing

capabilities and consume considerable energy.

However, the onboard processing capabilities of

robots, in particular low-cost platforms, might be

insufficient to handle computation and storage-

intensive tasks. For this reason, outsourcing

computations to more powerful and resource-

abundant devices is a current trend nowadays.

In what follows, we provide an overview of the

main contributions related to the two aforemen-

tioned categories, we outline the key challenges

addressed in each paper, and we discuss the

proposed approaches.

Virtualization

The virtualization of access to robots means that

users are able to access robots anywhere and any-

time through simple-to-use interfaces, typically

through the Web or mobile applications. Usually,

these interfaces rely on services’ abstraction lay-

ers that connect robots to users or other systems

based on Web service technologies.

Virtualization Technologies

The main categories of Web services are SOAP

Web services and REST Web services. The reader

may refer to Pautasso et al. (2008) for a thorough

discussion and analysis about the comparison

between REST and SOAP Web services.

On the one hand, SOAP Web services provide

a well-defined contract-based specification of the

services. Services are described in an XML-based

language called the Web Services Description

Language (WSDL). Messages are exchanged

between the client and the server through a

standardized message exchange protocol using

the SOAP envelope. To illustrate the concept,

Fig. 1 presents an excerpt of WSDL document of

a SOAP Web service used to access and control

a drone. We observe that the WSDL document

defines the messages exchanged and their types,

in addition to the different operations that can

be executed as a service. For example, in the

WSDL of Fig. 1, we identify a Web service

called MAVLink Action Web Service,

which exposes several operations as Web service

methods that can be invoked by the Web service

client applications. In this excerpt, we observe the

takeoff Web service method (i.e., operation)

which can be invoked to take off the drone,

etc. For every operation, a message is defined

for the request, and another is defined for the

response, where a message may or may not have a

parameter. For example, in Fig. 1, the takeoff

operation defines the takeoff message for

the request, and the takeoffResponse

message for the response. Other operations

are also defined in the same way. The WSDL

document represents a contract-like specification

that defines all operations available as services

for the developers and end users. Thus, the client

application needs to implement client methods

that invoke these operations on the server.

A message in SOAP can have parameters.

The structure of a message and its parameters

are defined in the XML Schema Definition

(XSD) document, which describes the structure

of the WSDL document in XML. Figure 2

illustrates the XSD document for the WSDL

document of Fig. 1. For example, we observe

that the takeoff message uses two parameters,

which is the ID of a drone to takeoff and also

the desired altitude. The takeoffResponse

message returns a boolean response to notify

about the success of the operation. According to

the programming language API, the application

developer will consider the WSDL document as

a contract to develop the client methods that will

invoke the Web methods provided by the SOAP

Web service to execute the actions of interest.

It has to be noted that SOAP Web services are

programming language independent and platform

independent.

On the other hand, REST is a more lightweight

Web service solution that does not define a for-

mal service specification as with SOAP. The

interaction between the client and the server is

ensured through the basic HTTP protocol. The

programming abstractions of REST Web services

are different from those of SOAP. While SOAP is

based on a concrete description of Web services

in the WSDL document, REST refers to services

through their Uniform Resource Identifier (URI),

4 Service-Oriented Computing in Robotic

Service-Oriented Computing in Robotic, Fig. 1 Example of a WSDL document of SOAP Web Service to control a

drone

which are simply Web links defining paths to

resources located in the Web server. Every oper-

ation in REST is a resource that has a dedicated

URI to it in the following format.

scheme:[//[user[:password]@]

host[:port]][/path]

Considering the example above of the

takeoff Web service method expressed as

REST, the access to this operation can be defined

by a URI in the form:

http://www.domain.com/drone/

takeoff/id/1/altitude/20/

This URI refers to the Web service

operation takeoff in the public server

www.domain.com, with a resource path

/drone/takeoff/ to takeoff the drone of

id 1 to an altitude 20 m. It is clear that RESTful

Web service are simpler to use and to define

as compared to the contract-based approach of

SOAP Web services.

Service-Oriented Computing in Robotic 5

S

Service-Oriented Computing in Robotic, Fig. 2 Example of a XSD document of SOAP Web Service to control a

drone

WebSockets represent another technology

that is widely used in the Web for a standard

and platform-independent message exchange be-

tween a client and a server. It is a core technology

for the IoT and real-time streaming applications.

It is a bi-directional communication protocol

between a client and a server, such that both

parties can exchange messages simultaneously in

full-duplex mode. A connection is open between

the client and the server following a handshake

process, and then both the server and the client

can exchange messages asynchronously and

reliably in real time until the connection is

explicitly closed by any of the communicating

entities. The advantage of WebSockets is that it

is supported by major programming languages

such as Java, C/C++, Python, Ruby, JavaScript,

and PHP, to name a few. This allows for an easy

integration of heterogeneous robotics systems.

WebSockets were used by Osentoski et al. (2011)

and Crick et al. (2011), respectively, to connect

ROS-enabled robots to the Internet. It was also

used by Koubaa et al. in (Koubaa et al. 2017b,

2019; Koubaa and Qureshi 2018) for real-time

streaming of MAVLink messages (MAVLINK

2019) between drones and client applications,

in addition to SOAP and REST Web services.

Figure 3 represents an example of a WebSockets

class template in Java. The structure of the code is

similar in other programming languages. It can be

observed that WebSockets are defined like Web

services by an endpoint entry, which defines the

path to the WebSockets resource, similarly to a

REST URI. In this example, the resource is called

/mavlink/user/userId/drone/droneId.

The event @onOpen processes incoming

connections initialization requests and creates

and manages sessions. The event @onMessage

intercepts incoming messages and processes

them according to the application logic. The

event @onClose manages connection closing

events. For example, in Koubaa et al. (2017b,

2019), the Web client application uses a

WebSockets connection with the cloud to receive

the stream of data representing states of a drone

through the cloud in real time and displays it

using JavaScript on a Web browser.

Recent Contributions on Robotics

Virtualization

There are several works that aim at virtualizing

access to robots using Web services and SOA.

Many of these works target the Robot Operating

System (ROS), as a main development frame-

work for robotics applications. In Osentoski et al.

(2011) and Crick et al. (2011), the authors pro-

6 Service-Oriented Computing in Robotic

@ServerEndpoint("/mavlink/user/{userId}/drone/{droneId}")
public class WebsocketServer {

/**

* @OnOpen allows us to intercept the creation of a new session.

* The session class allows us to send data to the user.

* In the method onOpen, we'll let the user know that the handshake was

* successful.

*/

@OnOpen
public void onOpen(Session session, @PathParam("userId") String userID,

@PathParam("droneId") String droneID){

//process request to open new Websockets session

}

/**

* When a user sends a message to the server, this method will intercept the

message

* and allow us to react to it. For now the message is read as a String.

*/

@OnMessage
public void onMessage(String message, Session session){

//process incoming messages

}

/**

* The user closes the connection.

*

* Note: you can't send messages to the client from this method

*/

@OnClose
public void onClose(Session session){

//processing when the connection is closed

}

}

Service-Oriented Computing in Robotic, Fig. 3 Example of a WebSockets class in Java

pose the rosjs and the rosbridge middle-

ware. These works represent a milestone in the

integration of ROS into the Web and the In-

ternet. The motivation behind rosbridge and

rosjs is mainly twofold: (1) to use commonly

available Internet browsers for non-roboticians

users to interact with a ROS-enabled robot and

(2) to provide Web developers with no back-

ground in robotics with simple interfaces to de-

velop client applications to control and manipu-

late ROS-enabled robots.

In Koubaa (2014), the author proposes,

RoboWeb, a robot virtualization service-oriented

architecture based on SOAP Web services. The

objective of RoboWeb is to develop a remote

robotics lab that can seamlessly be accessed by

researchers and students anywhere and anytime.

RoboWeb allows to monitor and control robots

through Web services. The service-oriented

architecture is composed of three main layers: (1)

the web interface layer, which uses rosPHP API

to access ROS-enabled robots through the web,

(2) the service broker that defines a middleware

that enables interaction between users and robots,

and (3) the robot itself, which must support ROS.

A prototype was implemented and tested on the

Turtlebot robot. The limitation of this work is

that SOAP Web services were not integrated into

ROS ecosystem but were developed externally to

the ROS ecosystem. Also, no REST Web service

interface was proposed.

In Koubaa (2015), the author addresses the

problems of Koubaa (2014) and presents ROS

Web services. The objective was to expose ROS

Service-Oriented Computing in Robotic 7

S

Service-Oriented Computing in Robotic, Fig. 4 DroneMap System Architecture: Abstraction Layers (Koubaa et al.

2017b)

resources as Web services. The innovation of this

paper was to design an object-oriented software

architecture to integrate Web Services into ROS

and exposes its resources (i.e., ROS topics and

ROS services) as Web services. Both SOAP and

REST Web services were proposed. A prototype

implementation was used to demonstrate how

ROS Web services promote portability, reusabil-

ity, and interoperability of ROS-enabled robots

with client applications.

In Koubaa et al. (2017b, 2019), Dronemap

Planner (DP) a service-oriented cloud-based

drones management system was proposed

for MAVLink-based drones. The entry also

introduces the concept of Internet of Drones

(IoD) and discussed their functional and

nonfunctional requirements. In Koubaa and

Qureshi (2018), the authors evaluated the real-

time performance of the Internet of Drones

using a GPS-based tracking application. Also in

Gharibi et al. (2016), the authors proposed their

vision and architecture for IoD. DP provides

seamless access to drones through SOAP and

REST Web service technologies, schedules their

missions, and promotes collaboration between

them. The architecture is illustrated in Fig. 4.

The Dronemap Planner system is composed of

three abstraction layers. The first layer is the

drone, which supports ROS and the MAVLink

protocol to communicate through the Internet

with the cloud. The second layer is the cloud

manager which links the drones to the end user

applications. The third layer is the end user

applications, which is used to monitor and control

the drone through the Dronemap Planner cloud

system.

The main contribution of Koubaa et al.

(2017b, 2019) consists in deploying a cloud

platform that contains a proxy server that relays

between drones and users. In addition, REST

and SOAP Web services interfaces are used

to allow the user to interact with the cloud to

send commands to the drones. Experimental

deployment demonstrates that Dronemap Planner

is effective in virtualizing the access to drones

over the Internet and provides developers with

appropriate APIs to easily program drones’

applications.

8 Service-Oriented Computing in Robotic

In Koubaa et al. (2017a), the authors propose

ROSLink as a new alternative to integrate ROS

into the Internet of Things. The authors started

from the observation that previous works in the

literature proposed to develop robot-centric ap-

proach meaning that a Web server is developed

in the ROS robot machine to deliver data from

the robot to the clients. This was demonstrated to

restrict the scalability of the system as the server

is centralized in the robot itself. In addition, the

deployment of robot-centered solutions on the In-

ternet is rather difficult as the robot needs to have

a public IP address or be accessible through a

NAT forwarding port when it is inside a local area

network. The idea behind ROSLink is three-tier

client/server model, where the clients are imple-

mented in both the robot and the user, whereas the

server is deployed on a cloud infrastructure on the

Internet with a public IP address. The cloud man-

ager of the Dronemap Planner system (Koubaa

et al. 2019) was extended to also support the

ROSLink protocol. The ROSLink architecture

is presented in Fig. 5. The three-tier ROSLink

architecture represents a possible approach of

implementing service-oriented computing system

for robotics that allows for seamless access of

ROS-enabled robots through the Internet.

The authors describe the communication pro-

tocol specification of ROSLink and evaluate its

performance using qualitative and quantitative

analysis. The communication protocol is based

on JSON serialized messages exchanged between

the robots, the cloud, and the users. The perfor-

mance study was conducted on an open-loop spi-

ral trajectory control application using Turtlesim

simulator for both ROS and ROSLink deployed

on the cloud.

The strength of the ROSLink service-oriented

architecture is that it easily promotes the integra-

tion of ROS-enabled robots into the Internet of

Things using Web services. However, the perfor-

mance of robotics applications using ROSLink

heavily depends on the network quality of ser-

vice. This remains a challenge that must be thor-

oughly investigated.

In Mahmoud and Mohamed (2014), the au-

thors present a service-oriented architecture for

collaborative drones. They propose a mapping

model between cloud computing resources and

drone resources. In addition, two types of ser-

vices including essential services and customized

services were proposed. The entry only provides

a high-level description of the system architec-

ture, components, and services without any spe-

cific details on their implementation.

In Mahmoud and Mohamed (2015), the au-

thors of Mahmoud and Mohamed (2014) ex-

tended their approach and designed a REST ar-

chitecture using a resource-oriented architecture

(ROA) model to represent the services and re-

sources of drones. In addition, a broker that dis-

patches mission requests to available UAVs was

proposed. The broker is responsible for managing

the UAVs, their missions, and their interactions

with the client. The authors validated their pro-

posal on a simple Arduino board that emulates a

UAV and its resources, which represents a limi-

tation, because it does not show a comprehensive

proof of concept on real drones.

Some other recent approaches consider more

generic models for SOA to access robots without

the use of Web services. In 2014, Brugali et al.

propose the Task Component Architecture (TCA)

for the seamless integration of the Service Com-

ponent Architecture (SCA) into robotics software

control systems to execute asynchronous tasks.

The authors also integrate TCA with ROS using

a ROSProxyNode developed with ROSJAVA.

On the other hand, large cloud computing

service provided developed their own platforms

for developing robotics applications through the

cloud. As a matter of fact, Amazon Web Services

(AWS) provides the AWS RoboMaker service

(2019) that enables users to develop and deploy

mobile robots applications through AWS cloud

services. It supports ROS-enabled robots and also

provides computation offloading services to per-

form machine learning and data analytics for data

collected from the robots.

Computation Offloading

The idea of computation offloading came from

the fact that robots, in particular with low-cost

systems, have limited energy, processing, and

Service-Oriented Computing in Robotic 9

S

Service-Oriented

Computing in Robotic,

Fig. 5 ROSLink

Architecture (Koubaa et al.

2017a)

Robot HW

ROS

ROSLink

Bridge

drivers

ROSLink

Proxy

ROSLink

Cloud

ROSLink

Cloud

ROSLink

Client

Control,

Monitor

App

storage capabilities. In fact, robots can process

sensor data using multiple onboard processors.

Nonetheless, some other types of robots, namely,

drones or even ground mobile robots, may have

limited onboard computing and storage capabil-

ities, which are typically due to the constraints

on their dimensional, power, and payload require-

ments. On the other hand, robotics applications

typically require massive computations and stor-

age requirements, in particular applications us-

ing computer vision, signal processing, real-time

map building, location, and navigation, to name a

few. Thus, instead of overwhelming robots with

such intensive computation, it is transferred to a

remote server located on a cloud platform for pro-

cessing and then returning the results or actions

to the robot. This is the concept of computation

offloading.

In the recent years, there have been several at-

tempts to integrate robots with the cloud through

service-oriented and web interfaces. It has to

be noted that this becomes possible nowadays

with the great expansion of available bandwidth

through the Internet allowing the real-time ex-

change of data with high data rate requirements

through high-speed networks either through land-

lines or optical fiber cables or even wireless com-

munication, which now supports very high band-

widths up to 200Mbps and more. Furthermore,

the evolution of cloud computing platforms has

made it possible to leverage abundant computing

resources on the cloud for processing-intensive

applications.

One of the first contributions in this area is

the DaVinci project reported in Arumugam et al.

(2010). The DaVinci server acts as a proxy that

relays the access between robots and users. It

also supports the Hadoop Distributed File System

(HDFS) and Robot Operating System (ROS).

The objective of DaVinci is to offload intensive

computation from the resources of the robots

to a back-end cluster system in the cloud. The

idea was to investigate the possibility of parallel

execution of complex robotics algorithms and to

apply it to the FastSLAM algorithm as a proof

of concept. The deployment did not consider

network latencies and delays, which limit the

results to ideal operational conditions.

In Mohanarajah et al. (2015), Hunziker

et al. proposed Rapyuta in the context of the

RoboEarth project. In this project, a cloud

engine was devised to promote collaboration

between robots, managing robotics resources,

and share knowledge among robots through

an open-source cloud robotics framework.

Rapyuta is deployed on Amazon Web Services

cloud where computation is offloaded from the

robots for processing on the cloud. The cloud

platform provides a secure and elastic computing

environment and in addition compatibility with

ROS. Communication between robots uses the

WebSockets protocol to provide a full-duplex

communication channel between robots.

In Bartels et al. (2015), the authors proposed

OpenEASE, which is a knowledge-based frame-

work that allows to share data between robots and

humans. The system is composed of a database

10 Service-Oriented Computing in Robotic

that contains a large set of semantically annotated

data collected from humans and robots during

complex manipulation tasks. It contains all in-

formation about the manipulation tasks such as

the environment of the mission, the manipulated

objects, the tasks executed, and the behavior

generated. A Web browser and Websocket API

interfaces are used to send queries and visualize

the manipulation mission.

In Mohanarajah et al. (2014), the authors ad-

dressed the problem of collaborative 3D map-

ping on the cloud using low-cost robots. They

proposed an architecture based on the Rapyuta

cloud engine to process visual odometry coming

from robots, which will perform parallel opti-

mization and merging of maps produced by other

robots. The results of optimization are pushed

back to the robots. The authors evaluated the per-

formance of cloud-based collaborative 3D map-

ping in terms of accuracy, bandwidth and stor-

age requirements, and execution time. The entry

demonstrated that the cloud-based architecture

contributes to increasing the number of cooper-

ative low-cost robots performing accurate map-

ping and localization. It has been shown that the

experimental implementation resulted in maps

with quality comparable to those performed by

more expensive robot hardware. The bandwidth

requirement is as small as 0.5 MB/s, which is

within the range of typical wireless networks.

This prototype demonstrates how the integration

of robots with cloud computing opens a new hori-

zon for low-cost robots to perform more complex

computation-intensive tasks.

In Bingwei et al. (2014) the authors proposed

a Cloud-Enabled Robotics System (CERS) where

robots outsource their heavy computations to a

server deployed in a cloud platform. The entry

also discussed security aspects while integrating

robots with the cloud. The proposed system was

evaluated with a real-time video tracking applica-

tion and compared the performance obtained by

virtual machines and physical machines clusters.

In Bekris et al. (2015) the authors investigated

the opportunities in industrial automation with

the advanced in cloud computing. The entry pro-

poses to use the cloud to solve complex problems

related to motion planning of manipulators. The

computation load is split between the robot local

machine and the cloud. The evaluation study

demonstrated the effectiveness of using the cloud

to compute roadmap data structures.

Salmeron-Garcia et al. (2015) conducted a

study to demonstrate the effectiveness of com-

putation offloading to the cloud in the context

of vision-based navigation assistance of a service

robot. Data is offloaded from a stereo camera

sensor on the robot to a private cloud built using

OpenStack. The experimental evaluation demon-

strated that computation offloading improved the

navigation experience of the robot as compared

to all processing being done onboard.

In 2016, Lei et al. propose the Cloud Robotics

Visual Platform (CRVP) for offloading computer

vision application from the robot to the cloud.

The Hadoop MapReduce framework was used to

reduce the time of learning and recognition pro-

cesses. The authors designed a service-oriented

architecture to build the recognition engine and

deployed on Amazon Elastic Compute System

(ECS) on Amazon Web Services cloud. The ex-

periments were conducted on a face recognition

application applied to 600 images, with a recog-

nition execution time around 60 ms.

Recommended Readings

In the previous section, we presented an overview

of the main related works in the literature for each

category of service-oriented robotics computing

systems. However, this list is not exhaustive and

there far more works in the literature. In this sec-

tion, we provide pointers to some recommended

readings for the reader to get more insights into

the cloud robotics area.

The survey in Chaari et al. (2016) presents

a comprehensive overview of cyber-physical

clouds including robots. This survey is a good

starting point to take a bird’s-eye view on efforts

being done in the integration of cyber-physical

systems (namely, robots, sensors, and vehicles)

Service-Oriented Computing in Robotic 11

S

into the Internet of Things and cloud. In addition,

Kehoe et al. (2015) provides a detailed survey

on cloud robotics research and is organized

into four categories, including Big Data, Cloud

Computing, Collective Learning, and Human

Computation.

Cross-References

⊲Embedded Computing in Robotics

⊲Robot Software Programming

References

Arumugam R, Enti VR, Bingbing L, Xiaojun W, Baskaran

K, Kong FF, Kumar AS, Meng KD, Kit GW (2010)

Davinci: a cloud computing framework for service

robots. In: 2010 IEEE international conference on

robotics and automation (ICRA), May 2010, pp 3084–

3089

Aws Robomaker (2019) Aws Robomaker: Amazon cloud

robotics platform [Online]. Available: https://aws.

amazon.com/robomaker/

Bartels G, Beetz M, Bessler D, Tenorth M, Winkler J

(2015) How to use openease: an online knowledge

processing system for robots and robotics researchers

(demonstration). In: Proceedings of the 2015 interna-

tional conference on autonomous agents and multia-

gent systems, AAMAS’15. International Founda-

tion for Autonomous Agents and Multiagent Systems,

Richland, pp 1925–1926 [Online]. Available: http://dl.

acm.org/citation.cfm?id=2772879.2773507

Bekris K, Shome R, Krontiris A, Dobson A (2015) Cloud

automation: precomputing roadmaps for flexible ma-

nipulation. IEEE Robot Autom Mag 22(2):41–50

Bingwei L, Yu C, Erik B, Khanh P, Dan S, Genshe C

(2014) A holistic cloud-enabled robotics system for

real-time video tracking application. In: Future infor-

mation technology. Lecture notes in electrical engineer-

ing, vol 276. Springer, Berlin/Heidelberg, pp 455–468

Brugali D, Da Fonseca A, Luzzana A, Maccarana Y

(2014) Developing service oriented robot control sys-

tem. In: 2014 IEEE 8th international symposium on

service oriented system engineering (SOSE), Apr 2014,

pp 237–242

Chaari R, Ellouze F, Koubaa A, Qureshi B, Pereira

N, Youssef H, Tovar E (2016) Cyber-physical sys-

tems clouds: a survey. Comput Netw 108:260–

278 [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S1389128616302699

Crick C, Jay GT, Osentoski S, Pitzer B, Jenkins OC (2011)

rosbridge: Ros for non-ros users. In: International sym-

posium on robotics research (ISRR 2011), Flagstaff,

Aug 2011

Gharibi M, Boutaba R, Waslander SL (2016) Internet of

drones. IEEE Access 4:1148–1162

Kehoe B, Patil S, Abbeel P, Goldberg K (2015) A survey

of research on cloud robotics and automation. IEEE

Trans Autom Sci Eng 12(2):398–409

Koubaa A (2014) A service-oriented architecture for

virtualizing robots in robot-as-a-service clouds. In:

Architecture of computing systems – ARCS 2014:

27th international conference, Lübeck, 25–28 Feb

2014. Proceedings. Springer International Publishing,

Cham, pp 196–208 [Online]. Available: https://doi.org/

10.1007/978-3-319-04891-8_17

Koubaa A (2015) ROS as a service: web services for robot

operating system. J Softw Eng Robot 6(1)

Koubaa A, Qureshi B (2018) Dronetrack: cloud-based

real-time object tracking using unmanned aerial vehi-

cles. IEEE Access PP:1–1

Koubaa A, Alajlan M, Qureshi B (2017a) ROSLink:

bridging ROS with the internet-of-things for cloud

robotics. In: Springer book of robot operating system

(ROS), Vol 2, May 2017

Koubaa A, Qureshi B, Sriti M-F, Javed Y, Tovar E

(2017b) Dronemap planner: a service-oriented cloud-

based management system for the internet-of-drones.

In: The 17th international conference on autonomous

robot systems and competitions (ICARSC 2017), Apr

2017

Koubaa A, Qureshi B, Sriti M-F, Allouch A, Javed Y,

Alajlan M, Cheikhrouhou O, Khalgui M, Tovar E

(2019) Dronemap planner: a service-oriented cloud-

based management system for the internet-of-drones.

Ad Hoc Netw 86:46–62

Kuffner J (2010) Cloud-enabled robots. In: IEEE-RAS

international conference on humanoid robots. IEEE

Lei Y, Fengyu Z, Yugang W, Xianfeng Y, Yang Z, Zhumin

C (2016) Design of a cloud robotics visual platform. In:

2016 sixth international conference on instrumentation

measurement, computer, communication and control

(IMCCC), July 2016, pp 1039–1043

Mahmoud S, Mohamed N (2014) Collaborative UAVs

cloud. In 2014 international conference on unmanned

aircraft systems (ICUAS), May 2014, pp 365–373

Mahmoud S, Mohamed N (2015) Broker architecture for

collaborative UAVs cloud computing. In: 2015 inter-

national conference on collaboration technologies and

systems (CTS), June 2015, pp 212–219

MAVLINK (2019) The MAVLINK protocol, website:

http://qgroundcontrol.org/mavlink/start

Mohanarajah G, Usenko V, Singh M, Waibel M, D’Andrea

R (2014) Cloud-based collaborative 3D mapping in

real-time with low-cost robots. IEEE Trans Autom Sci

Eng 12(2):481–493

http://link.springer.com/Embedded Computing in Robotics
http://link.springer.com/Robot Software Programming
https://aws.amazon.com/robomaker/
https://aws.amazon.com/robomaker/
http://dl.acm.org/citation.cfm?id=2772879.2773507
http://dl.acm.org/citation.cfm?id=2772879.2773507
http://www.sciencedirect.com/science/article/pii/S1389128616302699
http://www.sciencedirect.com/science/article/pii/S1389128616302699
https://doi.org/10.1007/978-3-319-04891-8_17
https://doi.org/10.1007/978-3-319-04891-8_17
http://qgroundcontrol.org/mavlink/start

12 Service-Oriented Computing in Robotic

Mohanarajah G, Hunziker D, D’Andrea R, Waibel M

(2015) Rapyuta: a cloud robotics platform. IEEE Trans

Autom Sci Eng 12(2):481–493

Osentoski S, Jay G, Crick C, Pitzer B, DuHadway C,

Jenkins OC (2011) Robots as web services: repro-

ducible experimentation and application development

using rosjs. In: 2011 IEEE international conference on

robotics and automation (ICRA)

Pautasso C, Zimmermann O, Leymann F (2008) Restful

web services vs. “big” web services: making the right

architectural decision. In: Proceedings of the 17th in-

ternational conference on world wide web. WWW’08.

ACM, New York, pp 805–814 [Online]. Available:

https://doi.org/10.1145/1367497.1367606

Salmeron-Garcia J, Inigo-Blasco P, del Rio FD, Cagigas-

Muniz D (2015) A tradeoff analysis of a cloud-based

robot navigation assistant using stereo image process-

ing. IEEE Trans Autom Sci Eng 12(2):444–454

https://doi.org/10.1145/1367497.1367606

	Service-Oriented Computing in Robotic
	Synonyms
	Definitions
	Why Service-Oriented Robotics Computing
	Two Major Categories
	Virtualization
	Virtualization Technologies
	Recent Contributions on Robotics Virtualization

	Computation Offloading
	Recommended Readings
	Cross-References
	References

