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Abstract 

Smartphones and other internet enabled devices are 
now common on our everyday life, thus unsurprisingly a 
current trend is to adapt desktop PC applications to 
execute on them. However, since most of these 
applications have quality of service (QoS) requirements, 
their execution on resource-constrained mobile devices 
presents several challenges. One solution to support 
more stringent applications is to offload some of the 
applications’ services to surrogate devices nearby. 
Therefore, in this paper, we propose an adaptable 
offloading mechanism which takes into account the QoS 
requirements of the application being executed 
(particularly its real-time requirements), whilst allowing 
offloading services to several surrogate nodes. We also 
present how the proposed computing model can be 
implemented in an Android environment. 

1. Introduction 

Smartphones are nowadays an essential part of our 
lives, executing a multitude of applications, connecting 
us to social networks, online games, or internet calls. 
Some of these applications are monolithic, only being 
able to execute locally on the device, while others are 
distributable, being able to execute some parts locally 
and to request (existing) services from available nodes in 
the network. These systems are normally supported by 
high bandwidth networks. 

Although the performance of mobile devices is 
increasing in an unprecedented way, they still do not 
possess the same features and resources of a common 
desktop or laptop PC. A potential solution is for the 
application to be distributed, running some parts locally 
and other on networked servers, which execute code that 
has been previously compiled and loaded. 

Nevertheless, a more dynamic and flexible solution to 
solve the performance gap, is to allow the mobile 
devices to dynamically offload some of the applications’ 
services to neighbor devices [1 - 7], taking advantage of 
collaborative environments, such as at home or in the 
car, or of infrastructures providing value-added  services.  

In comparison with more traditional distributed 
approaches, supported by “fat” network servers, the 
offloading solution has the following advantages: i) the 
code to execute is available in the client application; ii) 
the nodes to which computations are offloaded are 
nearer, consequently communications usually have less 
delays and better QoS; iii) the changes required on the 
original code are usually less significant. Consequently, 
several different types of solutions for code offloading 
have been provided, motivated by the need to obtain 
access to additional resources, like memory, power or 
more computation capabilities. 

Some solutions rely on the programmer to determine 
which parts of the code to offload, such as Cuckoo [3], 
which provides an offloading environment for Android-
based systems using its inter-process communication 
mechanisms. In MAUI [5] the programmer is 
responsible for the annotation of the methods which can 
be executed remotely, being power conserving its main 
objective. Other solutions adopt a more automatic 
approach, where the offloading framework is able, by 
itself, to analyze the code and determine which 
parts/classes can be offloaded, e.g. CloneCloud [4]. 
Furthermore, some of these algorithms are adaptive, i.e. 
they are able to dynamically, in run-time, determine an 
adequate application partitioning [6 - 7]. 

But none of these frameworks is capable of handling 
the application’s real-time requirements; they mostly 
provide a best effort solution. The adaptive solutions 
also present the additional burden of calculating, in run-
time, the application partitioning. 

Code offloading also relies on libraries or frameworks 
that support the mobility of code or services. The work 
presented in [2] describes several service migration 
scenarios for embedded networks, based on the ∈SOA 
framework. In [8] the authors propose MobFr, which 
supports code mobility and is also capable of providing 
the application with the required QoS resources, 
including its real-time requirements, as shown in [9]. 

It is in this context that in this paper we put forward a 
code offloading approach, allowing applications to 
offload some of their services to neighbor nodes. The 
goal is to support adaptable applications, which present 
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12.     } 
13.  else //if is not offloaded 
14.     If requiresNewSurrogate() { 
15.        new Thread(addAdicionalDevices()) 
16.        runLocally()    
17.     } else 
18.        runLocally() 
19.     }  
20.  }   
21. } 
22.  
23. Function requiresNewSurrogate() { 
24. Output result:bool – determines if a new 
surrogate node is required. 
25.  
26.  ForEach(dev in devices) { 
27.     If eq (1) is true  
28.        If !tryRebalance() Return true 
29.     Return False  
30.  } 
31. } 
32.  
33.  Thread addAdicionalDevice() { 
34.  newDev = DiscoveryManager.getDevice() 
35.  If (newDevice != null)  
36.     Devices.add(newDev) 
37.     OffloadCode(newDev) 
38.  Else 
39.     signalError() 
40. } 

 
 
The algorithm then runs the core services in offloaded 

mode (Listing 2). Basically, it starts by partitioning the 
data to be computed by surrogate devices. This operation 
is done by an application specific function and it can be 
adjusted on every cycle, e.g. for load balancing proposes. 
After, the data is sent to every surrogate device, 
computed and the results are returned, using the function 
sendData&Execute. The last step is related to the 
aggregation of results on the main node in order to 
compute the final results.   

 
Listing 2 

1. Function runOffLoadded(offloadService) 
2. Input offloadService: the code that can be 
executed in offloading. 
3. { 
4.  parts = offloadService.dataPartitioner() 
5.  sendData&Execute(devices, parts) 
6.  Result[0] = 
offloadService.runLocally(parts[0]) 
7.  receiveData(devices, results) 
8.  offloadService.aggregateResults(results). 
9. } 

 
Listing 1, also accommodates the case when the main 

node is not offloading any computations (lines 15 – 20). 
In this case, it determines if a surrogate is needed, and, if 
needed, it releases a thread that runs the function 

addAdditionalDevice to prepare the offloading of 
code. Meanwhile, the code is executed locally.   

Another situation occurs when the load no longer 
justifies the offloading procedure, this condition is tested 
in line 7, but in this paper we do not elaborate any 
further in this subject.  

4. Timing Issues 

In Section 3, some timing parameters were not 
detailed, in this section we give details on how to 
determine the time when the linear regression line, 
which is used to predict the evolution of the core 
execution time, reaches the maximum capacity. We also 
explain how the core execution time is measured and 
how the mobility timings can be obtained. 

4.1. Determining txMaxCap  
To determine when to start the offloading procedure, 

Eq. (1) requires the knowledge of txMaxCap time, the time at 
which an estimated value for the core execution time 
(tcore) reaches the maximum capacity (tmaxCap). 

 The solution we propose is to use linear regression to 
determine the line which best approaches the evolution 
of the core execution times and determine when that line 
crosses the maximum capacity line.  

Each point i of the estimation line is expressed by the 
formula t’core,i = m.t + b, where m, the line slope, is 
calculated by solving the following equation: 

݉ ൌ n ∑ ሺt୧ ൈ tୡ୭୰ୣ,୧ሻ୬୧ୀ଴ െ ∑ t୧୬୧ୀ଴ ൈ ∑ tୡ୭୰ୣ,୧୬୧ୀ଴n ∑ ሺt୧ሻଶ୬୧ୀ଴ െ  ሺ∑ t୧୬୧ୀ଴ ሻଶ  (2) 

In this equation n is the number of past core execution 
times being considered. Parameter ti is the time at which 
the core execution time (tcore,i) had been measured.  

The setting of n has a big impact on the behaviour of 
the algorithm. If n is set to a small value then the 
algorithm becomes more sensitive to rapid changes on 
the tcore value, otherwise the algorithm is slower to react. 

Parameter b is calculated by solving the following 
equation: ܾ ൌ ∑ tୡ୭୰ୣ,୧୬୧ୀ଴ െ m ∑ t୧୬୧ୀ଴n  (3) 

After having calculated m and b it is possible to 
determine txMaxCap as follows: ݐ௫ெ௔௫஼௔௣ ൌ t୫ୟ୶Cୟ୮ െ bm  (4) 

Obviously, other regression algorithms could be used, 
like a polynomial regression, but the number of 
calculations to be performed would be much higher, 
although the results could potentially also be more 
precise, particularly, when the variation of the core 
execution time does not follow a linear rule. The main 
advantage is that the proposed algorithms can be 
executed with minimum overhead in devices with 
limited computation capabilities. 
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Nevertheless, it is possible to increase the 
performance of the linear regression parameters 
calculation by: i) if m is negative then calculating b is 
not necessary since the line will not cross the maximum 
capacity line in the future; ii) the summations which are 
required to be calculated in Eq. (2) and (3) can use 
previously calculated values. As an example, the 
calculation of ܽ ൌ ∑ tiniൌ0 , can be done using the 
following recurring formulation: 

 ܽ௫ ൌ  a୶ିଵ െ a୶ି୬ ൅ a୶  (5) 
Where, a0 is the summation of the first n values. 

4.2. Code Mobility timings 

Another value required to determine when to start 
offload is the interval of time that elapses from the time 
when the offloading decision is taken until the new 
device is ready to start executing the offloaded code – 
the code mobility time (tmob). 

We support this calculation on the formulations 
proposed in [9], which are adapted to this specific case. 
Therefore, tmob can be calculated by: ݐ௠௢௕ ൌ ௖௢௡௙ݐ  ൅ ௖௢ௗ௘ݐ  ൅ ݐ௜௦௧ ൅ ݐ௦௧௔௥௧ (6) 

Where tconf is the time required to find a feasible 
system configuration, i.e. a surrogate node where to 
offload the code. Time tcode is the time required to 
transmit the offloaded code. Some configuration data can 
also be sent along with the code, which requires a time 
of tist to be transmitted. Finally, the code must be 
installed on the surrogate node and started, prior to be 
ready to start processing items sent from the source 
node, thus requiring a time of tstart. It is important to note 
that these timings are not worst-case timings, but they 
represent just average or any other kind of statistic value.  

4.3. Measuring tcore 

An essential part of the algorithm is to be able to 
measure the core execution time of all surrogate nodes 
(ts

core, s∈{1, 2, ..., nSurr}) and on the local node (t0

core). 
On the local node this time is simply the execution 

time of function runLocally(). 
The measurement of the core execution time on the 

surrogate nodes is performed at the source node, since it 
must also take into account the communication delays, 
consequently: ݐ௖௢௥௘௦ ൌ ௥௘௤௠௔௜௡՜௦ݐ  ൅ ݐ௘௫௘௖௦ ൅  ௥௘௦௦՜௠௔௜௡ (6)ݐ 

Where ݐ௥௘௤௠௔௜௡՜௦ represents the time required for the 
data to be sent from the source to the destination node. 
Time ݐ௘௫௘௖௦  is the execution at surrogate node s and ݐ௥௘௦௦՜௠௔௜௡  is the time required to transmit the response 
from the surrogate node back to the source node. 

5. Implementation in Android  

The proposed architecture is based on the code 
mobility framework (MobFr) for the Android operating 

system, which has been proposed in [8]. The MobFr is a 
service-based QoS-aware framework capable of 
handling code mobility in a cooperative environment. 

Among other characteristics, the MobFr is designed 
to: i) detect neighbour devices; ii) determine the best 
candidate where to run the offloaded code, according to 
the QoS requirements of the application and the 
available resources on the surrogate nodes; iii) migrate 
the code and initial state; iv) remotely control the code 
execution; and finally, v) handle the transfer of data 
between nodes. 

The core modules provided by the framework are the: 
Discovery Manager, Package Manager, and Execution 
Manager. Additionally, the framework also relies on a 
QoS Manager module (not shown in Figure 3) that is 
responsible for assuring that the QoS requirements of 
each module can be met.  

   

Figure 3 - Framework Structure 

The Discovery Manager module is designed to 
discover neighbor devices on a local network, advertise 
the host’s resource availability and gather information 
about the resource availability on neighbour devices. The 
Package Manager is used to install, uninstall and 
transfer services. This module is also responsible for the 
interaction with the QoS Manager in order to request 
specific QoS levels for the service being transferred. The 
Execution Manager allows executing services on a 
surrogate node through the exchange of Android intents, 
thus allowing the development of transparent 
applications (in relation to its distribution). The QoS 
Manager administers the system resources, either 
locally, on a node, or in a distributed environment. It 
also encapsulates the functionalities of high level QoS 
control frameworks, like the one used in [8]. 
Consequently, this module can interact with remote code 
offloading framework modules in order to choose the 
most appropriate nodes where to run the offloaded 
services. The Code offloading framework and its 
modules is depicted in Figure 3. 

In this framework the Communication Manager takes 
care of communications between the main and surrogate 
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devices. Basically, this module implements the 
functionalities described in Listing 2: sending data, 
receiving and aggregating the results. It is the 
responsibility of the Offloading Manager to take care of 
the initial configuration, monitoring the core execution 
times and control the creation of new surrogates.  

The Offloadable Service represents the application 
modules which can be offload to other nodes. 

Figure 4 presents the framework’s UML model, 
which illustrates the dependencies between the 
framework, the underlying MobFr framework and the 
application.  

Any class which can be offloaded must extend the 
abstract class OffloadableServiceAbstraction, 
which defines some methods and defines the interface 
for the implementation of application specific methods. 
The Update method is one of those. This method should 
be periodically called by the application. The 
runOffloaded method is another, it takes care of 
running the offloaded services and aggregating the 
results. The Offloadable Service must also implement 
the abstract methods required for data partitioning 
(dataPartitioner) and the runLocally method 
which runs the service on the main device. 

The CommunicationManager class handles all 
interactions with the service mobility framework. This 
class also has access to a list of devices in the network, 
which is used to find an adequate set of surrogate nodes.  

     

Figure 4 – Framework’s UML model 

6. CONCLUSIONS 

The use of smartphones and other internet enabled 
devices is changing the habits of users, which more and 
more require that their desktop applications are 
seamlessly supported in these resource-constrained 
devices. One solution to support these requirements is to 
offload some of the applications’ services to devices 
nearby, taking advantage of high-capacity local 
networks. Code offloading techniques have proven to be 
useful in increasing the performance or the battery life of 
mobile devices.  

In this paper, we put forward an offloading 
mechanism that considers the QoS of the applications, 
offloading services to neighbor nodes and, at the same 
time, adapting to changing real-time execution 
parameters of the application. The implementation of 
this approach in an Android environment is also 
outlined. 
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