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Response Time Analysis of Sporadic DAG Tasks
under Partitioned Scheduling

José Fonseca, Geoffrey Nelissen, Vincent Nélis and Luı́s Miguel Pinho
CISTER/INESC-TEC, ISEP-IPP, Porto, Portugal

Abstract—Several schedulability analyses have been proposed
for a variety of parallel task systems with real-time constraints.
However, these analyses are mostly restricted to global scheduling
policies. The problem with global scheduling is that it adds
uncertainty to the lower-level timing analysis which on multicore
systems are heavily context-dependent. As parallel tasks typically
exhibit intense communication and concurrency among their se-
quential computational units, this problem is further exacerbated.

This paper considers instead the schedulability of partitioned
parallel tasks. More precisely, we present a response time analysis
for sporadic DAG tasks atop multiprocessors under partitioned
fixed-priority scheduling. We assume the partitioning to be given.
We show that a partitioned DAG task can be modeled as a set of
self-suspending tasks. We then propose an algorithm to traverse a
DAG and characterize such worst-case scheduling scenario. With
minor modifications, any state-of-the-art technique for sporadic
self-suspending tasks can thus be used to derived the worst-
case response time of a partitioned DAG task. Experiments show
that the proposed approach significantly tightens the worst-case
response time of partitioned parallel tasks comparatively to the
state-of-the-art when the most accurate technique is chosen.

I. INTRODUCTION

The introduction of multi- and many-core architectures in

the embedded domain has set up the basic environment for

the deployment of modern applications, sharing both real-time

and high-performance strict requirements. In order to exploit

the high computation power provided by those architectures,

these applications are typically implemented using parallel

programming models (such as OpenMP). Such implementa-

tions, combined with the inherent complexity of the hardware,

challenge the traditional timing analysis techniques that have

been designed primarily in the embedded domain to analyze

simple software codes, which were meant to run on simple

and predictable hardware architectures.

Recently, the real-time community has started to actively

study the timing behavior of parallel tasks under well-

established scheduling algorithms. Several parallel task models

and schedulability tests have been proposed for multiprocessor

systems [1]–[3]. A common assumption among most of these

works is that the task system is globally scheduled. Although

global scheduling theoretically allows for an overall higher

performance, it adds uncertainty and variability to the lower-

level timing analysis, which then become overly pessimistic.

As noted in [4], on a multicore system there are strong

inter-dependencies between timing and schedulability analysis,

since the worst-case execution times are heavily dependent

on the amount of cross-core interference generated on shared

resources. This phenomenon is further exacerbated with par-

allel tasks due to the intense communication and concurrency

between their sequential computational units. Thus, it is our

belief that partitioned scheduling is the most promising ap-

proach to support parallel tasks in hard real-time systems.

Partitioned scheduling is a well-studied topic in real-time

distributed systems. Different response time analyses, priority

assignment techniques and mapping heuristics that allow for

task parallelism have been proposed in the past years [5]–

[8]. Although these works provide a strong understanding of

the worst-case behavior of parallel tasks, they are inevitably

less effective when applied to multicore systems due to the

absence of the network component and local release jitters.

Results concerning the schedulability of partitioned parallel

tasks in multiprocessors are very limited. In [9], the authors

presented a response time analysis for sporadic fork-join tasks

with arbitrary deadlines under fixed-priority scheduling. Un-

fortunately, the paper was found flawed. Therefore, to the best

of our knowledge only the results transposed from distributed

systems provide an answer to the problem of scheduling

partitioned parallel tasks atop multiprocessors.

This work. We consider a sporadic DAG model, where each

sequential computational unit of a DAG task is assigned to a

specific core. That is, multiple computational units can run

in parallel over the multiprocessor platform but they are not

allowed to migrate. We assume that such mapping is given.

Under fixed-priority partitioned scheduling, we present a novel

response time analysis for this task model. We observe that

a partitioned DAG task can be modeled as a set of self-

suspending tasks. Such self-suspending tasks depend on each

other due to the precedence constraints defined in the DAG. To

overcome this problem, we propose an algorithm to traverse

a DAG and characterize the worst-case scheduling scenario.

Moreover, we show how to transform existing response time

analyses for sporadic self-suspending task in uniprocessors to

analyze partitioned DAG tasks. In comparison to [6], the eval-

uation results show that our approach obtains substantial gains

in terms of computed worst-case response time (WCRT).

II. RELATED WORK

The problem of scheduling parallel tasks atop multipro-

cessor platforms has been receiving considerable attention

from the real-time community. However the majority of the

works have focused on global scheduling. Several parallel

task models have been proposed to cope with the different

forms of task parallelism generated by commonly used parallel

programming models. In the fork-join model [9], [10], a task

is represented as an interleaved sequence of sequential and

parallel segments. Typically, each parallel segment contains

the same number of subtasks, which in turn may not exceed

the number of cores in the platform. The synchronous parallel

model [1], [2], [11] extends the fork-join model by allowing



successive parallel segments and an unconstrained number of

subtasks within each segment. Nonetheless, synchronization is

still assumed at every segment’s boundary, so that no subtask

is ready for execution unless all the subtasks of the previous

segment have completed. A less restrictive parallel structure is

supported by the DAG model [3], [12]–[14], where each task

is instead characterized by a directed acyclic graph. Nodes

represent subtasks and edges define precedence constraints

between two nodes. In this sense, a subtask becomes ready

for execution as soon as all its precedences constraints are

satisfied. Recently, researchers have started addressing condi-

tional parallel tasks [15]–[17] by taking into consideration the

different flows of execution that a parallel task may experience.

Although partitioned scheduling of sequential tasks is a

well-studied topic (see [18] for a comprehensive survey),

results for parallel tasks are limited [5]–[9], [19]. In the context

of distributed systems, Tindell and Clark [5] introduced an

end-to-end schedulability analysis for a sequence of events

called transactions, which was later refined by Palencia et

al. [6]. Parallelism is expressed through these transactions.

Enhancements to this analysis were then proposed in [7]

by considering offsets and in [8] by considering precedence

relations. EDF systems have also been addressed [19]. Axer

et al. [9] derived a response time analysis for fork-join tasks

under fixed-priority scheduling. To the best of our knowledge

this is the only result available specifically for partitioned

parallel tasks in a multicore setting. Unfortunately, the analysis

in [9] was found flawed.

III. MODEL

We consider a set of n sporadic DAG tasks τ =
{τ1, τ2, . . . , τn} to be scheduled under a fixed-priority par-

titioned scheme on a multiprocessor platform composed of m
identical cores. We assume that τj has higher priority than

τi if j < i. Each sporadic DAG task τi is characterized by

a 3-tuple (Gi, Di, Ti) with the following interpretation. Task

τi is a recurrent process that releases a (potentially) infinite

sequence of “jobs”, with the first job released at any time

during the system execution and subsequent jobs released at

least Ti time units apart. Every job released by τi has to

complete its execution within Di time units from its release

— we assume Di ≤ Ti (constrained deadline system).

The structure of the jobs of τi is specified as a directed

acyclic graph (DAG) Gi = (Vi, Ei), where Vi is a set of

ni nodes and Ei is a set of directed edges connecting any

two nodes. Each node vi,ℓ ∈ Vi represents a computational

unit (hereinafter referred to as “subtask”) that must execute

sequentially. A subtask is characterized by a worst-case exe-

cution time (WCET) Ci,ℓ and the core to which it is assigned

Pi,ℓ. That is, vi,ℓ = (Ci,ℓ, Pi,ℓ). In this work, we assume

that each subtask can execute only on one core (subtask

partitioning), and the subtask-to-core mapping to be given.

Note that a mapping phase is essential to derive WCETs

under such parallel settings due to the presence of shared

resources and the magnitude of memory-alike transactions.

Although the mapping of parallel tasks is an open problem, for

schedulability purposes, it suffices to consider that the WCETs

of the subtasks have been computed accordingly.

Each directed edge (vi,a, vi,b) ∈ Ei denotes a direct

precedence constraint between subtasks vi,a and vi,b, meaning

that subtask vi,b cannot start executing before subtask vi,a
completes its execution. In this case, vi,b is called a “suc-

cessor” of vi,a, whereas vi,a is called a “predecessor” of vi,b.

A subtask is then said to be “ready-to-execute” (or simply

“ready”) if and only if all its predecessors have finished their

execution. For any subtask vi,ℓ, its set of predecessors assigned

to a particular core p is given by pred(vi,ℓ, p). Analogously,

succ(vi,ℓ, p) returns the set of successors assigned to core p.

Any two subtasks that are not predecessors/successors of each

other, either directly or transitively1, are called independent.

Independent subtasks may execute in parallel whenever they

are mapped to different cores. A node with no incoming or

outgoing edges is referred to as “source” or “sink”, respec-

tively. Multiple source and sink nodes are allowed.
We now present additional notations and terminologies.

Definition 1 (Path). For a given DAG task τi, a path λi,k =
(vi,a, . . . , vi,z) is a sequence of subtasks vi,ℓ ∈ Vi where (1)

∀vi,ℓ ∈ λi,k \ {vi,z}, ∃!vi,s ∈ λi,k such that (vi,s, vi,ℓ) ∈ Ei,

(2) ∀vi,ℓ ∈ λi,k \ {vi,a}, ∃!vi,r ∈ λi,k such that (vi,ℓ, vi,r) ∈
Ei, (3) vi,a is a source node, and (4) vi,z is a sink node.

Informally, a path is a sequence of subtasks where there

is a direct precedence constraint between any two adjacents

subtasks. We denote by ℓi the number of different paths λi,k
that can be extracted from task τi, i.e. k ∈ {1, 2, . . . , ℓi}. The

set proc(λi,k) contains all the distinct cores associated to a

path λi,k, whereas v
p
i,a and v

p
i,z represent the first and the last

subtasks in λi,k assigned to core p, respectively. We further

define the length of a path len(λi,k) as the sum of the WCET

of all its subtasks. Formally, len(λi,k) =
∑

∀vi,ℓ∈λi,k

Ci,ℓ.

Definition 2 (Length). The length len(τi) of a DAG task τi
is the maximum length among all the λi paths, i.e. len(τi) =
maxℓik=1(len(λi,k)).

Note that, under partitioned scheduling, len(τi) may not

represent the WCET of τi (also its WCRT in isolation) when

the number of cores available is infinite. Indeed, the degree

of parallelism is constrained by the subtask-to-core mapping

and thus two independent subtasks assigned to the same core

are forced to execute sequentially. Nevertheless, a typical

necessary condition for the feasibility of τi is len(τi) ≤ Di.

Partitioned scheduling allows us to define further feasibility

conditions. Hence, we introduce the notion of p-workload.

Definition 3 (p-Workload). The worst-case workload of a

DAG task τi on a core p, denoted by W
p
i , is the maximum

processing time that any instance of τi requires from p, i.e.

W
p
i =

∑ni

l=1{Ci,ℓ | Pi,ℓ = p}.

The following additional relations must then hold for the

feasibility of a DAG task system: W
p
i ≤ Di and

∑n

i=1
W

p
i

Ti
≤

1, ∀p ∈ [1,m].

Definition 4 (Workload). The worst-case workload (or simply

“workload”) Wi of a DAG task τi is the sum of the WCET of

1A transitive predecessor of vi,b is a subtask that must complete execution
before a direct predecessor of vi,b can begin execution.



Fig. 1: An example DAG task with twelve subtasks. Each label

indicates the WCET and the core affinity of the corresponding

node, respectively.

all its subtasks irrespective of their mapping to the cores, i.e.

Wi =
∑ni

l=1 Ci,ℓ.

Example. Fig. 1 illustrates our model for a DAG task τi
comprised of twelve subtasks (ni = 12) Vi = {v1, . . . , v12}
and twelve precedence constraints. For simplicity, hereinafter

we omit the subscript i on the subtasks of τi. The label next to

each node represents the 2-tuple vℓ = (Cℓ, Pℓ). For instance,

subtask v6 has a WCET of C6 = 4 and is assigned to core

P6 = 2. There is a total of ten paths (ℓi = 10) in the DAG. The

critical path length of τi equals to len(τi) = 26 and is found

on the path λi,k = (v2, v3, v7, v8, v9, v6, v11). Its workload is

Wi = 45, whereas the maximum p-workload resides on core

p = 3 with the value W 3
i = 16, which results from the subset

of subtasks {v5, v7, v11}. Note that this subset imposes no

sequencing of subtasks and thus is not necessarily a path on

the DAG. To clarify, both v5 and v7 are transitive predecessors

of v11, but v5 and v7 are independent of each other.

IV. WCRT ANALYSIS OF PARTITIONED DAG TASKS

In this section, we present a schedulability analysis for

sporadic DAG tasks with constrained deadlines scheduled

in a partitioned fashion with any fixed-priority scheduling

algorithm. The schedulability analysis is based on the notion

of per-path interference. Unlike its sequential counterpart,

partitioned DAG tasks may allocate subtasks to different

cores, potentially creating cross-core dependencies. Unless

each path is entirely allocated to a single core, the traditional

uniprocessor analysis for fixed-priority sequential tasks that

relies on the concept of critical instant [20] cannot be applied

on a per-path basis. Therefore, we introduce a novel WCRT

analysis to cope with the notion of partitioned DAG tasks.

Let τi be the DAG task under analysis. For simplicity and

clarity of presentation, we assume that all the higher priority

tasks are sequential. That is, τj
def
= (Cj , Pj , Dj , Tj , Jj), ∀j <

i; meaning τj has a release jitter Jj , and each of its jobs

can execute only on core Pj and for at most Cj time units.

In Section VI, we generalize the analysis for the case where

every task in the system is a DAG task.

We seek to derive an upper-bound on the WCRT of each

path λi,k of τi. To do so, we first introduce some definitions to

characterize the different worst-case interference contributions.

Definition 5 (Inter-Task Interference). The inter-task inter-

ference Ij(λi,k) imposed by a higher priority task τj on the

kthpath of task τi is the maximum cumulative time during

which any subtask vℓ ∈ λi,k is ready but cannot execute

because τj is executing on the same core.

Definition 6 (Self-Interference). The self-interference Ii(λi,k)
imposed by task τi on its own kthpath is the maximum

cumulative time during which any subtask vℓ ∈ λi,k is ready

to execute but cannot because access to the same core has

been granted to subtasks of τi that do not belong to λi,k.

Definitions 5 and 6 provide a characterization of the maxi-

mal overall interference exerted on a path λi,k of task τi during

the execution of any of its jobs. A response time equation for

λi,k can then be expressed as follows.

Theorem 1. The worst-case response time of a path λi,k of

a partitioned DAG task τi is given by

R(λi,k) = len(λi,k) + Ii(λi,k) +
∑

∀j<i

Ij(λi,k) (1)

Proof. Let ra be the release time of the first subtask in the

path λi,k. In the scheduling [ra, ra + R(λi,k)], the entire

path requires at most len(λi,k) time units of execution. The

total interference caused by self-interfering subtasks on λi,k is

Ii(λi,k) according to Definition 6. By Definition 5, the maxi-

mum interference exerted on λi,k by each higher priority task

(i.e., tasks τj such that j < i) is Ij(λi,k). The theorem follows

by noting that the set of lower priority tasks cannot influence

the schedule of τi in fixed-priority preemptive scheduling.

To obtain the WCRT of τi we apply Equation 1 to each of

its paths. The next corollary directly follows from Theorem 1.

Corollary 1. The worst-case response time of a DAG task τi
is given by

R(τi) = maxℓik=1R(λi,k). (2)

As a direct consequence of Corollary 1, DAG task τi is

deemed schedulable if R(τi) ≤ Di.

A. On the self-interference

Conceptually, the self-interference corresponds to the delay

on the completion time of task τi caused by the concurrency

among its own subtasks. Since the computing resources are

typically scarce, subtasks of τi that could execute in parallel

(i.e., they share no direct or transitive precedence constraint)

will eventually contend for core-access, thus increasing the

response time of τi itself. Under partitioned scheduling this

phenomenon is easier to observe as the subtask-to-core as-

signment dictates which independent subtasks may interfere

with each other.
On a particular path λi,k, Ii(λi,k) accounts for all the time

intervals where any subtask vℓ′ ∈ Vi \λi,k is executing, while

there is a ready subtask vℓ ∈ λi,k with pending work on the

same core Pℓ. Thus, if Pℓ′ 6∈ proc(λi,k), then vℓ′ can never

interfere with λi,k. Contrary to the inter-task interference,

only one instance of such self-interfering subtasks have to be

accounted in Ii(λi,k) because they belong to the same job

of τi
2. The absence of individual priorities assigned to the

2In a hard real-time constrained-deadline system, there is no interference
between different jobs of the same task if no deadlines are missed.



subtasks, together with variability in their execution times,

makes self-interference a problem mutual to all the paths of

τi. That is, if a path A interferes with a path B, then it is

also possible to construct a scenario where path B interferes

with path A. Furthermore, we observe that when a subtask

vℓ′ ∈ Vi \ λi,k shares no independent constraints with any

subtask vℓ ∈ λi,k, where Pℓ = Pℓ′ , vℓ′ cannot interfere with

λi,k. This allows us to derive a less conservative upper-bound

on Ii(λi,k) comparatively to the global approaches.

Lemma 1. For any partitioned constrained-deadline DAG task

τi partitioned on m cores, an upper-bound on the interfering

workload imposed by τi on its path λi,k is given by

Ii(λi,k) ≤
∑

∀p ∈ proc(λi,k)

W
p
i −len(λi,k)−

∑

∀vℓ ∈ Θi,k

Cℓ, (3)

where Θi,k is the set of subtasks of τi that cannot interfere

with λi,k and is defined as

Θi,k
def
=

⋃

∀p ∈ proc(λi,k)

pred(vpa, p) ∪ succ(v
p
z , p). (4)

Proof. By definition of a constrained-deadline task, two in-

stances of τi cannot interfere with each other when Di is met.

Therefore, the maximum interference that τi can impose on

its path λi,k is upper-bounded by the sum of the WCET of

all subtasks assigned to a core p ∈ proc(λi,k) excluding the

subtasks in λi,k, i.e. Ii(λi,k) ≤
∑

∀p ∈ proc(λi,k)

W
p
i − len(λi,k).

Any subtask vℓ that is a successor, either directly or transi-

tively, of vpz (i.e., the last subtask of λi,k assigned to core

p), where p = Pℓ, cannot interfere with λi,k because vℓ
becomes ready only after all subtasks in λi,k assigned to

Pℓ complete. Similarly, any subtask vℓ that is a predecessor,

either directly or transitively, of vpa (i.e., the first subtask

of λi,k assigned to core p), where p = Pℓ, can be safely

discarded because any delay caused by vℓ on the start of

vpa will be accounted in any path λi,k′ , where k′ 6= k and

{vℓ, v
p
a} ⊆ λi,k′ (from Equation 2). As given by Equation 4,

the set Θi,k contains all those non-interfering subtasks. Hence,

Ii(λi,k) ≤
∑

∀p ∈ proc(λi,k)
W

p
i −len(λi,k)−

∑
∀vℓ ∈ Θi,k

Cℓ,

which concludes the proof.

Henceforth, let self(λi,k) denote the set of self-interfering

subtasks with λi,k.

B. On the inter-task interference

The inter-task interference Ij(λi,k) accounts for all the time

intervals during which a subtask vℓ ∈ λi,k is ready but it

cannot execute since higher priority task τj is holding the

processor. Hence, τj may interfere with multiple subtasks in

λi,k. Despite τj being any task with higher priority than τi, if

Pj 6∈ proc(λi,k), then τj cannot interfere with λi,k. We denote

by hp(λi,k) the set of higher priority tasks that can effectively

interfere with λi,k.

Although in global multiprocessor scheduling one must

consider carry-in jobs as part of the individual interference

contributions [18], it is not the case for the fixed-priority

scheduling analysis of a partitioned DAG task when the higher

priority tasks are sequential and also partitioned as the problem

boils down to single core scheduling. In this context, Ij(λi,k)
is a function of the maximum number of interfering jobs

released by τj in a scheduling window [rpa, f
p
z ), where rpa is

the release time of subtask vpa ∈ λi,k and fpz is the completion

time of subtask vpz ∈ λi,k, as τj cannot interfere with subtasks

on a core different than Pj . No job released by τj at any

instant prior to rpa interferes with λi,k because otherwise there

would exist a valid scheduling window [rpa− t, f
p
z ) that would

increase the response time.

A simple solution to upper-bound Ij(λi,k) is to assume that

τj is allowed to release jobs synchronously with every subtask

vℓ ∈ λi,k such that Pj = Pℓ. Subsequent job releases are

then separated by Tj time units. A similar technique to this

independent worst-case scenario for each subtask in λi,k was

adopted in [6]. Clearly, it is not always possible for any τj
to interfere with all the workload of λi,k assigned to Pj , thus

this technique is often overly pessimistic.

Unfortunately, finding tight upper-bounds on the interfering

workload of the higher priority tasks is difficult. The challenge

comes from the fact that the workload of λi,k on a core p may

not be continuous, as some of the intermediate subtasks are

assigned to different cores. As a result, cross-core dependen-

cies on the execution flow of the path exist. The length of

these discontinuous intervals is not fixed since the release of

a transitive successor on p depends on the response time of

the intermediate subtasks mapped to other cores. Therefore,

Ij(λi,k) is not only a function of the response time of the

subtasks of path λi,k on core Pj = p, but it also has to account

for the gaps within the different parts of the workload, and for

the relation between the duration of the gaps and the response

time of subtasks on any core p 6= Pj .

To overcome this problem, we propose in the next section an

alternative technique to Equation 1, for computing an upper-

bound on the response time of any path λi,k, which is based

on the self-suspending tasks theory.

V. RESPONSE TIME OF A PATH λi,k

In this section, we explain how to compute an upper-bound

on the worst-case response time of each path λi,k of task τi. To

capture the worst-case interference suffered by a path on the

different cores to which it is mapped, we model a path as a set

of self-suspending tasks. More precisely, one self-suspending

task for each core. For simplicity, hereinafter, we assume that

any two consecutive subtasks assigned to the same core are

merged into a single subtask with a WCET equal to the sum

of their individual WCETs. Because this section refers to only

one specific path λi,k, for the sake of notation conciseness, we

let λ denote that path λi,k.

A. Intuition

In the literature, a self-suspending task is often described as

an interleaved sequence of execution and suspension regions,

where an execution region is a portion of a sequential task that

needs to be processed, and a suspension region corresponds

to a period of time during which the task voluntarily yields

the processor to perform a remote operation. The suspension

regions are assumed to have given bounded durations.

Regarding partitioned DAG tasks, we observe that the

existence of precedence constraints between subtasks assigned



Fig. 2: An example of partitioned schedule for the path of

Fig. 1 formed by the light nodes.

to different cores leads to a similar behavior. This is easier

to see on a path, since there is a direct precedence constraint

between every two consecutive subtasks. As depicted in Fig. 2,

consider an example of partitioned schedule for the path

highlighted in the DAG of Fig. 1. Although only subtask v4
is assigned to core p = 1, it cannot start executing before the

joint subtask v1 + v3 completes execution on core p = 2. In

turn, the execution of v4 delays the release of the last portion

of workload assigned to core p = 2 (i.e. subtask v7), creating

an intermediate interval of 3 time units where core p = 2 is

free to execute lower priority tasks. Such time intervals can

be seen as suspensions within the path on a certain core p.

In this sense, a path λ can be modeled as a set of sporadic

self-suspending tasks, one for each core reached by the path,

i.e. ∀p ∈ proc(λ). The trick is to treat the subtasks of λ
assigned to the current core under analysis as execution regions

and the response time of all the remaining subtasks as sus-

pension regions. The problem of computing the response time

of λ on a multicore platform becomes then equivalent to the

analysis of |proc(λ)| self-suspending tasks in a uniprocessor

system. However, unlike previous works, the duration of the

suspension regions are not known beforehand as they are in

fact computations to be executed on different cores.

Subtasks assigned to a core p′ 6= p and released before the

first execution region or after the last execution region of a

self-suspending task formed on core p must not be consider

as part of its suspension regions, since they do not contribute

to an increase on the interfering workload3. For instance, the

suspensions on core p = 1 in Fig. 2 do not influence the

response time of v4. Every other subtask assigned to a core

p′ 6= p is henceforth called ”remote subtask”.

B. The self-suspending task model

For ease of understanding, we start with a generic model

that closely relates to the ones considered in the literature.

Let τp denote the self-suspending task formed by a path

λ on core p. Each self-suspending task τp, ∀p ∈ proc(λ),
consists of q ≥ 1 execution regions and q − 1 suspen-

sion regions such that any two consecutive execution re-

gions are separated by a suspension region. Formally, τp
def
=

{(Cp
1 , S

p
1 , C

p
2 , . . . , S

p
q−1, C

p
q ), S

p,ub}, where C
p
h is the WCET

of the hth execution region of τp, while an upper-bound on

the duration of the hth suspension region of τp is given by S
p
h.

The parameter Sp,ub denotes an upper-bound on the overall

suspension time.

3Such suspensions are relevant only when the self-suspending task is part
of the interfering workload, which is not the case here.

Note that Sp,ub is not necessarily equal to the maximum

cumulative suspension time. That is, Sp,ub ≤
q−1∑
h=1

S
p
h. While it

is easy to see that each C
p
h corresponds to the WCET of the

hth subtask of λ assigned to core p, the values of each S
p
h and

Sp,ub cannot be directly derived from λ and must therefore be

computed. We show next how these values can be expressed

as functions of the WCRT of the remote subtasks of τp.
Additionally, we represent by E

p
h the hth execution region

of τp, ∀h ∈ [1, q]. A sequential task is a self-suspending

task with no suspension regions. In this particular case, τp

is represented as: τp
def
= {(Cp

1 ), 0}.

C. Methodology

The purpose of the above model is to not tie the analysis of

a partitioned DAG task to a particular work on self-suspending

tasks. Thus, any existing uniprocessor timing analysis for

fixed-priority sporadic self-suspending tasks can be used to

derive the WCRT of a self-suspending task τp. As the WCRT

of each τp encompasses the WCRT of all the subtasks assigned

to core p, the WCRT of a path λ can be expressed by its self-

suspending tasks. Consequently, Eq. 1 is rewritten as follows.

Theorem 2. The WCRT of any path λ is upper-bounded by

R(λ) ≤
∑

∀p∈proc(λ)

R(τp)− Sp,ub (5)

Proof. Each self-suspending task τp models the worst-case

request of the path λ on core p. By definition, R(τp) upper-

bounds the cumulative response time of its execution and

suspension regions. Thus R(τp) also upper-bounds the sum of

the response time of the subtasks of λ assigned to core p. By

summing the WCRT of each τp, ∀p ∈ proc(λ), we therefore

upper-bound the sum of the response time of all the subtasks

in λ. Furthermore, because by definition of τp the suspension

time of a task τp corresponds to the processing time of λ on

other cores than p, the suspension time Sp,ub should not be

considered as part of R(τp) as it is already accounted by the

other self-suspending tasks τp
′

, where p′ 6= p.

An important aspect to consider is that the self-suspending

tasks depend on each other through the suspension regions.

Bounds on the suspension regions are necessary to analyze the

WCRT of the execution regions, but the suspension regions are

indeed execution regions on other cores. In the following we

explain how to break this circular dependency by capturing

the worst-case behavior of the remote subtasks of τp.
A well-known result from the sporadic self-suspending tasks

theory is that larger suspensions cannot lead to a decrease in

the interference suffered by the task under analysis. Therefore,

we are interested in finding the WCRT of all the remote

subtasks of τp as a way to characterize the worst-case request

of τp. We first present how Sp,ub can be computed.
Whenever multiple remote subtasks of τp are assigned to

the same core p′, assuming an independent WCRT for each

one of them is overly pessimistic. In fact, they form an inner

self-suspending task within τp. Let τss denote that inner self-

suspending task. Then, the WCRT of all such remote subtasks

on p′ together is given by R(τss)− Sub
ss .



Fig. 3: Overview of the path λ highlighted in Fig. 1 as a set

of self-suspending tasks.

A special case happens when there is only one remote

subtask of τp allocated to core Pl 6= p. Let vℓ be that subtask.

If no other remote subtask of τp is assigned to Pl, then the

worst-case duration of the suspension region generated by vℓ
is given by the worst-case response time R(vℓ) of vℓ. Subtask

vℓ can then be considered an independent sequential task for

which the critical instant in uniprocessor holds.

Let R(τoss) denote the upper-bound on the WCRT of the re-

mote subtasks of τp assigned to a core o. Then, the maximum

overall suspension time experienced by τp is

S
p,ub =

∑

∀o∈proc(λ),o 6=p

R(τo
ss)− S

o,ub
ss . (6)

Although parameter Sp,ub provides no information about

the relation between the different suspension regions, it can

seamlessly serve as input to any self-suspending analysis

that disregard the placement and duration of each suspension

region specifically.

We now present how to compute an upper-bound on S
p
h,

∀h ∈ [1, q−1]. A simple solution is to compute an independent

WCRT for each of the remote subtasks of τp and sum the

resulting values of those that belong to the same suspension

region. Thus, if the remote subtasks vℓ and vℓ+1 separate the

execution regions E
p
1 and E

p
2 , then S

p
1 = R(vℓ) + R(vℓ+1)

(similarly to [6]). The pessimism can be reduced by consid-

ering the fact that if a inner self-suspending task τss resides

inside a single suspension region of τp, the cumulative WCRT

of the remote subtasks of τp on p′ that correspond to execution

regions in τss can be replaced by R(τss)− Sub
ss . Assume that

only remote subtask vℓ separates such remote subtasks and

p 6= Pℓ 6= p′. Accordingly, S
p
h = R(τss)− Sub

ss +R(vℓ).
Example. Fig. 3 depicts how each core perceives the path

λ of task τi highlighted in Fig. 1. We describe through this

example how to characterize each self-suspending task τp for

that particular path. On core p = 3, all the remote subtasks

appear before and after the execution region E3
1 constituted

of v5, so τ3 is a sequential task with C3
1 = C5. On core

p = 2, τ2 has q = 2 execution regions with C2
1 = C3 and

C2
2 = C6 and a single suspension region comprised of two

remote subtasks. The maximum duration of the suspension

region is given by the independent upper-bounds on v4 and v5,

i.e. S2
1 = R(v4) + R(v5). Since there is only one suspension

region, S2,ub = S2
1 . Finally, τ1 has q = 3 execution regions

with C1
1 = C1, C1

2 = C4 and C1
3 = C10, and two suspension

regions for which S1
1 = R(v3) and S1

2 = R(v5)+R(v6). Note,

however, that suspending subtasks v3 and v6 form in fact τ2.

Thus, S1,ub = R(τ2)− S2,ub +R(v5).
Given the above relations, it becomes clear that to capture

the worst-case request of a self-suspending task τp many inner

self-suspending tasks must be characterized and analyzed. This

implies that an effective order of computations in necessary

to drive the whole algorithm.

D. Unfolding the path

To overcome the dependency problem, we propose an algo-

rithm that recursively divides a path into smaller ones, creating

a tree of subpaths which represent self-suspending tasks. The

tree reflects the hierarchy of dependencies. When a leaf is

reached, the corresponding task has no suspension regions

(i.e., it is a sequential task), thus its WCRT does not depend on

anything else other than the interfering workload on that core

and can be computed immediately. The computed values are

then back propagated to the self-suspending tasks on the upper

levels, so that their suspension time is no longer unknown.

After setting the appropriate bounds on the suspension regions,

the WCRT of the execution regions of the next self-suspending

task is derived. The process continues level-by-level until the

root is revisited. At this point, the WCRT of the original path

can be computed thanks to Theorem 2.

Algorithm 1 shows the pseudo-code of the recursive algo-

rithm for unfolding any path λ and computing the required

WCRTs. It takes as input a path λss, and both the set of higher

priority tasks hp(λ) and the set of self-interfering subtasks

self(λ) regarding the path λ. Initially, λss = λ. The algorithm

starts by finding the number of subtasks in the path λss
(line 2). If the path spawns over more than one core (lines 10-

30), there are self-suspending tasks with suspension regions

to be identified. Here, we consider two cases.

First (lines 11-16), if both the first and the last subtask

(v1st and vlast respectively) of λss reside on the same core

(let p be that core), then λss constitutes one of the self-

suspending tasks4 on core p. However, its response time

cannot be computed straight away because the bounds on

its suspension regions are not known yet. Thus, we exclude

v1st and vlast from λss and invoke the algorithm for the

resulting subpath. The second case deals with paths that start

and end on different cores (lines 17-29). In this situation, we

just split the path λss in two subpaths to be analyzed: i) from

the first subtask of λss on the same core as vlast to vlast

(lines 18-26), and ii) λss except vlast (lines 27-28).

The recursion on a path stops when there is only one subtask

in λss. The WCRT of a single subtask can then be computed

by adding the self-interfering workload to the traditional

equation for fixed-priority sequential tasks in uniprocessors.

That is, the WCRT R(λss) when λss contains only one subtask

is given by Eq. 7 and reflected in line 8 of Algorithm 1.

R(λss) = C1st +
∑

∀τj∈hp(λss)

⌈
R(λss) + Jj

Tj

⌉ × Cj +
∑

∀vℓ∈self(λss)

Cℓ

(7)

4Note that a self-suspending task τp may be decomposed into multiple
inner self-suspending tasks, some of which constituting remote subtasks for

a self-suspending task τp
′

where p 6= p′.



As soon as all the subpaths of a self-suspending task τss on

p have been analyzed, the bound on the total duration of its

suspensions Sub
ss is given by the sum of the WCRT of its

inner self-suspending tasks that are not on p (as discussed in

Section V-C). All of these values have already been computed

and available in the matrix RTs returned by Algorithm 1.

Every Css,h is assigned with the WCET of the hth subtask in

λss on p. Apart from the overall bound on the suspension time,

an individual upper-bound Sss,h on each suspension region

is also required. While parsing the path λss, if the WCRT

of a remote subtask is missing in RTs, we apply Eq. 7 to

that particular subtask. This allows us to compose the values

Sss,h according to the relations of the remote subtasks with

each suspension region. All such operations are performed

by the function setSuspendingTask in line 14. With all the

parameters in τss defined, the WCRT of the self-suspending

task is compute at line 15. Details about the timing analysis

are provided in the subsection below. Finally, the procedure is

repeated until all the self-suspending tasks are analyzed.

Applying Algorithm 1 to a path λ guarantees that the WCRT

of every self-suspending task τp defined from λ has been

correctly computed.

E. WCRT of a self-suspending task

We now show how three different state-of-the-art response

time analyses [21], [22] for sporadic self-suspending tasks

can be extended to cope with both the dependent suspen-

sion regions and the self-interfering workload discussed in

the previous sections. The worst-case release pattern for the

higher priority tasks follows directly from the results of these

analyses. Without loss of generality, we consider the WCRT of

a self-suspending task τp. We start by proving the worst-case

release pattern for the self-interfering subtasks in self(τp).

Lemma 2. The contribution of self(τp) to the WCRT of

a self-suspending task τp is upper-bounded by releasing a

single instance of each self-interfering subtask in self(τp)
synchronously with any one execution region E

p
h of τp.

Proof. Following Lemma 1, a self-interfering subtask vℓ ∈
self(τp) can delay the execution of a self-suspending task τp

at most once for Cℓ time units. Since all subtasks in τi have

the same priority, they cannot preempt each other. Thus, vℓ
cannot execute when an execution region of τp is active. The

maximum interference imposed by self(τp) on τp happens

then when each vℓ ∈ self(τp) is released synchronously

with an execution region E
p
h. Although such self-interference

is upper-bounded by
∑

vℓ∈self(τp)

Cℓ as a whole, the number

of higher priority interfering jobs is influenced by the exact

placement of each self-interfering subtask, as assuming that

vℓ interferes with the execution region E
p
h is equivalent to

increase C
p
h by Cℓ time units. In general, enlarging different

execution regions leads to different response times. Hence,

allowing each of these self-interfering subtasks to be released

with any one execution region of τp captures the worst-case

contribution of self(τp) to R(τp).

Suspension-oblivious analyses [21] treat suspension regions

as part of the computations to be processed, making suspen-

Algorithm 1: Computation of the WCRT of each self-

suspending task in the path λ

1 Function PathAnalysis (λss, hp(λ), self(λ)) is
Inputs : λss - (sub) path under analysis

hp(λ) - set of higher priority tasks w.r.t. path λ
self(λ) - set of self-interfering nodes w.r.t path λ

Output: RTs - matrix ni × ni that stores the computed response
time from a subtask va to another subtask vb

2 size← |λss|;
3 v1st ← first subtask in λss;

4 vlast ← last subtask in λss;

5 hp(λss)←
⋃

∀τj∈hp(λ)

{τj | Pj = P 1st};

6 self(λss)←
⋃

∀vℓ∈self(λ)

{vℓ | : Pℓ = P 1st};

7 if size = 1 then
8 R(λss) =

C1st +
∑

∀τj∈hp(λss)

⌈
R(λss)+Jj

Tj
⌉×Cj +

∑
∀vℓ∈self(λss)

Cℓ;

9 RTs(v1st, vlast)← R(λss);
10 else

11 if P 1st = P last then

12 λsub
ss ← λss \ {v1st, vlast};

13 PathAnalysis(λsub
ss , hp(λ), self(λ));

14 τss ← setSuspendingTask();
15 R(τss)← ssRT (τss, hp(λss), self(λss));
16 RTs(vfirst, vlast)← R(τss);
17 else

18 λsub
ss ← λss;

19 foreach vℓ ∈ λss do

20 if Pℓ 6= P last then

21 λsub
ss ← λsub

ss \ {vℓ};
22 else
23 break;
24 end
25 end

26 PathAnalysis(λsub
ss , hp(λ), self(λ));

27 λsub
ss ← λss \ {vlast};

28 PathAnalysis(λsub
ss , hp(λ), self(λ));

29 end
30 end
31 return RTs;
32 end

sions subject to the same sources of interference than the

execution regions. In this sense, the entire self-suspending task

is model as a single sequential task. Consequently, an upper-

bound on the WCRT of τp is found when the overall sus-

pension time is the largest (i.e. Sp,ub) and the self-interfering

subtasks are released synchronously with E
p
1 . That is,

R(τp) =

q∑

h=1

C
p
h
+Sp,ub+

∑

∀τj∈hp(τp)

⌈
R(τp) + Jj

Tj

⌉×Cj+
∑

∀vℓ∈self(τp)

Cℓ

(8)

The simplest suspension-aware analysis [21] focus on

upper-bounding the WCRT of each execution region indepen-

dently. That is, the problem is reduced to a set of smaller

sequential tasks by assuming that all the interfering workload

releases jobs synchronously with each and every execution

region. In this case, the self-interfering subtasks must be

accounted once in each execution region E
p
h. Moreover, the

suspension time has no influence on the interference generated.

By using Eq. 7 to compute each R(Ep
h), the WCRT of τp is

given by

R(τp) = S
p,ub +

q∑

h=1

R(Ep

h) (9)



Both of the aforementioned tests run in pseudo-polynomial

time but are substantially pessimistic. The pessimism is further

aggravated because multiple self-suspending tasks need to be

analyzed to bound the suspensions regions of τp. Nelissen

et al. [22] proposed a MILP formulation that finds tight

upper-bounds (the best known) on the WCRT of a sporadic

self-suspending task with multiple suspension regions. The

formulation exploits the duration of the suspension regions

to accurately upper-bound the number of jobs released by

each higher priority task in each execution region. Therefore,

a weak characterization of the relation between the different

suspension regions, and also their own bounds, compromises

the quality of the solution. As it is implicit in the relation

Sp,ub ≤
q−1∑
h=1

S
p
h, some upper-bounds on the duration of the

suspension regions of τp are over-estimated. Hence we discuss

the limitations of our generic model and propose a more robust

one that adheres to such formulation.

Consider the following example: τp has two suspension

regions, each one of them comprised of a single remote subtask

assigned to the same core; let vℓ and vℓ+1 represent those

remote subtasks, while τss denotes the inner self-suspending

task formed by them. If R(τss)−S
ub
ss < R(vℓ)+R(vℓ+1), then

the first suspension region plus the second suspension region

cannot exceed R(τss)−Sub
ss . Consequently, one must find the

trade off that satisfies R(τss)−Sub
ss , while still representing a

worst-case suspension pattern for τp.

To address this issue, let S
p
h denote instead the hth sus-

pension region of τp and be characterized by the 2-tuple

(Sp,lb
h , S

p,ub
h ), ∀h ∈ [1, q− 1]. The parameter S

p,lb
h is a lower-

bound on the duration of the suspension region S
p
h, whereas

S
p,ub
h is an upper-bound. We now prove the values for the

individual lower-bounds.

Lemma 3. Let V
p
h denote the set of remote subtasks within

E
p
h and E

p
h+1 of τp. A lower-bound on the suspension region

S
p
h is given by S

p,lb
h =

∑
vℓ∈V

p

h
Cℓ.

Proof. The WCRT of τp is found when the response time

of its remote subtasks is maximized. We must therefore

prove that the WCRT of each inner self-suspending tasks τoss
(∀o ∈ proc(λ), o 6= p) within τp cannot be met if a remote

subtask vℓ ∈ V
p
h executes for less than Cℓ time units. The

proof is by contradiction. Consider a release pattern σ for

any inner self-suspending task τoss that maximizes R(τoss) but

where R(Eo
ss,h) < Co

ss,h. The execution region Eo
ssh

of τoss
corresponds to a remote subtask vℓ ∈ V

p
h . If Eo

ss,h executes for

its WCET Co
ss,h = Cℓ, an equivalent release pattern σ′ can be

obtained by delaying each subsequent interfering job release

by Co
ss,h − R(Eo

ss,h) time units. This means that the entire

window [R(Eo
ss,h), R(τ

o
ss)] in σ is repeated after the initial

Co
ss,h time units in σ′. Clearly, R(τoss) is not the worst-case

response time of τoss which invalidates the hypothesis.

If an inner self-suspending task τoss is comprised of a single

remote subtask vℓ ∈ V
p
h (i.e., τoss is sequential), than the

value of S
p,lb
h can be improved by replacing the contribution

of that particular remote subtask with R(vℓ) instead of Cℓ.

Irrespectively of the type of the inner self-suspending tasks, the

upper-bound S
p,ub
h is computed as explained in Section V-C.

Based on these individual bounds on the suspension regions,

the following property holds.

Property 1. Let R(τoss,h) denote the total WCRT of the remote

subtasks within E
p
h and E

p
h+2 of τp assigned to core o,

∀o ∈ proc(λ), o 6= p. Admitting any solution, such that (1)

S
p
h+S

p
h+1 ≤

∑
∀o∈proc(λ),o 6=p

R(τoss,h), (2) S
p,lb
h ≤ S

p
h ≤ S

p,ub
h ,

and (3) S
p,lb
h+1 ≤ Sh+1 ≤ S

p,ub
h+1 , upper-bounds the worst-case

suspension behavior of the suspension regions S
p
h and S

p
h+1

of τp.

The reasoning behind Property 1 is that, in the general

case, no technique exists yet to deem how the suspension

time should be distributed between the suspension regions

so that R(τp) is maximized. Hence, all the possible com-

binations should be considered. Property 1 must be applied

to every sequence of suspensions regions in which an inner

self-suspending task (not sequential) of τp can be identified.

We denote by ψp the set of constraints that restrict the

duration of multiple suspension regions of τp together (i.e.,

constraints as S
p
h + S

p
h+1 ≤

∑
∀o∈proc(λ),o 6=p

R(τoss,h)). Note

that an optimization problem is clearly adequate to address the

complexity exposed by Lemma 2 and Property 1. Therefore,

we describe how to integrate them in the formulation of [22].

In the extended MILP formulation, the duration of each

suspension region in τp is a real variable denoted Sh, while

Yℓ,h is a binary variable that indicates whether (Yℓ,h = 1) or

not (Yℓ,h = 0) a self-interfering subtask vℓ ∈ self(τp) is re-

leased synchronously with the execution region E
p
h. Lemma 2

is formalized by Constraint 10

∀vℓ ∈ self(τp) :

q∑

h=1

Yℓ,h ≤ 1, (10)

which can then be integrated in the WCRT computation of

each execution region as in Constraint 11, where NIj,h is the

number of interfering jobs of τj in E
p
h.

∀Ep
h ∈ τp :

R(Ep

h) = C
p

h+
∑

τj∈hp(τp)

NIj,h×Cj +
∑

vℓ∈self(τp)

Yℓ,h×Cℓ. (11)

That is, each self-interfering subtask interferes with exactly

one execution region for its WCET. The individual bounds

on the duration of each suspension region are expressed by

Constraint 12.

∀h ∈ [1, q − 1] : S
p,lb

h ≤ Sh ≤ S
p,ub

h (12)

Constraint 13 enforces that the sum of the suspension re-

gions cannot exceed the upper-bound on the overall suspension

time. For a more accurate analysis, Constraint 13 should be

replaced with all the global constraints defined in ψp.

q−1∑

h=1

Sh ≤ S
p,ub

(13)



VI. HIGHER PRIORITY DAG TASKS

In this section, we extend our analysis to cope with multiple

partitioned DAG tasks interfering with each other. As the

WCRT of a DAG task τi is ultimately derived through a

collection of self-suspending tasks τ
p
i , we restrict our attention

to the worst-case interference impose by the higher priority

tasks on any τ
p
i . Let V

p
j denote the set of subtasks of the

higher priority DAG task τj assigned to core p. We prove

below that each τj can safely be replaced in the response time

analysis of τ
p
i by a set V

p′

j of n
p
j sequential tasks, where

n
p
j = |V p

j |.

Let a sequential task τj,o ∈ V
p′

j correspond to the subtask

vo ∈ V
p
j . The task τj, o upper-bounds the worst-case request

of the subtask vo, ∀o ∈ [1, npj ], and is defined as τj,o
def
=

〈Cj,o, Dj,o, Tj,o, Jj,o〉. The worst-case execution time Cj,o of

τj,o is given by the WCET of vo ∈ V
p
j , that is, Cj,o

def
=

Co. Both the deadline Dj,o and the period Tj,o are inherited

from τj . The parameter Jj,o denotes the release jitter of τj,o
and is defined as the difference between the WCRT of τj

and the WCET of vo ∈ V
p
j . Formally, Jj,o

def
= R(τj) − Co.

This transformation eliminates the dependencies regarding the

interfering workload of τj towards τ
p
i by assuming that each

subtask of τj assigned to core p is released independently.

A similar method was already proposed in [6]. Note that the

method in [6] could be used here too. The results would in

fact be more precise, but at the cost of additional computation

complexity.

Theorem 3. The interference exerted by a DAG task τj ∈
hp(τi) on a self-suspending task τ

p
i is upper-bounded by the

sum of the interferences imposed on τ
p
i by each sequential task

τj,o ∈ V
p′

j , where τj,o
def
= 〈Cj,o, Dj,o, Tj,o, Jj,o〉 as defined

above.

Proof. The interference exerted by τj on τ
p
i is equal to the sum

of the interference caused by each of the subtasks vo ∈ V
p
j .

We must therefore prove that the interference caused by each

task τj,o ∈ V
p′

j upper-bounds the interference generated by

each vo ∈ V
p
j . The proof is by contradiction. Let us assume

that vo causes more interference than τj,o. There might be

only two reasons for this to be true: (i) a job released by vo
creates more interference than a job released by τj,o , or (ii)

vo releases more jobs than τj,o in a given time window.

Since τj,o and vo are both non-self-suspending and the

WCET of τj,o is equal to the WCET of vo, (i) cannot be true.

As the minimum inter-arrival time of vo is identical to that

of its corresponding sequential task in V
p′

j , only their jitters

may cause (ii) to be true. Now, let us compute the maximum

jitter that can be experienced by the subtask vo. Let aj denote

the arrival time of any job of τj . Since R(τj) assumes that

each subtask of τj executes for its WCET, it means that a

subtask vo of τj cannot start executing later than R(τj)−Co

after aj (otherwise it would complete later than aj + R(τj)
and R(τj) would not be the WCRT of τj). The release jitter

of vo is therefore upper-bounded by Jo
def
= R(τj) − Co. This

contradicts (ii) and hence proves the lemma.

VII. EXPERIMENTS

In this section, we describe experiments conducted through

randomly generated task sets to evaluate (i) the performance

of the different tests proposed in Section V, and (ii) the gain

in terms of WCRT in comparison with an existing analysis for

partitioned parallel tasks derived in the context of distributed

system. Although most of the available results for distributed

systems have been implemented in the MAST tool chain [23],

only the holistic analysis originally developed by Tindell and

Clark [5] and refined by Palencia et al. [6] has support for

multi-path constructs in the form of fork-join tasks (not general

DAGs). Thus, we restrict our attention to task sets comprised

of n− 1 sequential tasks and 1 fork-join task, where the fork-

join task is the task under analysis.

All the task sets were generated using the randfixedsum

algorithm [24], allowing us to choose a constant total task

set utilization for a given number of tasks and bounded per-

task utilization. The total utilization was set to 50% of the

platform capacity. For the sequential tasks, the per-task uti-

lization ranged from [0.05, 0.70], while periods were uniformly

distributed over [100, 1000]. The task execution requirements

were calculated from the respective periods and utilizations.

For the fork-join task, it is workload was set to half of

the maximum period (i.e., 500), whereas the WCET of each

subtask was uniformly distributed over [1, 100]. By default, the

fork-join task had 2 parallel segments with 4 subtasks within

each segment. All the mapping decisions were completely

random. For this reason, we study the computed WCRT and

not the schedulability of the task. Thus the period of the fork-

join task was arbitrarily large. We generated 100 task sets

per combination of parameters, while ensuring that all the

sequential tasks were always schedulable.

For the first set of experiments, we fixed the number of

cores to m = 4 and the number of tasks to n = 12, while

varying the number of parallel segments from 1 to 4 and the

number of subtasks within a parallel segment from 2 to 8.

Fig. 4a–b show the average gain (w.r.t. the WCRT) attained

by our analysis comparatively to the holistic analysis, when

using the three different tests for self-suspending tasks. These

tests are referred to as Joint, Split and MILP, respectively to

the order they were presented in Section V-E. MILP is the

only test that outperforms entirely the holistic analysis, with

average gains within 20 to 50%. Interestingly, Split exhibits

a considerable gain when the number of parallel segments

is minimized but ends up in deficit. This behavior can be

justified by a higher number of self-interfering subtasks, since

they are accounted once in each execution region. Joint has a

drastic performance degradation when the varying parameters

are increased because the number of self-suspending tasks

observed in the paths grows significantly.

We then study the importance of light and heavy tasks to the

inter-task interference. Hence, the second set of experiments

had the number of parallel segments fixed to 2 and the number

of subtasks in a parallel segment fixed to 4, while we varied

the number of tasks in the range [5, 20] and the number of

cores in the range [4, 10]. The results are depicted in Fig. 4c–

d. Both MILP and Split outperform the holistic analysis with

average gains close to 30% and 10%, respectively. The holistic



(a) n = 12 and m = 4. (b) n = 12 and m = 4. (c) 2 parallel segments with 4 subtasks
each.

(d) 2 parallel segments with 4 subtasks
each.

Fig. 4: Average WCRT gain (a)–(d) found by our approach under various system config.

analysis was derived for arbitrary deadline systems, thus

assumes that some subtasks may interfere with themselves.

An additional source of pessimism is the individual worst-

case scenarios assumed for the subtasks. As the utilization of

the interfering tasks increase, Split becomes more competitive

mainly because the upper-bounds on suspension time tend

to also increase. Inversely, Joint performs very poorly with

average losses within 2 to 30% as more workload is assumed

to interfere with the suspensions. Although not reported here,

Joint becomes a reasonable alternative solution to the MILP

when the ratio between the workload of the parallel task and

the periods of the interfering tasks is smaller.

VIII. CONCLUSIONS

Although parallel tasks have received recently considerable

attention from the real-time community, most of the available

results focus on multiprocessor global scheduling. Instead, in

this paper, we studied parallel tasks under partitioned schedul-

ing as a way to minimize the negative effects of such highly

parallel models on the lower-level context-dependent timing

analysis. We proposed a response time analysis for sporadic

DAG tasks to be fixed-priority scheduled on a multicore

platform in a partitioned fashion. As the analysis is based

on the self-suspending tasks theory, we derived a method to

model and characterize the worst-case scheduling scenario of

a partitioned DAG task as a set of self-suspending tasks. Fur-

thermore, we showed how to transform existing response time

analysis for sporadic self-suspending tasks in uniprocessors to

analyze partitioned DAG tasks; both simple and more complex

techniques. Experiments among randomly generated task sets

show that our approach obtains a significant gain in terms

of computed WCRT comparatively to the state-of-the-art. As

future work, we will consider the problem of how to map

parallel tasks to cores in order to improve schedulability.
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