
1

This paper was presented as part of the SOCNE workshop held in conjunction with IEEE ETFA'2011

978-1-4577-0018-7/11/$26.00 ©2011 IEEE

Service Offloading in Adaptive Real-Time Systems

Luis Lino Ferreira, Guilherme Silva, Luis Miguel Pinho
CISTER/ISEP

Polytechnic Institute of Porto
R. Dr. António Bernardino de Almeida, 431

4200 – 072 Porto, Portugal
{llf, grss, lmp}@isep.ipp.pt

Abstract

Smartphones and other internet enabled devices are
now common on our everyday life, thus unsurprisingly a
current trend is to adapt desktop PC applications to
execute on them. However, since most of these
applications have quality of service (QoS) requirements,
their execution on resource-constrained mobile devices
presents several challenges. One solution to support
more stringent applications is to offload some of the
applications’ services to surrogate devices nearby.
Therefore, in this paper, we propose an adaptable
offloading mechanism which takes into account the QoS
requirements of the application being executed
(particularly its real-time requirements), whilst allowing
offloading services to several surrogate nodes. We also
present how the proposed computing model can be
implemented in an Android environment.

1. Introduction

Smartphones are nowadays an essential part of our
lives, executing a multitude of applications, connecting
us to social networks, online games, or internet calls.
Some of these applications are monolithic, only being
able to execute locally on the device, while others are
distributable, being able to execute some parts locally
and to request (existing) services from available nodes in
the network. These systems are normally supported by
high bandwidth networks.

Although the performance of mobile devices is
increasing in an unprecedented way, they still do not
possess the same features and resources of a common
desktop or laptop PC. A potential solution is for the
application to be distributed, running some parts locally
and other on networked servers, which execute code that
has been previously compiled and loaded.

Nevertheless, a more dynamic and flexible solution to
solve the performance gap, is to allow the mobile
devices to dynamically offload some of the applications’
services to neighbor devices [1 - 7], taking advantage of
collaborative environments, such as at home or in the
car, or of infrastructures providing value-added services.

In comparison with more traditional distributed
approaches, supported by “fat” network servers, the
offloading solution has the following advantages: i) the
code to execute is available in the client application; ii)
the nodes to which computations are offloaded are
nearer, consequently communications usually have less
delays and better QoS; iii) the changes required on the
original code are usually less significant. Consequently,
several different types of solutions for code offloading
have been provided, motivated by the need to obtain
access to additional resources, like memory, power or
more computation capabilities.

Some solutions rely on the programmer to determine
which parts of the code to offload, such as Cuckoo [3],
which provides an offloading environment for Android-
based systems using its inter-process communication
mechanisms. In MAUI [5] the programmer is
responsible for the annotation of the methods which can
be executed remotely, being power conserving its main
objective. Other solutions adopt a more automatic
approach, where the offloading framework is able, by
itself, to analyze the code and determine which
parts/classes can be offloaded, e.g. CloneCloud [4].
Furthermore, some of these algorithms are adaptive, i.e.
they are able to dynamically, in run-time, determine an
adequate application partitioning [6 - 7].

But none of these frameworks is capable of handling
the application’s real-time requirements; they mostly
provide a best effort solution. The adaptive solutions
also present the additional burden of calculating, in run-
time, the application partitioning.

Code offloading also relies on libraries or frameworks
that support the mobility of code or services. The work
presented in [2] describes several service migration
scenarios for embedded networks, based on the ∈SOA
framework. In [8] the authors propose MobFr, which
supports code mobility and is also capable of providing
the application with the required QoS resources,
including its real-time requirements, as shown in [9].

It is in this context that in this paper we put forward a
code offloading approach, allowing applications to
offload some of their services to neighbor nodes. The
goal is to support adaptable applications, which present

2

variable QoS requirements, ranging fro
and control applications, multimedia st
gaming. This approach is built on top o
solution proposed in this paper add
applications which periodically run
variable execution time.

As an example consider a physics
These engines usually run periodicall
that depends on the application’s specif
of Core Services related with 3D/2D o
collisions, rendering, etc. When the size
of simulated objects) is low, the mobi
all computations, but when the number
the computation requirements increa
execution may not be possible. In this
reducing the quality provided to appl
reducing the quality of some of its
instance the accuracy) or simply by r
nearby nodes are sought to execu
computation.

The offloading approach works
monitoring the time required to execute
(tcore). Based on a set of past tcore tim
predicts the evolution of tcore; if it de
required rate cannot be achieved in
offloading procedure is triggered in a
for the inexistence of timing errors. S
services can be offloaded to other nod
there without reducing the rate or the su

Complementary, when it is
advantageous to execute the offloaded
nodes, migration can once again take
services can return to be executed on the

To our best knowledge, this prop
which proposes a solution to integrate d
requirements into service offloading
proposed in [1 - 2] might also be capabl
the real-time requirements of applic
timing performance has not, yet,
Additionally, the application architectur
is not adaptable to other kinds of applic

The remainder of the paper is structu
Section 2 we provide the motiv
fundamentals of offloading approache
algorithm is detailed in Section 3, w
provides some of its timing issues.
describes the architecture of the Androi
implementation. Finally, Section 6 dis
and draws some conclusions.

2. Code Offloading Motivation

In order to illustrate how much faste
than a smartphone, we performed som
GHz Intel Pentium 4 PC and two mo
HTC Magic and one Samsung Gala
consisted in running the physics sim

om flexible sensor
treaming, or even
of MobFr [8]. The
dresses real-time
n services with

modeling engine.
ly, with a period
fic rate, with a set
object movement,
e of data (number
le device handles
r of data items, or
ases, only local
s case, instead of
lications (e.g., by
computation (for

reducing the rate,
ute parts of the

s by constantly
e the core services
es, the algorithm
termines that the

n the future, the
advance, allowing
Some of the core
des and executed

upported quality.
not anymore

services in other
place, and these

e device.
posal is the first
dynamic real-time
g. The solutions
le of guaranteeing
cations but their
, been studied.
re proposed in [2]
ation.

ured as follows. In
vation and the
es. The proposed
whilst Section 4

Section 5 then
id code offloading
scuses the results

er a desktop PC is
me tests using a 3
obile devices: one
axy S. Our tests
mulator on them,

which periodically calculat
rectangular objects bouncing i
results show that on average
27.7 ms and 250.0 ms, on
Galaxy S and on the HTC M
calculation of each simulation

Figure 1 illustrates the typi
the use of the real-time offload
this paper. The vertical axis re
to run the module core service
represents the number of obje
dashed line at 33.3 ms c
execution rate – 30 updates/se
to that time as Tp, the cycle per

Figure 1 - Exampl

If the execution time of t
33.3 ms, then the application
give the desired frame rat
solutions to this problem w
physics calculations or to
rendered. However, this down
of the user experience leading
quality software or software w
In Figure 1 it is noticeable th
process more than 35 objects w

Generically, the applicatio
cyclic execution of specific a
may have a variable executio
also required to maintain the p
of the core services and their
rate of the physics simulation)

The solution is to offload
being performed by the mo
preferably with more proce
timely manner.

3. Real-time Offloading

The algorithm being pro
mobility framework in orde
execution of code [1]; additio
move the code to the surroga
based on the formulations p
timeliness can be statistically g

tes the paths of 100
in a small screen area. The
each device needs 1.2 ms,
the PC, on the Samsung

Magic, respectively, for the
step.

ical scenario that motivates
ding algorithm proposed in
epresents the time required
es (tcore), the horizontal axis
ects being calculated. The
characterizes the desired
econd. Hereafter, we refer
riod.

le Experience

the module is higher than
will no longer be able to

te to the user. Potential
would be to simplify the
reduce the details being
ngrade reduces the quality
to the impression of lower

with reduced functionalities.
hat a mobile device cannot
without exceeding Tp.
on model results from the
application services which

on time. The application is
periodicity on the execution
QoS levels (e.g. the frame
.

d some of the calculations
odule to surrogate nodes,
ssing capacity and on a

of Mobile Services

oposed relies on a code
er to support the remote
onally, the time required to
ate node can be calculated
proposed in [9], thus its
guaranteed.

3

The main objective of the algorithm
adapt to the varying execution time
computation to surrogate nodes in a
timely we mean that the user should
disruption on the application behavior.
the offloading algorithm tries to predic
core execution times, based on past exec

Figure 2 illustrates the algorithm op
services’ execution time on the mai
device is represented by square and
respectively. The continuous line, with
the linear regression that best approac
of the tcore on the original device. This li
considering the 8 points, from 0 to 264 m

Figure 2 – Offloading algorithm e

Based on the linear regression param
it is possible to estimate the time (txMa

core execution time will exceed the m
of the original device – tMaxCap, which
Figure 2 occurs in the interval between
ms. Note that tMaxCap is the maximum
capacity per cycle period (Tp), reserved
operating system resource manager. Ob
the operating objective of the appl
disruption should occur, consequently t
operation, which precludes the offlo
should be completed prior to 264 ms.

If the time required for code mobili
then we can express the offloading deciݐ௧௛ ൌ ቞ݐ௫ெ௔௫஼௔௣௣ܶ ቟ ൈ ௣ܶ ൑ ቜݐ௠௢௕௣ܶ ቝ

If this expression is true then the sy
the offloading procedure of its sele
parallel with its current operations a
previous works [3, 5] it is up to the
determine the services to offload). The
functions, used in Eq. (1), normaliz
multiples of Tp.

Figure 2 shows that prior to 297 m
code is transferred to a surrogate device
297 ms there is a noticeable reduct
execution time on the main device, sin
device enters into operation. In this e

is to dynamically
es by offloading

timely way. By
d not notice any
 To that purpose,

ct the forthcoming
cution times.

peration. The core
in and surrogate

d triangle marks,
out marks, shows
hes the evolution
ine is obtained by
ms.

example

meters, at 165 ms,
axCap) at which the

maximum capacity
h for the case of
n 264 ms and 297
m reserved CPU
by the underlying

bviously, to fulfill
ication, no QoS
the code mobility

oading procedure,

ity is equal to tmob
sion as: ൈ ௣ܶ

(1)

ystem should start
ected services in
at 165 ms (as in
e programmer to

e floor and ceiling
ze all results to

ms the necessary
e, consequently at
tion on the core
nce the surrogate
example, there is

only one surrogate device
middleware can handle offload

Note that it is up to the prog
to parallelize the application
operates as follows: i) each
receives new data from the ma
calculation over that data an
finally, iii) after receiving all
device aggregates the respo
devices with its local calculatio

3.1. Code Offloading Algor

The offloading algorithm
Listing 1. This algorithm ass
must make available a set of
can be used by the underlying
that some are periodically calle
One of those methods is the u
periodically executed by
periodicity of Tp.

The update function star
services had already been off
devices (line 2). If the condit
determine if an additional surr
23– 31). That is done by testin
each surrogate device will reac
capacity in that node using E
also includes the
requiresNewSurrogate
tryRebalance function, w
dependent function that tri
rebalancing the load between
add a new surrogate device or

If an additional surroga
addAdditionalDevice thre
40). This thread might require
due to the time consuming seq
must execute when using the
framework [1]. This thread sta
is a node, with available resou
(line 34), after it offloads the
37), otherwise an error is sign
is important to note that on
process is not stopped, altho
choose not to execute any offlo

Listing 1

1. Function update() {
2. If isOffloading()
3. If requiresNewSurr
4. new Thread(addA
5. runOffloaded()
6. else {
7. if needsToStopO
8. runLocally()
9. } else
10. runOffloaded
11. }

e, but, if required, the
ding to a group of devices.
grammer to determine how
code, but the framework
of the surrogate devices

ain device; ii) executes the
nd returns the results; and
responses the coordinating

onses from the surrogate
ons.

rithm

pseudo-code is shown in
sumes that the application
f interface methods which
offloading framework and

ed by the application itself.
update function, which is
the application with a

rts by determining if the
ffloaded to other surrogate
tion is true then it tests to
ogate node is needed (lines
ng if the execution time on
ch the maximum execution
Eq. (1). Note that this test

main device. The
function also calls

which is an application
ies to determine if by
nodes it is possible not to
not.

ate is needed then the
ead is started (lines 33 –
e a few cycles to complete
quence of operations that it
e underlying code mobility
arts by determining if there
urces in the neighbourhood
e required code to it (line
nalled to the application. It
nce started the offloading
ough the main node may
oaded service.

rogate()
AdicionalDevices())

Offloading() {
)

d()

4

12. }
13. else //if is not offloaded
14. If requiresNewSurrogate() {
15. new Thread(addAdicionalDevices())
16. runLocally()
17. } else
18. runLocally()
19. }
20. }
21. }
22.
23. Function requiresNewSurrogate() {
24. Output result:bool – determines if a new
surrogate node is required.
25.
26. ForEach(dev in devices) {
27. If eq (1) is true
28. If !tryRebalance() Return true
29. Return False
30. }
31. }
32.
33. Thread addAdicionalDevice() {
34. newDev = DiscoveryManager.getDevice()
35. If (newDevice != null)
36. Devices.add(newDev)
37. OffloadCode(newDev)
38. Else
39. signalError()
40. }

The algorithm then runs the core services in offloaded

mode (Listing 2). Basically, it starts by partitioning the
data to be computed by surrogate devices. This operation
is done by an application specific function and it can be
adjusted on every cycle, e.g. for load balancing proposes.
After, the data is sent to every surrogate device,
computed and the results are returned, using the function
sendData&Execute. The last step is related to the
aggregation of results on the main node in order to
compute the final results.

Listing 2

1. Function runOffLoadded(offloadService)
2. Input offloadService: the code that can be
executed in offloading.
3. {
4. parts = offloadService.dataPartitioner()
5. sendData&Execute(devices, parts)
6. Result[0] =
offloadService.runLocally(parts[0])
7. receiveData(devices, results)
8. offloadService.aggregateResults(results).
9. }

Listing 1, also accommodates the case when the main

node is not offloading any computations (lines 15 – 20).
In this case, it determines if a surrogate is needed, and, if
needed, it releases a thread that runs the function

addAdditionalDevice to prepare the offloading of
code. Meanwhile, the code is executed locally.

Another situation occurs when the load no longer
justifies the offloading procedure, this condition is tested
in line 7, but in this paper we do not elaborate any
further in this subject.

4. Timing Issues

In Section 3, some timing parameters were not
detailed, in this section we give details on how to
determine the time when the linear regression line,
which is used to predict the evolution of the core
execution time, reaches the maximum capacity. We also
explain how the core execution time is measured and
how the mobility timings can be obtained.

4.1. Determining txMaxCap
To determine when to start the offloading procedure,

Eq. (1) requires the knowledge of txMaxCap time, the time at
which an estimated value for the core execution time
(tcore) reaches the maximum capacity (tmaxCap).

 The solution we propose is to use linear regression to
determine the line which best approaches the evolution
of the core execution times and determine when that line
crosses the maximum capacity line.

Each point i of the estimation line is expressed by the
formula t’core,i = m.t + b, where m, the line slope, is
calculated by solving the following equation:

݉ ൌ n ∑ ሺt୧ ൈ tୡ୭୰ୣ,୧ሻ୬୧ୀ଴ െ ∑ t୧୬୧ୀ଴ ൈ ∑ tୡ୭୰ୣ,୧୬୧ୀ଴n ∑ ሺt୧ሻଶ୬୧ୀ଴ െ ሺ∑ t୧୬୧ୀ଴ ሻଶ (2)

In this equation n is the number of past core execution
times being considered. Parameter ti is the time at which
the core execution time (tcore,i) had been measured.

The setting of n has a big impact on the behaviour of
the algorithm. If n is set to a small value then the
algorithm becomes more sensitive to rapid changes on
the tcore value, otherwise the algorithm is slower to react.

Parameter b is calculated by solving the following
equation: ܾ ൌ ∑ tୡ୭୰ୣ,୧୬୧ୀ଴ െ m ∑ t୧୬୧ୀ଴n (3)

After having calculated m and b it is possible to
determine txMaxCap as follows: ݐ௫ெ௔௫஼௔௣ ൌ t୫ୟ୶Cୟ୮ െ bm (4)

Obviously, other regression algorithms could be used,
like a polynomial regression, but the number of
calculations to be performed would be much higher,
although the results could potentially also be more
precise, particularly, when the variation of the core
execution time does not follow a linear rule. The main
advantage is that the proposed algorithms can be
executed with minimum overhead in devices with
limited computation capabilities.

5

Nevertheless, it is possible to increase the
performance of the linear regression parameters
calculation by: i) if m is negative then calculating b is
not necessary since the line will not cross the maximum
capacity line in the future; ii) the summations which are
required to be calculated in Eq. (2) and (3) can use
previously calculated values. As an example, the
calculation of ܽ ൌ ∑ tiniൌ0 , can be done using the
following recurring formulation:

 ܽ௫ ൌ a୶ିଵ െ a୶ି୬ ൅ a୶ (5)
Where, a0 is the summation of the first n values.

4.2. Code Mobility timings

Another value required to determine when to start
offload is the interval of time that elapses from the time
when the offloading decision is taken until the new
device is ready to start executing the offloaded code –
the code mobility time (tmob).

We support this calculation on the formulations
proposed in [9], which are adapted to this specific case.
Therefore, tmob can be calculated by: ݐ௠௢௕ ൌ ௖௢௡௙ݐ ൅ ௖௢ௗ௘ݐ ൅ ݐ௜௦௧ ൅ ݐ௦௧௔௥௧ (6)

Where tconf is the time required to find a feasible
system configuration, i.e. a surrogate node where to
offload the code. Time tcode is the time required to
transmit the offloaded code. Some configuration data can
also be sent along with the code, which requires a time
of tist to be transmitted. Finally, the code must be
installed on the surrogate node and started, prior to be
ready to start processing items sent from the source
node, thus requiring a time of tstart. It is important to note
that these timings are not worst-case timings, but they
represent just average or any other kind of statistic value.

4.3. Measuring tcore

An essential part of the algorithm is to be able to
measure the core execution time of all surrogate nodes
(ts

core, s∈{1, 2, ..., nSurr}) and on the local node (t0

core).
On the local node this time is simply the execution

time of function runLocally().
The measurement of the core execution time on the

surrogate nodes is performed at the source node, since it
must also take into account the communication delays,
consequently: ݐ௖௢௥௘௦ ൌ ௥௘௤௠௔௜௡՜௦ݐ ൅ ݐ௘௫௘௖௦ ൅ ௥௘௦௦՜௠௔௜௡ (6)ݐ

Where ݐ௥௘௤௠௔௜௡՜௦ represents the time required for the
data to be sent from the source to the destination node.
Time ݐ௘௫௘௖௦ is the execution at surrogate node s and ݐ௥௘௦௦՜௠௔௜௡ is the time required to transmit the response
from the surrogate node back to the source node.

5. Implementation in Android

The proposed architecture is based on the code
mobility framework (MobFr) for the Android operating

system, which has been proposed in [8]. The MobFr is a
service-based QoS-aware framework capable of
handling code mobility in a cooperative environment.

Among other characteristics, the MobFr is designed
to: i) detect neighbour devices; ii) determine the best
candidate where to run the offloaded code, according to
the QoS requirements of the application and the
available resources on the surrogate nodes; iii) migrate
the code and initial state; iv) remotely control the code
execution; and finally, v) handle the transfer of data
between nodes.

The core modules provided by the framework are the:
Discovery Manager, Package Manager, and Execution
Manager. Additionally, the framework also relies on a
QoS Manager module (not shown in Figure 3) that is
responsible for assuring that the QoS requirements of
each module can be met.

Figure 3 - Framework Structure

The Discovery Manager module is designed to
discover neighbor devices on a local network, advertise
the host’s resource availability and gather information
about the resource availability on neighbour devices. The
Package Manager is used to install, uninstall and
transfer services. This module is also responsible for the
interaction with the QoS Manager in order to request
specific QoS levels for the service being transferred. The
Execution Manager allows executing services on a
surrogate node through the exchange of Android intents,
thus allowing the development of transparent
applications (in relation to its distribution). The QoS
Manager administers the system resources, either
locally, on a node, or in a distributed environment. It
also encapsulates the functionalities of high level QoS
control frameworks, like the one used in [8].
Consequently, this module can interact with remote code
offloading framework modules in order to choose the
most appropriate nodes where to run the offloaded
services. The Code offloading framework and its
modules is depicted in Figure 3.

In this framework the Communication Manager takes
care of communications between the main and surrogate

6

devices. Basically, this module implements the
functionalities described in Listing 2: sending data,
receiving and aggregating the results. It is the
responsibility of the Offloading Manager to take care of
the initial configuration, monitoring the core execution
times and control the creation of new surrogates.

The Offloadable Service represents the application
modules which can be offload to other nodes.

Figure 4 presents the framework’s UML model,
which illustrates the dependencies between the
framework, the underlying MobFr framework and the
application.

Any class which can be offloaded must extend the
abstract class OffloadableServiceAbstraction,
which defines some methods and defines the interface
for the implementation of application specific methods.
The Update method is one of those. This method should
be periodically called by the application. The
runOffloaded method is another, it takes care of
running the offloaded services and aggregating the
results. The Offloadable Service must also implement
the abstract methods required for data partitioning
(dataPartitioner) and the runLocally method
which runs the service on the main device.

The CommunicationManager class handles all
interactions with the service mobility framework. This
class also has access to a list of devices in the network,
which is used to find an adequate set of surrogate nodes.

Figure 4 – Framework’s UML model

6. CONCLUSIONS

The use of smartphones and other internet enabled
devices is changing the habits of users, which more and
more require that their desktop applications are
seamlessly supported in these resource-constrained
devices. One solution to support these requirements is to
offload some of the applications’ services to devices
nearby, taking advantage of high-capacity local
networks. Code offloading techniques have proven to be
useful in increasing the performance or the battery life of
mobile devices.

In this paper, we put forward an offloading
mechanism that considers the QoS of the applications,
offloading services to neighbor nodes and, at the same
time, adapting to changing real-time execution
parameters of the application. The implementation of
this approach in an Android environment is also
outlined.

Acknowledgments. This work is partially funded by the
CMU-Portugal Program, funded by National Funds (PT),
through the FCT - Portuguese Foundation for Science and
Technology, under the Carnegie Mellon Portugal Program,
with Grant ref. FCT-CMU-PT/0012/2006 and the CISTER
Research Unit (608FCT) funded by FEDER funds through
COMPETE (POFC - Operational Programme 'Thematic
Factors of Competitiveness) and by National Funds (PT),
through the FCT - Portuguese Foundation for Science and
Technology.

References
[1] Nimmagadda, Y., Kumar, K., Lu, Y., Lee, C.S.G., “Real-
time moving object recognition and tracking using computation
offloading”, IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), Oct. 2010, pp. 2449 – 2455.
[2] Sommer, S., Schola, A., Gapanova, I. , Knoll, A., Kemper,
A., Buckl, C., Kainz, G, Heuer, J., Schmitt, A., “Service
Migration Scenarios for Embedded Networks”, 2010 IEEE
24th Intl. Conf. on Advanced Information Networking and
Applications Workshops, 2010, pp. 502 – 507.
[3] Kemp, R., Palmer, N., Kielmann, T., Bal, H., “Cuckoo: a
Computation Offloading Framework for Smartphones”, Proc.
of the 2nd Intl. Conf. on Mobile Computing, Applications, and
Services, (MobiCASE '10), 2010.
[4] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.,
“Clonecloud: Elastic execution between mobile device and
cloud”, In EuroSys 2011, April 2011.
[5] Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A.,
Saroiu, S., Chandra, R., Bahl, P., “MAUI: making smartphones
last longer with code offload”, Proc. of the 8th Intl. Conf. on
Mobile systems, applications, and services (MobiSys '10).
ACM, Jun. 2010, pp. 49 – 62.
[6] Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic,
D., "Adaptive Offloading Inference for Delivering
Applications in Pervasive Computing Environments", First
IEEE International Conference on Pervasive Computing and
Communications (PerCom'03), 2003, pp. 107 – 114.
[7]Xian, C., Lu, Y., Li, Z., "Adaptive computation offloading
for energy conservation on battery-powered systems",
International Conference on Parallel and Distributed Systems,
2007, vol. 2, Dec., 2007, pp. 1 – 8.
[8] Gonçalves, J. Ferreira, L. Pinho, N., Silva, G., “Handling
Mobility on a QoS-Aware Service-based Framework for
Mobile Systems”, Intl. Conf. on Embedded and Ubiquitous
Computing (EUC 2010), Dec. 2010, pp.97 – 104.
[9] Ferreira, L., Nogueira, L., “On the Use of Code Mobility
Mechanisms in Real-time Systems”, accepted for publication at
the 10th Intl. Workshop on Real-Time Networks, Jul., 2011.

OffloadFramework MobFr

ComunicationManager

+DataParts
+DataResults

+send&ExecuteData()
+receiveData()
+addAdicionalDevice()
+signalError()
+offloadCode()

DeviceManager

OffloadingManager

+coreExecutionTimes()
+setConfiguration()
+needsToStopOffloading()

ExecutionManager

DiscoveryManager

+getNewDevice()
+getAllDevices()

PackageManager

CooperativeDevice

OffloadbleServiceAbstraction

+update()
+isOffloading()
+runLocally(): abstract
+runOffloaded()
+dataPartitioner(): abstract
+agregateResults(): abstract
+requiresNewSurrogate()
+tryRebalance(): abstract

