

Realisability of Global Models of Interaction

Conference Paper

CISTER-TR-231207

Maurice H. ter Beek

Rolf Hennicker

José Proença

Conference Paper CISTER-TR-231207 Realisability of Global Models of Interaction

© CISTER Research Center
www.cister-labs.pt

1

Realisability of Global Models of Interaction

Maurice H. ter Beek, Rolf Hennicker, José Proença

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

We consider global models of communicating agents specified as transition systems labelled by interactions in

which multiple senders and receivers can participate. A realisation of such a model is a set of local transition

systems 14one per agent 14which are executed concurrently using synchronous communication. Our core

challenge is how to check whether a global model is realisable and, if it is, how to synthesise a realisation. We

identify and compare two variants to realise global interaction models, both relying on bisimulation equivalence.

Then we investigate, for both variants, realisability conditions to be checked on global models. We propose a
synthesis method for the construction of realisations by grouping locally indistinguishable states. The paper is

accompanied by a tool that implements realisability checks and synthesises realisations.

Realisability of Global Models of Interaction

Maurice H. ter Beek1 , Rolf Hennicker2, and José Proença3(�)

1 ISTI–CNR, Pisa, Italy, maurice.terbeek@isti.cnr.it
2 Ludwig-Maximilians-Universität München, Germany, hennicker@ifi.lmu.de

3 CISTER & University of Porto, Portugal, jose.proenca@fc.up.pt

Abstract. We consider global models of communicating agents specified
as transition systems labelled by interactions in which multiple senders
and receivers can participate. A realisation of such a model is a set of lo-
cal transition systems—one per agent—which are executed concurrently
using synchronous communication. Our core challenge is how to check
whether a global model is realisable and, if it is, how to synthesise a reali-
sation. We identify and compare two variants to realise global interaction
models, both relying on bisimulation equivalence. Then we investigate,
for both variants, realisability conditions to be checked on global models.
We propose a synthesis method for the construction of realisations by
grouping locally indistinguishable states. The paper is accompanied by
a tool that implements realisability checks and synthesises realisations.

1 Introduction

We deal with the development of systems of collaborating computing entities
which interact by message exchange, like communicating component systems,
multi-agent systems (MAS), collective adaptive systems (CAS), groupware sys-
tems, multi-party sessions, etc. Such systems are often presented by a set of
components whose local behaviour is formally described by labelled transition
systems (LTS) or process expressions. Their interaction behaviour is then cap-
tured by (synchronous or asynchronous) parallel composition of the local models.

Before designing such local models it is, however, safer to first model the in-
teraction behaviour of the components from a global perspective. This led to the
investigation of various forms of global models, like global (session) types [7,12,
22,23], global choreographies [34] and global languages [2]; also message sequence
charts [19] and UML interaction diagrams [14,29] serve this purpose.

An important question is, of course, whether a global model M is indeed
realisable by a system S = (Mi)i∈I of local component models Mi (where
I ranges over a set of component names). Possible solutions are investigated
for global languages in [2] and, for global session types, in various papers (cf.,
e.g., [7, 12, 22, 23]) by imposing syntactic restrictions on global types. These
approaches use projections to generate local models from global ones.

A different idea is to provide, instead of a global model, a requirements
specification Sp describing properties of the desired global interaction behaviour
by means of some logical formalism like in [8,20,21]. Then local models Mi are
constructed from scratch and their (synchronous) composition ⊗(Mi)i∈I must
be proven to satisfy the requirements of Sp.

http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-0971-8919

System Signature

Σ = (I, M) and

interactions Γ

Global Spec.

Sp = (Σ, Γ, Ax)

Global Model

M

Interaction-based

System

S = (M
r/p

i)i∈I

M |= Ax

⊗
r/p

Γ
(M

r/p

i
)i∈I ∼ M

Specify
requirements

Pick localisation style (rich/poor)

Realise
Construct a
global model

such

that

such

that

Fig. 1: Workflow for the development of interaction-based systems

From Requirements to Realisations We combine the advantages of logical
specifications and global models for interaction-based systems by using both in
a stepwise manner. Our development method is summarised in Fig. 1.

We start by providing a (system) signature Σ = (I, M), which determines
finite sets I of component names and M of message names. Σ induces the set
Γ (Σ) of (global) Σ-interactions of the form out → in : m where out and in are
disjoint sets of component names (such that out∪in ̸= ∅) and m ∈ M . The multi-
interaction out → in : m expresses that all components of out send message m to all
components of in such that all send and receive events occur simultaneously. Since
usually not all interactions in Γ (Σ) are desired in an application context (one
may wish, e.g., to consider only binary or multicast communication) we consider
pairs (Σ, Γ) where Γ ⊆ Γ (Σ) is a user-defined interaction set which restricts the
set of all Σ-interactions to admissible ones. For logical specifications of global
interaction behaviour, we propose an action-based logic following a dynamic-
logic style which has been successfully applied for specifying ensembles (cf.,
e.g., [21]). The logic uses the usual diamond and box modalities of dynamic logic
(⟨α⟩ ϕ and [α] ϕ, resp.) which range over (structured) interactions α built over Γ
by sequential composition, choice and iteration. A global interaction-behaviour
specification is then a triple Sp = (Σ, Γ, Ax), where Ax is a set of formulas, called
axioms, expressing requirements for the global interaction behaviour (e.g., safety
and liveness properties and/or desired and forbidden interaction scenarios).

Given a (global) requirements specification Sp = (Σ, Γ, Ax), we construct a
global model M for the system’s intended interaction behaviour. To formalise
such models we use global LTS whose transitions are labelled by interactions
according to Γ . If only binary interactions are admitted a global LTS is a chore-
ography automaton as in [1]. Of course, we must check that the constructed
global LTS M satisfies the requirements of the specification Sp, i.e. M |= Ax.

The central part of our work concerns the realisation (decomposition) of a
global LTS M in terms of a (possibly distributed) system of interacting compo-
nents whose individual behaviour is modelled by local LTS. First we must deter-
mine, for each component name i ∈ I, which local actions component i should
provide. To do so, any interaction in which i participates must be mapped to an
appropriate local action for component i. We study two variants. The first fol-
lows approaches to multi-party session types and choreography languages where
the names of the communication partners are kept in local actions. For instance,
a binary interaction i → j : m leads to a local output action i j !m for i and a

2

local input action i j ?m for j. In approaches to component-based development,
however, transitions describing local behaviour are often labelled just by mes-
sage names accompanied by information whether it is an output or an input of
a component. This makes components better reusable and supports interface-
based design [3, 16, 25, 27]. In this case, a binary interaction i → j : m leads to a
local output action !m for i and a local input action ?m for j. In this paper, we
generalise both localisation styles to deal with multi-interactions and call the
former “rich local actions” and the latter “poor local actions”. From a software
designer’s point of view the poor localisation style better supports the principle
of loose coupling, whereas the rich style better avoids undesired synchronisations.

Once a localisation style x ∈ {r, p} is chosen (r for “rich” and p for “poor”)
one can proceed with the actual construction of a realisation of M in terms
of a system presented by a family S = (Mx

i)i∈I of local LTS. We say that M
is realisable (with localisation style x) if such a system exists such that M is
bisimilar (denoted by ∼) to the synchronous composition ⊗x

Γ (Mx
i)i∈I of all Mx

i

taking into account the interactions Γ and the localisation style x. Hence, our
realisation notion is generic w.r.t. Γ and parametrised by the chosen localisation
style. We show that realisability with poor local actions implies realisability
with rich local actions (Theorem 1) but the converse does not hold (Example 3).
Since our realisability notion is based on bisimilarity we can deal with non-
deterministic behaviour, differently from language-based approaches like [2, 12].

Race Example We illustrate our methodology outlined so far by developing
a (small) system, called Race, which is meant to model the competition of two
runner components R1 and R2 under the control of a third component Ctrl.
To start, we provide a signature ΣRace = (IRace, MRace) with component names
IRace = {R1, R2, Ctrl} and message names MRace = {start, finish}. The idea is that
the controller starts the two runners simultaneously, while each runner signals
individually to the controller when it has finished its run. Therefore, we use the
interaction set on the left of Fig. 2. We do not model the actual running of a
runner component, which would be an internal action (cf. [6]).

We require that no runner should finish before starting and that any started
runner should be able to finish running. This will be expressed by dynamic logic
formulas to be detailed in the requirements specification SpRace in Example 1.

Next we construct the global LTS MRace shown on the right of Fig. 2, which
models the required interaction behaviour of the system so that the requirements
of the specification are satisfied. The system starts in the initial (global) state 0,
where the controller starts both runners at once. Each runner separately sends a
finish signal to the controller (in arbitrary order). After that a new run can start.

ΓRace =

{

Ctrl → {R1, R2} : start ,
R1 → Ctrl : finish ,
R2 → Ctrl : finish

}

0

2

3

1
Ctrl → {R1, R2} : start

R1 → Ctrl : finish

R2 → Ctrl : finish

R2 → Ctrl : finish

R1 → Ctrl : finish

Fig. 2: Interaction set ΓRace (left) and global LTS MRace (right); we write Ctrl

for {Ctrl} and similarly for R1, R2.

3

Table 1: Local LTS for each localisation style and for each component

Localisation Local Ctrl Local R1 Local R2

Rich 0

2

3

1
Ctrl {R1, R2} !start

R1 Ctrl?finish

R2 Ctrl?finish

R2 Ctrl?finish

R1 Ctrl?finish

0 1

Ctrl {R1, R2}?start

R1 Ctrl !finish

0 1

Ctrl {R1, R2}?start

R2 Ctrl !finish

Poor
0

2

1
!start

?finish?finish

0 1

?start

!finish

0 1

?start

!finish

Finally, we want to realise the system by three local LTS such that their com-
position is bisimilar to the global LTS MRace. We distinguish the two variants.

Rich Local Actions From ΓRace we derive the following sets of rich local actions:

Λr
Ctrl =

{

Ctrl {R1, R2} !start , R1 Ctrl?finish , R2 Ctrl?finish
}

,

Λr
R1 =

{

Ctrl {R1, R2}?start , R1 Ctrl !finish
}

, and

Λr
R2 =

{

Ctrl {R1, R2}?start , R2 Ctrl !finish
}

.

For each i ∈ {Ctrl, R1, R2}, we use the local LTS Mr
i in the upper row of Table 1

to build the system Sr
Race = {Mr

Ctrl, Mr
R1, Mr

R2} with rich local actions. One can
prove that the “rich” composition (Definition 4) of the three LTS by synchroni-
sation w.r.t. ΓRace is bisimilar (even isomorphic) to MRace; i.e., we have found a
realisation with rich local actions.

Poor Local Actions In this case, we derive from ΓRace the following sets of
poor local actions, where information on communication partners is omitted:

Λp
Ctrl = {!start, ?finish} and Λp

R1 = Λp
R2 = {?start, !finish}.

For each i ∈ {Ctrl, R1, R2}, we use the local LTS Mp
i in the lower row of Table 1

to build the system Sp
Race = {Mp

Ctrl, Mp
R1, Mp

R2} with poor local actions. Also
the “poor” composition (Definition 7) of the three LTS by synchronisation w.r.t.
ΓRace is bisimilar (even isomorphic) to MRace.

Checking Realisability, Local Quotients, and System Synthesis So far,
we considered the case in which the realisation of a global interaction model
M is “invented”. However, there might be no realisation of M and it would
be better to know this as soon as possible to align the global model. Next, we
consider the following two important issues and proceed as shown in Fig. 3.
1. How to check whether a given global LTS M is realisable (rich/poor case)?
2. If it is, how can we build/synthesise a concrete realisation S (rich/poor case)?

Global

Model

M

I -Equivalences

≡ = (≡i)i∈I RC(M, ≡)r/psuch
that

Interaction-based

System

S = (M/≡i)
r/p

i∈I

Build equiv.

relations

Group equiv. states

Fig. 3: Approach to check realisability and system synthesis

4

To tackle the first question we propose, similarly to [13], to find a family
≡ = (≡i)i∈I of equivalence relations on the global state space Q of M such
that, for each component name i ∈ I and states q, q′ ∈ Q, q ≡i q′ expresses that
q and q′ are not distinguishable from the viewpoint of i. This suggests that q
and q′, though globally different, can be locally interpreted as the same states.
In particular, it is required that any two states q and q′ which are related by

a global transition q
out → in : m
−−−−−−−→M q′ should be indistinguishable for any i ∈ I

which does not participate in the interaction, i.e. i /∈ out ∪ in. On the basis of
a given I-equivalence ≡, we formulate realisability conditions RC(M, ≡)r and
RC(M, ≡)p for both localisation styles. We show that in the rich and in the poor
case our condition is sufficient for realisability (cf. Theorems 2 and 3).

In both cases, the principle idea how to synthesise a realisation is the same.
Given a family (≡i)i∈I of I-equivalences for which the realisability condition
holds, we construct, for each i ∈ I, a local quotient (M/ ≡i)

r/p by identifying
global states (in M) which are i-equivalent. Thus we get the desired system
(which might still benefit from minimisations w.r.t. bisimilarity).

Note that the I-equivalences found for satisfying the realisability condition
in the rich case may not be the same as in the poor case and thus also the local
quotients may show different behaviour. Moreover, the technique of building
local quotients differs from projections used in the field of multi-party session
types, since projections are partial operations depending on syntactic conditions
(cf., e.g., [7]). A less syntactic and more expressive approach is proposed in [24].

As an example, recall the global LTS MRace shown in Fig. 2 (right). The three
local LTS with rich local actions shown in the upper row of Table 1 are, up to
renaming of states, local quotients of MRace. To construct the local quotient for
R1, global states 0 and 2 are identified, as well as states 1 and 3 (and symmet-
rically for the local quotient for R2). For Ctrl, no proper identification is applied
(cf. Example 4 for details). Also the three local LTS with poor local actions in
the lower row of Table 1 are, up to renaming of states, local quotients of MRace.
In this case, however, to construct the local quotient for Ctrl, two global states
of MRace are identified, namely states 2 and 3 (cf. Example 6 for details).

Contributions and Related Work

1. We propose a rigorous discipline for developing interaction-based systems
following a step-wise development method from dynamic-logic requirements
specifications over global models of interaction down to systems of (possibly
distributed) components. Thus our approach supplements approaches to re-
alisations of global behaviour descriptions (in the form of global languages,
e.g. [2], or global session types, e.g. [22]), by an abstract logical layer.

2. Our approach is driven by specified sets of multi-interactions supporting any
kind of synchronous communication between multiple senders and multiple
receivers. To the best of our knowledge, realisations of global models with
arbitrary multi-interactions have not yet been studied in the literature.

3. Our correctness notion for realisation of global models by systems of commu-
nicating local components is based on bisimulation, thus letting us deal with
non-determinism and going beyond language-based approaches like [2, 12].

5

Bisimulation also fits well with global requirements specifications since dy-
namic logic formulas are invariant under bisimulation and therefore hold in
any realisation of a global model of a global specification.

4. For constructing realisations we consider two localisation styles (rich and
poor local actions) and analyse their relationship. This is a novel result.

5. A global interaction model may, in general, not be realisable. We provide
conditions for realisability with respect to both localisation styles. Our con-
ditions are related to the work in [13] which, however, does not deal with
multi-interactions and uses a stronger condition ensuring realisation up to
isomorphism of LTS; cf. our discussion in Sect. 5.1.

6. For realisable global models, we construct realisations in terms of systems of
local quotients. Similar quotient constructions have been used in the proofs
of [13], but not for multi-interactions and for different localisation styles.
The technique of building local quotients differs from projections used in
the field of multi-party session types, since projections are partial operations
depending on syntactic conditions (cf., e.g., [7]). In our approach, no restric-
tions on the form of global models are assumed. However, it must be said
that the syntactic restrictions used for global types guarantee some kind of
communication properties of a resulting system which we do not consider.

7. We developed a prototypical tool Ceta which checks realisability conditions
and, if they are satisfied, generates local quotients and hence realisations.

Outline After some formal preliminaries in Sect. 2, we show how to specify
requirements for global models of interaction in Sect. 3 and how to realise the
latter in Sect. 4. The conditions that guarantee realisability are studied in Sect. 5.
In Sect. 6, we present a tool that implements our analyses. It is available at
https://lmf.di.uminho.pt/ceta and all examples of the paper are predefined in
the tool, like MRace

�, including a hyperlink to open the tool with the specific
example. Sect. 7 wraps up the paper. A companion report [5] includes all proofs
of our results, more details of the tool, and a few additional examples.

2 Formal Preliminaries

LTS and Bisimulation Let A be a finite set of actions. A labelled transition
system (LTS) over A is a tuple L = (Q, q0, A, T) such that Q is a finite set of
states, q0 ∈ Q is the initial state, and T ⊆ Q × A × Q is a transition relation.
Note that we consider finite-state LTS, which makes the realisability conditions
presented later decidable. We write q

a
−→L q′ to denote (q, a, q′)∈T . A state q ∈Q

is reachable if there exists a finite sequence of transitions from initial state q0 to q.
Let Li = (Qi, qi,0, A, Ti) be two LTS (for i = 1, 2) over the same action set A.

A bisimulation relation between L1 and L2 is a relation B ⊆ Q1 × Q2 such that
for all (q1, q2) ∈ B and for all a ∈ A the following holds:

1. if q1
a
−→L1

q′
1 then there exist q′

2 ∈ Q2 and q2
a
−→L2

q′
2 such that (q′

1, q′
2) ∈ B;

2. if q2
a
−→L2

q′
2 then there exist q′

1 ∈ Q1 and q1
a
−→L1

q′
1 such that (q′

1, q′
2) ∈ B.

6

https://lmf.di.uminho.pt/ceta
http://lmf.di.uminho.pt/ceta/?Race %28simple%29

L1 and L2 are bisimilar, denoted by L1 ∼ L2, if there exists a bisimulation
relation B between L1 and L2 such that (q1,0, q2,0) ∈ B.

Dynamic Logic We use (test-free) propositional dynamic logic (PDL) [18] to
formulate behavioural properties. Let A be a finite set of (atomic) actions. Let
the grammar α := a | α; α | α+α | α∗, with a∈A, sequential composition ; , non-
deterministic choice +, and iteration ∗, define the set Act(A) of structured actions
over A. If A = {a1, . . . , an}, we write some for structured action a1 + · · · + an.
We may also refer to all actions of A but one, say a, and express this by −a.

The set Frm(A) of A-formulas is defined by the grammar

ϕ := true | ¬ϕ | ϕ ∨ ϕ | ⟨α⟩ ϕ (formulas)

where α ∈ Act(A). Formula ⟨α⟩ ϕ expresses that at the current state it is possible
to execute α such that ϕ holds in the next state.

Abbreviations We use the usual abbreviations like false, ϕ ∧ ϕ′, ϕ → ϕ′,
and the modal box operator [α] ϕ which stands for ¬ ⟨α⟩ ¬ϕ and expresses that
whenever in the current state α is executed, then ϕ holds afterwards.

For the interpretation of formulas we use LTS. Let L = (Q, q0, A, T) be an
LTS over A. First we extend the transition relation of L to structured actions:

q
α1;α2

−−−−→L q′ if there exists q̂ ∈ Q such that q
α1−→L q̂ and q̂

α2−→L q′;

q
α1+α2−−−−→L q′ if q

α1−→L q′ or q
α2−→L q′; and

q
α∗

−−→L q′ if q = q′ or there exists q̂ ∈ Q such that q
α
−→L q̂ and q̂

α∗

−−→L q′.

The satisfaction of a formula ϕ ∈ Frm(A) by L at a state q ∈ Q, denoted by
L, q |= ϕ, is inductively defined as follows:

L, q |= true;
L, q |= ¬ϕ if not L, q |= ϕ;
L, q |= ϕ1 ∨ ϕ2 if L, q |= ϕ1 or L, q |= ϕ2; and

L, q |= ⟨α⟩ ϕ if there exists q′ ∈ Q such that q
α
−→L q′ and L, q′ |= ϕ.

L satisfies a formula ϕ ∈ Frm(A), denoted by L |= ϕ, if L, q0 |= ϕ. Hence,
for the satisfaction of a formula by an LTS the non-reachable states are ir-
relevant (deviating from the classical semantics of PDL [18]). We can express
safety properties, like [some∗] ϕ, and some kinds of liveness properties like, e.g.,
[some∗] ⟨some∗; a⟩ ϕ.

Satisfaction of formulas in PDL is invariant under bisimulation [9]: Let L1, L2

be two LTS over A. If L ∼ L′ then, for any ϕ ∈ Frm(A), L |= ϕ iff L′ |= ϕ.

3 Specifying Requirements for Global Models of Interaction

We focus on the stepwise development of systems whose components interact
by synchronous message exchange. We support “multi-interactions”, in which
several senders and receivers may participate in a communication. Our starting
point are signatures Σ =(I, M), where I is a finite set of component names (also

7

called participants) and M is a finite set of message names. Any signature Σ
induces a set Γ (Σ) of (global) Σ-interactions defined by

Γ (Σ) = {out → in : m | out, in ⊆ I, out ∪ in ̸= ∅, m ∈ M}.

An interaction out → in : m expresses that all components whose name occurs
in out send a message named m to all components whose name occurs in in.
Such interactions involving arbitrarily many senders and receivers are also called
multi-interactions. They will be interpreted by synchronous (handshake) com-
munication. As a shorthand notation we write i for {i}. Special cases are binary
interactions between two components i, j, denoted by i → j : m, or multicast com-
munication with one sender i and a group in of receivers, denoted by i → in : m.

Usually not all Σ-interactions are meaningful for a certain application. There-
fore our approach will be driven by user-definable interaction sets Γ ⊆ Γ (Σ).

General Assumption In the sequel, we assume that (Σ, Γ) denotes a system
signature Σ = (I, M) together with an interaction set Γ . When we talk about a
signature we always mean a system signature.

We propose to use interactions as atomic actions in dynamic logic formulas for
specifying desired and forbidden interaction properties from a global perspective.

Definition 1 (global Sp). A global interaction behaviour specification is a
triple Sp = (Σ, Γ, Ax) where Ax ⊆ Frm(Γ) is a set of Γ -formulas, called axioms.

Example 1. A requirements specification for the interaction behaviour of the
Race system is given by SpRace = (ΣRace, ΓRace, AxRace) where ΣRace and ΓRace

are defined in Sect. 1 and AxRace consists of the following two dynamic logic
formulas expressing the two informal requirements described in Sect. 1.

1. “No runner should finish before it has been started by the controller.”
[

(

− (Ctrl → {R1, R2} : start)
)∗

;

(

R1 → Ctrl : finish +
R2 → Ctrl : finish

)]

false

2. “For any started runner it should be possible to finish its run.”
[

some∗; Ctrl → {R1, R2} : start
]

(

⟨some∗; R1 → Ctrl : finish⟩ true ∧
⟨some∗; R2 → Ctrl : finish⟩ true

)

▷

Given a specification Sp, the goal of our next step is to model the global
interaction behaviour of the intended system in accordance with Sp. For this
purpose we use LTS with interactions from Γ on the transitions.

Definition 2 (global LTS). A global LTS over (Σ, Γ) is defined as an LTS
M = (Q, q0, Γ, T) over Γ .

To check that a global LTS satisfies the axioms of a specification, we may
use the mCRL2 toolset [11] and, as explained in [6], the translation of LTS to
process expressions as well as the translation of our dynamic logic formulas to
the syntax used by mCRL2. For instance, the global LTS MRace provided for the
race example in Sect. 1 satisfies the axioms of the specification SpRace above.

8

4 Realisations of Global Models of Interaction

A crucial step in our development method concerns the realisation of a global
interaction model in terms of a system of (possibly distributed) components
modelled by local LTS (cf. Fig. 1). In this section, we formally define what we
mean by a realisation. For modelling local components we must first determine,
for each component name i ∈ I, which are the local actions that component i is
supposed to support. We study two variants obeying different localisation styles
and leading to different instantiations of our realisability notion.

4.1 Realisations Using Rich Local Actions

It is common in approaches to global (session) types and choreography languages
to preserve the names of communication partners when moving from global
interactions to local actions. In [2], e.g., a binary interaction i → j : m leads to a
local output action i j !m for i and a local input action i j ?m for j. We generalise
this approach to multi-interactions and call the resulting local actions rich.

Definition 3 (rich local actions and local LTS). For each i ∈ I, the set of
rich local i-actions derived from Γ is Λr

i(Γ) = Λr
i,out

(Γ) ∪ Λr
i,in(Γ) where

Λr
i,out

(Γ) = {out in !m | ∃ (out → in : m) ∈ Γ such that i ∈ out} and

Λr
i,in(Γ) = {out in?m | ∃ (out → in : m) ∈ Γ such that i ∈ in}.

A local LTS for i with rich local actions is an LTS Mr
i = (Qi, qi,0, Λr

i(Γ), Ti).

A system over (Σ, Γ) with rich local actions is a family Sr = (Mr
i)i∈I of local

LTS Mr
i over Λr

i(Γ) for i ∈ I. The behaviour of such a system is modelled
by the synchronous Γ -composition of its components Mr

i (i ∈ I) where for all
interactions (out → in : m) ∈ Γ a global transition exists (in a composed state)
if for all i ∈ out (i ∈ in, resp.) there is a transition in Mr

i with the local action
out in !m (out in?m, resp.) leaving the current local state of Mr

i.

Definition 4 (synchronous Γ -composition with rich local actions). Let
(Mr

i)i∈I be a family of local LTS Mr
i = (Qi, qi,0, Λr

i(Γ), Ti) with rich local actions.
The synchronous Γ -composition of (Mr

i)i∈I with rich local actions is the global
LTS, denoted by ⊗r

Γ (Mr
i)i∈I , over (Σ, Γ) with initial state (qi,0)i∈I and with

(product) states (qi)i∈I (with qi ∈ Qi for all i ∈ I) and transitions generated
from the initial state by the following rule:

(out → in : m) ∈ Γ ∀i ∈ out : qi
out in !m
−−−−−→Mr

i
q′

i ∀i ∈ in : qi
out in?m
−−−−−→M

i
q′

i

(qi)i∈I
out → in : m
−−−−−−−→⊗r

Γ
(Mr

i
)i∈I

(q′
i)i∈I where q′

i = qi for all i ∈ I \ (out ∪ in)

Definition 5 (realisability with rich local actions). Let M be a global
LTS over (Σ, Γ). A system S = (Mr

i)i∈I over (Σ, Γ) with rich local actions is a
(rich) realisation of M, if M ∼ ⊗r

Γ (Mr
i)i∈I are bisimilar. M is realisable with

rich local actions if such a realisation exists.

9

Table 2: Non-deterministic toss of a Coin by a Person

Global MToss
� Local Mr

Person Local Mr
Coin

0

1

2

Person → Coin : toss

Person → Coin : toss

Coin → Person : head

Coin → Person : tail

0 1
Person Coin ! toss

Coin Person?head

Coin Person? tail

0

1

2

Person Coin? toss

Person Coin? toss

Coin Person !head

Coin Person ! tail

Our realisability notion relies on bisimulation. Thus we are able to deal with
non-determinism. In particular, according to the invariance of dynamic logic
under bisimulation (cf. Sect. 2), we know that global models and their realisations
satisfy the same formulas. Hence, once a global model of a global specification is
provided, any realisation will be correct with respect to the global specification.

Example 2. Consider a non-deterministic example with two participants, a Person

and a Coin, and tossing the Coin by the Person is modelled as a non-deterministic
action that leads to either head or tail (cf. [28]). Formally, ΣToss = ({Coin, Person},
{toss, head, tail}) and ΓToss = {Person → Coin : toss, Coin → Person : head, Coin →
Person : tail}. The global LTS MToss

� and one of its realisations by the two LTS
Mr

Person and Mr
Coin (with rich local actions) are shown in Table 2. Although

MToss ∼ ⊗r
ΓToss

{Mr
Person, Mr

Coin} there would be no bisimulation when consider-
ing a deterministic version for both Person and Coin. ▷

4.2 Realisations Using Poor Local Actions

We now consider a variant where we omit the communication partners when we
move from a global interaction (out → in : m) ∈ Γ to local actions. In this case
only the message name m is kept together with output information !m for i ∈ out

and input information ?m for i ∈ in. This complies with the idea of component
automata used in teams [3,4,6] and many other approaches to component-based
design (e.g., I/O automata [27] and interface automata [16]). We call the resulting
local actions “poor” since they do not specify communication partners.

Definition 6 (poor local actions and local LTS). For each i ∈ I, the set of
poor local i-actions derived from Γ is given by Λp

i (Γ)=Λp
i,out

(Γ)∪Λp
i,in(Γ) where

Λp
i,out

(Γ) = {!m | ∃ (out → in : m) ∈ Γ such that i ∈ out} and

Λp
i,in(Γ) = {?m | ∃ (out → in : m) ∈ Γ such that i ∈ in}.

A local LTS for i with poor local actions is an LTS Mp
i = (Qi, qi,0, Λp

i (Γ), Ti)
over Λp

i (Γ).

The notion of a system with poor local actions is defined completely
analogously to the rich case in Sect. 4.1. Γ -composition with poor local actions
needs, however, special care since for matching local actions only the message
name and input/output information is relevant.

10

http://lmf.di.uminho.pt/ceta/?Toss
http://lmf.di.uminho.pt/ceta/?Toss

Definition 7 (synchronous Γ -composition with poor local actions).
Let (Mp

i)i∈I be a family of local LTS Mp
i = (Qi, qi,0, Λp

i (Γ), Ti) with poor local
actions. The synchronous Γ -composition of (Mp

i)i∈I with poor local actions is
the global LTS, denoted by ⊗p

Γ (Mp
i)i∈I , over (Σ, Γ) with initial state (qi,0)i∈I

and with (product) states (qi)i∈I (such that qi ∈ Qi for all i ∈ I) and transitions
generated from the initial state by the following rule:

(out → in : m) ∈ Γ (∀i ∈ out : qi
!m
−→Mp

i
q′

i) (∀i ∈ in : qi
?m
−−→Mp

i
q′

i)

(qi)i∈I
out → in : m
−−−−−−−→⊗p

Γ
(Mp

i
)i∈I

(q′
i)i∈I where q′

i = qi for all i ∈ I \ (out ∪ in)

The notion of realisability with poor local actions is defined completely
analogously to the rich case (cf. Definition 5) replacing “rich (r)” by “poor (p)”.

An obvious question is whether realisability with respect to the two different
localisation styles can be formally compared. This is indeed the case.

Theorem 1 (poor realisation implies rich realisation). Let M be a global
LTS over (Σ, Γ) which is realisable by a system Sp = (Mp

i)i∈I with poor local
actions. Then there exists a system Sr = (Mr

i)i∈I with rich local actions which
is a realisation of M.

The converse of Theorem 1 is not true, as demonstrated by the next example.

Example 3. We consider a variant of the global LTS MRace
� (Fig. 2) where

the transitions 1
R2 → Ctrl : finish
−−−−−−−−−→ 3

R1 → Ctrl : finish
−−−−−−−−−→ 0 are removed, enforcing R1 to

finish before R2. Let us call the resulting LTS M′
Race

�. Moreover, consider the
variant of the local controller Mr

Ctrl (upper row of Table 1, left) where the local

transitions 1
R2Ctrl?finish
−−−−−−−→ 3

R1Ctrl?finish
−−−−−−−→ 0 are removed and call it M′r

Ctrl. Now let
S ′r = {M′r

Ctrl, Mr
R1, Mr

R2} be the system with rich local actions (where Mr
R1 and

Mr
R2 are shown in the upper row of Table 1, middle and right). It is easy to

check that S ′r is a realisation of M′
Race with rich local actions, since M′

Race is
even isomorphic to the (rich) ΓRace-composition of {M′r

Ctrl, Mr
R1, Mr

R2}.
The situation is different if we consider the poor case with controller Mp

Ctrl

(lower row of Table 1, left) which accepts two times in a row a “finish” signal
but, due to the poor local actions, cannot fix an acceptance order. The only
candidate for a realisation with poor local actions is then the system S ′p =
{Mp

Ctrl, Mp
R1, Mp

R2} consisting of the local LTS with poor local actions shown in
the lower row of Table 1. Obviously, the ΓRace-composition of these local LTS with

poor actions does allow a sequence of transitions 1
R2 → Ctrl : finish
−−−−−−−−−→ 3

R1 → Ctrl : finish
−−−−−−−−−→

0 and therefore cannot be bisimilar to M′
Race. ▷

5 Realisability Conditions

In general a global LTS may not be realisable. Therefore we are interested in
(i) conditions that guarantee realisability and (ii) techniques to synthesise reali-
sations from a global LTS M. The notion of I-equivalence provides a helpful tool.

11

http://lmf.di.uminho.pt/ceta/?Race %28simple%29
http://lmf.di.uminho.pt/ceta/?Race %28R1-first%29

The basic idea is to consider the source and target states of a global transition

q
out → in : m
−−−−−−−→M q′ to be indistinguishable for a component i ∈ I if i does not par-

ticipate in the interaction, i.e. i /∈ out∪ in (cf. also [13] and the discussion below).

Definition 8 (I-equivalence). Let M = (Q, q0, Γ, T) be a global LTS over
(Σ, Γ). An I-equivalence over M is a family ≡ = (≡i)i∈I of equivalence re-
lations ≡i ⊆ Q × Q (reflexive, symmetric, and transitive) such that q ≡i q′

holds whenever there exists a transition q
out → in : m
−−−−−−−→M q′ with i /∈ out ∪ in. The

equivalence class of a state q ∈ Q w.r.t. ≡i is the set [q]≡i
= {q′ ∈ Q | q′ ≡i q}.

5.1 Condition for Realisability Using Rich Local Actions

First, we will formulate our realisability condition for the case of rich local
actions. We consider a global LTS M over (Σ, Γ). Our goal is to find an I-
equivalence (≡i)i∈I over M such that for each interaction (out → in : m) ∈ Γ the
following holds. Assume, for simplicity, that out ∪ in = {1, . . . , n}. Whenever
there is a combination q1, . . . , qn of n (not necessarily different) global states
together with a global “glue” state g, i.e. for each j ∈ out ∪ in, qj ≡j g, then
we expect: if out → in : m is enabled in each global state q1, . . . , qn then each
j ∈ out ∪ in should also able to participate in out → in : m when the global state
is g, since j cannot distinguish g from qj . Thus the global interaction out → in : m

should be enabled in g and preserve I-equivalences.

Definition 9 (realisability condition (rich case)). Let M be a global LTS
over (Σ, Γ). The realisability condition RC (M)r for M with respect to rich local
actions says that there exists an I-equivalence ≡ = (≡i)i∈I over M such that the
following property RC (M, ≡)r holds.

For all γ = (out → in : m) ∈ Γ with out ∪ in = {k1, . . . , kn} we have:

∀

(

q1
γ
−→M q′

1 · · · qn
γ
−→M q′

n

g ∈
⋂n

j=1[qj]≡kj

)

∃g′ :

(

g
γ

−−→M g′

g′ ∈
⋂n

j=1[q′
j]≡kj

)

Theorem 2 will provide a constructive argument why condition RC (M)r

ensures realisability with rich local actions. Local quotients are crucial for this.

Definition 10 (local quotients with rich local actions). Let M=(Q,q0,Γ,T)
be a global LTS over (Σ, Γ) and ≡ = (≡i)i∈I an I-equivalence over M. For each
i ∈ I the local i-quotient of M with rich local actions is the LTS (M/≡i)

r =
(Q/≡i, [q0]≡i

, Λr
i(Γ), (T/≡i)

r) where

– Q/≡i = {[q]≡i
| q ∈ Q},

– (T/≡i)
r is the least set of transitions generated by the following rules:

q
out → in : m
−−−−−−−→M q′ i ∈ out

[q]≡i

out in !m
−−−−−→(M/≡i)r [q′]≡i

q
out → in : m
−−−−−−−→M q′ i ∈ in

[q]≡i

out in?m
−−−−−→(M/≡i)r [q′]≡i

Note that [q]≡i

out in !m
−−−−−→(M/≡i)r [q′]≡i

implies that there exist q̂ ∈ [q]≡i
, q̂′ ∈

[q′]≡i
and a transition q̂

out → in : m
−−−−−−−→M q̂′ with i ∈ out (and similarly for out in?m).

12

Theorem 2. Let M be a global LTS over (Σ, Γ) and let ≡ = (≡i)i∈I be an
I-equivalence over M. If RC (M, ≡)r holds, then M ∼ ⊗r

Γ ((M/≡i)
r)i∈I .

Example 4. Consider the global LTS MRace
� (Fig. 2). We show that RC(MRace)

r

holds and how to construct, following Theorem 2, a realisation of MRace. More
concretely, we take the family of equivalences ≡ = (≡i)i∈{Ctrl,R1,R2} that obeys
RC(MRace, ≡)r (see below) and partitions the state space Q as follows: Q/≡Ctrl =
{{0}, {1}, {2}, {3}}, Q/≡R1 = {{0, 2}, {1, 3}}, and Q/≡R2 = {{0, 3}, {1, 2}}. Us-
ing these equivalences, the local quotients for R1 and R2 are as follows:

(M/≡R1)r = {0, 2} {1, 3}

Ctrl {R1, R2}?start

R1 Ctrl !finish

(M/≡R2)r = {0, 3} {1, 2}

Ctrl {R1, R2}?start

R1 Ctrl !finish

The local quotient for Ctrl is isomorphic to MRace but with local labels. Thus we
have obtained a system which is a realisation with rich local actions of MRace.
The local quotients coincide, up to renaming of states, with the local LTS used
in the system Sr

Race considered in Sect. 1.
Now, we illustrate how to verify RC(MRace, ≡)r using, as an example, the in-

teraction γ = R1 → Ctrl : finish which appears twice in MRace: t12 = (1
γ
−→ 2) and

t30 = (3
γ
−→ 0). There are two participants involved: R1 and Ctrl. Hence we need

to consider four combinations: (t12, t12), (t12, t30), (t30, t12), and (t30, t30). For ex-
ample, using the combination (t30, t12), we compute the glue [3]≡R1

∩[1]≡Ctrl
= {1}.

Then, trivially, there exists a transition 1
γ
−→ 2, and 2 ∈ [0]≡R1

∩ [2]≡Ctrl
. The same

can be shown for all the glues found for the other three combinations. ▷

In general it may happen that a global LTS M does not satisfy RC (M)r but
nevertheless is realisable. We can prove that RC (M)r is a necessary condition
to obtain a realisation which is related to a global model by a functional bisim-
ulation. More interesting, however, would be to weaken RC (M)r such that it
becomes necessary for realisability with respect to arbitrary bisimulations. This
is an open and challenging question.

Example 5. Consider the signature Σ = (I, M) with I = {a, b, c}, M = {m} and
the set Γ = {a → b : m, c → b : m, c → a : m} of Σ-interactions. The global LTS M
in Table 3 (left) is realisable by the system Sr = {Mr

a, Mr
b, Mr

c}. To see this, we
compute the Γ -composition M′ = ⊗r

Γ {Mr
a, Mr

b, Mr
c} shown in Table 3 (right).

Obviously M is bisimilar to M′ and hence M is realisable. However, M does
not satisfy the realisability condition RC (M)r.

We prove this by contradiction. Assume that ≡ = {≡a, ≡b, ≡c} is an I-
equivalence such that RC (M, ≡)r holds. Now consider the interaction a → b : m,

the global state 0 of M and the transition 0
a → b : m
−−−−−→M 1. Obviously, 0 ≡a 1

and 0 ≡b 1 must hold since there is the transition 0
c → b : m
−−−−−→M 1 where a does

not participate and the transition 0
c → a : m
−−−−−→M 1 where b does not participate.

So we can take 1 as a glue state between the global states q1 = 0 and q2 = 0.

Then we consider the transition 0
a → b : m
−−−−−→M 1 one time for q1 and one time for

q2. Since we have assumed RC (M, ≡)r, there must be a transition 1
a → b : m
−−−−−→M′

13

http://lmf.di.uminho.pt/ceta/?Race %28simple%29

Table 3: Global LTS M not satisfying RC (M)r but with realisation Sr =
{Mr

a, Mr
b, Mr

c} where M′ = ⊗r{Mr
a, Mr

b, Mr
c}

Global M � Local Mr
a Local Mr

b Local Mr
c Composed M′

0

1

c → a : m

c → b : m

a → b : m

0

11

a b !mc a?m

0

11

a b?mc b?m

0

11

c b !mc a !m

(0, 0, 0)

(0, 1, 1)(1, 1, 0) (1, 0, 1)

a → b : m

c → b : m
c → a : m

leaving the glue state which is, however, not the case. Contradiction! Note that
nevertheless the bisimilar global LTS M′ does satisfy RC (M′)r. The example
can be checked at M � and M′ �. ▷

Discussion Our realisability condition RC (M)r, based on the notion of an
I-equivalence (≡i)i∈I , is strongly related to a condition for implementability
in [13, Theorem 3.1]. In fact, RC (M)r can be seen as a generalisation of [13]
since we consider multi-interactions with distinguished sets of senders and re-
ceivers and also specifications for admissible interactions represented by Γ . Thus
we get a generic realisability notion based on Γ -composition rather than full syn-
chronisation. Moreover, our condition ensures realisability modulo bisimulation
instead of isomorphism. Technically, implementability with respect to isomor-
phism is achieved in [13, Theorem 3.1] by requiring that whenever two global
states q and q′ are i-equivalent, i.e. (q ≡i q′), for all i ∈ I, then q = q′. We do not
use this assumption and thus can get realisations modulo bisimilarity which do
not realise a global LTS up to isomorphism (cf. ?? below). Note that [13, The-
orem 6.2] also provides a proposal to deal with implementability modulo bisim-
ulation under the assumption of “deterministic product transition systems”. In
the next section, we study a realisability condition for the case of poor local
actions, which deviates significantly from [13].

5.2 Condition for Realisability Using Poor Local Actions

We return to the question of how to check realisability, now in the case of poor
local actions. The notion of I-equivalence is again the key. Note, however, that
the computation of an appropriate I-equivalence may differ from the rich case.

The realisability condition below is stronger than the one for rich local ac-
tions in Definition 9. Intuitively, the reason is that local LTS with poor lo-
cal actions have, in general, more choices for synchronisation and therefore a
global LTS must support these choices in order to be realisable. For each in-
teraction (out → in : m) ∈ Γ , we require in more cases the enabledness in a glue
state g. More concretely, out → in : m must be enabled in g already when in the
j-equivalent states, say qj , component j is able to output/input message m in-
dependently of the communication partners named in out∪ in, since those would

14

http://lmf.di.uminho.pt/ceta/?ab+cb+ca
http://lmf.di.uminho.pt/ceta/?ab+cb+ca
http://lmf.di.uminho.pt/ceta/?a-%3Eb:m+c-%3Eb:m;1+c-%3Ea:m;1;1

anyway not be known from a poor local action. This is formally reflected by
considering the interactions γ1, . . . , γn in the next definition.

Definition 11 (realisability condition (poor case)). Let M be a global
LTS over (Σ, Γ). The realisability condition RC (M)p for M with respect to
poor local actions says that there exists an I-equivalence (≡i)i∈I over M such
that the following property RC (M, (≡i)i∈I)p holds.

For all γ = (out → in : m) ∈ Γ with participants out∪in = {k1, . . . , kn} we get:

∀

γ1 = (out1 → in1 : m) ∈ Γ
k1 ∈ (out1 ∩ out) ∪ (in1 ∩ in)

· · ·
γn = (outn → inn : m) ∈ Γ

kn ∈ (outn ∩ out) ∪ (inn ∩ in)

∀

q1

γ1

−→M q′
1

· · ·
qn

γn
−−→M q′

n

g ∈
⋂n

j=1
[qj]≡kj

∃g′ :

(

g
γ

−−→M g′

g′ ∈
⋂n

j=1
[q′

j]≡kj

)

To prove that the condition RC (M)p indeed guarantees realisability with
poor local actions, the idea is again to consider local quotients. Their construc-
tion is, however, different from the rich case.

Definition 12 (local quotients with poor local actions). Let M=(Q,q0,Γ,T)
be a global LTS over (Σ, Γ) and ≡ = (≡i)i∈I an I-equivalence over M. For each
i ∈ I the local i-quotient of M with poor local actions is the LTS (M/≡i)

p =
(Q/≡i, [q0]≡i

, Λp
i (Γ), (T/≡i)

p) where

– Q/≡i = {[q]≡i
| q ∈ Q},

– (T/≡i)
p is the least set of transitions generated by the following rules:

q
out→in:m
−−−−−−→M q′ i ∈ out

[q]≡i

!m
−→(M/≡i)p [q′]≡i

q
out→in:m
−−−−−−→M q′ i ∈ in

[q]≡i

?m
−−→(M/≡i)p [q′]≡i

Theorem 3. Let M be a global LTS over (Σ, Γ) and let ≡ = (≡i)i∈I be an
I-equivalence over M. If RC (M, ≡)p holds then M ∼ ⊗p

Γ ((M/≡i)
p)i∈I .

Example 6. Consider the global LTS MRace
� (Fig. 2). We show RC(MRace)

p

holds and how, following Theorem 3, a realisation of MRace with poor local
actions can be constructed. The situation differs from the rich case in Example 4,
since the equivalence for Ctrl must be chosen differently. We use the family of
equivalences ≡ = (≡i)i∈{Ctrl,R1,R2} that obeys RC(MRace, ≡)p (see below) and
partitions the state space Q as follows: Q/≡Ctrl = {{0}, {1}, {2, 3}}, Q/≡R1 =
{{0, 2}, {1, 3}}, and Q/≡R2 = {{0, 3}, {1, 2}}. Using these equivalences, the local
quotients for Ctrl, R1 and R2 are as follows:

(M/≡Ctrl)
p =

{0} {1}

{2, 3}

!start

?finish?finish

(M/≡R1)p = {0, 2} {1, 3}
?start

!finish

(M/≡R2)p = {0, 3} {1, 2}
?start

!finish

15

http://lmf.di.uminho.pt/ceta/?Race %28simple%29

Thus we have obtained a system which is a realisation with poor local actions
of MRace. The local quotients coincide, up to renaming of states, with the local
LTS used in the system Sp

Race considered in Sect. 1.
Now, we illustrate how to verify RC(MRace, ≡)r using, as an example, the in-

teraction R1 → Ctrl : finish. We have 1
R1 → Ctrl : finish
−−−−−−−−−→MRace

2. We also have

1
R2 → Ctrl : finish
−−−−−−−−−→MRace

3 (we must consider the interaction R2 → Ctrl : finish as well
since we are in the poor case). Taking 1 as a (trivial) glue state, we thus have,

as required, the existence of 1
R1 → Ctrl : finish
−−−−−−−−−→MRace

2 but also it is required that
2 ≡Ctrl 3 must hold which is the case. Note that we wouldn’t have succeeded
here if we would have taken the identity for ≡Ctrl as done for the rich case. ▷

6 Tool Support: Ceta

We developed a supporting prototypical tool Ceta (Choreographic Extended
Team Automata) to analyse global specifications and produce visualisations
of state machines. It is open-source, available at https://github.com/arcalab/
choreo/tree/ceta, and executable by browsing to https://lmf.di.uminho.pt/ceta.

Ceta starts with a web browser, opening a static webpage that uses our com-
piled JavaScript built with the Caos framework [31] (cf. screenshot in Fig. 4).

Fig. 4: Screenshots of the Ceta tool (http://lmf.di.uminho.pt/ceta)

16

https://github.com/arcalab/choreo/tree/ceta
https://github.com/arcalab/choreo/tree/ceta
https://lmf.di.uminho.pt/ceta
http://lmf.di.uminho.pt/ceta

The user input is a global protocol described in a choreographic language, re-
sembling regular expressions of interactions. A set of examples with descriptions
is also included, covering the examples presented in this paper. The analyses
include graphical views of: (i) the global LTS; (ii) local LTS’s with rich actions;
and (iii) local LTS’s with poor actions. Other widgets provide further insights,
such as the composition of the local LTS’s, the intermediate equivalence classes
for both the rich and poor case, the synchronous composition of local LTS’s,
and bisimulations between the global prototol and composed systems. Readable
error messages are provided when the realisability conditions do not hold.

7 Conclusion

We have proposed a rigorous discipline for developing interaction-based systems.
At the heart of our methodology lies the realisation of a global interaction model,
i.e. its decomposition into a set of (possibly distributed) components with syn-
chronous communication. We have investigated realisability conditions for two
different localisation styles (rich and poor local actions) and techniques to syn-
thesise realisations. Our approach is generic with respect to the choice of admis-
sible interaction sets which may contain arbitrary interactions between multiple
senders and receivers but may also be restricted, e.g., to various forms of com-
munication, like multicast or peer-to-peer communication. Due to the generic
nature of our notion of an interaction set, our results can be instantiated by
different concrete coordination formalisms. For instance, synchronisation type
specifications used in the framework of (extended) team automata [4] as well as
interactions used in BIP [10] can be represented by interaction sets. Our results
should then be directly applicable, to extend the team automata framework as
well as BIP by global LTS and to generate distributed component systems for
them on the basis of our realisation conditions.

In future research, we plan to (i) integrate the treatment of internal actions
using weak bisimulation equivalence for the realisation notions; (ii) consider com-
munication properties (like receptiveness and responsiveness, cf. [4]) when sys-
tems are generated from global models; (iii) study open global models (systems)
and their composition; and (iv) investigate realisability conditions in the context
of asynchronous communication. Moreover, we are still looking for a weaker ver-
sion of our realisability condition for synchronous systems making it necessary
for arbitrary (also non-functional) bisimulations.

Furthermore, we intend to investigate the relation with work in the literature
on the decomposition of related formalisms like (Petri net or algebraic) processes
into (indecomposable) components [26, 30] used to parallelise (verification of)
concurrent systems [15,17] or obtain better (optimised) implementations [32,33].

Acknowledgments. Ter Beek was supported by MUR PRIN 2020TL3X8X project

T-LADIES (Typeful Language Adaptation for Dynamic, Interacting and Evolving Sys-

tems) and Proença by the CISTER Research Unit (UIDP/UIDB/04234/2020), financed

by National Funds through FCT/MCTES (Portuguese Foundation for Science and

17

Technology); by project IBEX (PTDC/CCI-COM/4280/2021) financed by national

funds through FCT; and by project Route 25 (ref. TRB/2022/00061 – C645463824-

00000063) funded by the EU/Next Generation, within the Recovery and Resilience Plan.

References

1. Barbanera, F., Lanese, I., Tuosto, E.: Choreography Automata. In:
COORDINATION. LNCS, vol. 12134, pp. 86–106. Springer (2020).
https://doi.org/10.1007/978-3-030-50029-0_6

2. Barbanera, F., Lanese, I., Tuosto, E.: Formal Choreographic Languages.
In: COORDINATION. LNCS, vol. 13271, pp. 121–139. Springer (2022).
https://doi.org/10.1007/978-3-031-08143-9_8

3. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in Team
Automata for Groupware Systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003).
https://doi.org/10.1023/A:1022407907596

4. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of Safe Communication
in Systems of Team Automata. In: ICTAC. LNCS, vol. 12545, pp. 200–220. Springer
(2020). https://doi.org/10.1007/978-3-030-64276-1_11

5. ter Beek, M.H., Hennicker, R., Proença, J.: Realisability of Global Mod-
els of Interaction (Extended Version). Tech. rep., Zenodo (December 2023).
https://doi.org/10.5281/zenodo.8377188

6. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can We Communicate?
Using Dynamic Logic to Verify Team Automata. In: FM. LNCS, vol. 14000, pp.
122–141. Springer (2023). https://doi.org/10.1007/978-3-031-27481-7_9

7. Bejleri, A., Yoshida, N.: Synchronous Multiparty Session Types. ENTCS 241, 3–33
(2008). https://doi.org/10.1016/j.entcs.2009.06.002

8. Ben-David, S., Chechik, M., Gurfinkel, A., Uchitel, S.: CSSL: a logic for
specifying conditional scenarios. In: ESEC/FSE. pp. 37–47. ACM (2011).
https://doi.org/10.1145/2025113.2025123

9. van Benthem, J., van Eijck, J., Stebletsova, V.: Modal Logic, Tran-
sition Systems and Processes. J. Log. Comput. 4(5), 811–855 (1994).
https://doi.org/10.1093/logcom/4.5.811

10. Bliudze, S., Sifakis, J.: The Algebra of Connectors: Structuring In-
teraction in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008).
https://doi.org/10.1109/TC.2008.26

11. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 Toolset for Analysing
Concurrent Systems. In: TACAS. LNCS, vol. 11428, pp. 21–39. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1_2

12. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On Global Types and
Multi-Party Sessions. Log. Methods Comput. Sci. 8(1), 24:1–24:45 (2012).
https://doi.org/10.2168/LMCS-8(1:24)2012

13. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing Distributed Transition
Systems from Global Specification. In: FSTTCS. LNCS, vol. 1738, pp. 219–231.
Springer (1999). https://doi.org/10.1007/3-540-46691-6_17

14. Cengarle, M.V., Knapp, A., Mühlberger, H.: Interactions. In: Lano, K. (ed.)
UML 2 Semantics and Applications, chap. 9, pp. 205–248. Wiley (2009).
https://doi.org/10.1002/9780470522622

15. Corradini, F., Gorrieri, R., Marchignoli, D.: Towards parallelization of con-
current systems. RAIRO Theor. Informatics Appl. 32(4-6), 99–125 (1998).
https://doi.org/10.1051/ita/1998324-600991

18

https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.1023/A:1022407907596
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.5281/zenodo.8377188
https://doi.org/10.1007/978-3-031-27481-7_9
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1145/2025113.2025123
https://doi.org/10.1093/logcom/4.5.811
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1007/3-540-46691-6_17
https://doi.org/10.1002/9780470522622
https://doi.org/10.1051/ita/1998324-600991

16. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: ESEC/FSE. pp. 109–120.
ACM (2001). https://doi.org/10.1145/503209.503226

17. Groote, J.F., Moller, F.: Verification of Parallel Systems via Decom-
position. In: CONCUR. LNCS, vol. 630, pp. 62–76. Springer (1992).
https://doi.org/10.1007/BFb0084783

18. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing, MIT
Press (2000). https://doi.org/10.7551/mitpress/2516.001.0001

19. Harel, D., Thiagarajan, P.S.: Message Sequence Charts. In: Lavagno, L., Martin,
G., Selic, B. (eds.) UML for Real: Design of Embedded Real-Time Systems, pp.
77–105. Kluwer (2003). https://doi.org/10.1007/0-306-48738-1_4

20. Hennicker, R.: Role-Based Development of Dynamically Evolving Esembles. In:
WADT. LNCS, vol. 11563, pp. 3–24. Springer (2018). https://doi.org/10.1007/978-
3-030-23220-7_1

21. Hennicker, R., Wirsing, M.: Dynamic Logic for Ensembles. In: ISoLA. LNCS, vol.
11246, pp. 32–47. Springer (2018). https://doi.org/10.1007/978-3-030-03424-5_3

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.1328472

23. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

24. Jongmans, S.S., Ferreira, F.: Synthetic Behavioural Typing: Sound, Regular Multi-
party Sessions via Implicit Local Types. In: ECOOP. LIPIcs, vol. 263, pp. 9:1–9:29.
Dagstuhl (2023). https://doi.org/10.4230/LIPIcs.ECOOP.2023.9

25. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: ESOP. LNCS, vol. 4421, pp. 64–79. Springer (2007).
https://doi.org/10.1007/978-3-540-71316-6_6

26. Luttik, B.: Unique parallel decomposition in branching and weak
bisimulation semantics. Theor. Comput. Sci. 612, 29–44 (2016).
https://doi.org/10.1016/j.tcs.2015.10.013

27. Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. CWI Q.
2(3), 219–246 (1989), https://ir.cwi.nl/pub/18164

28. Magee, J., Kramer, J.: Concurrency: State Models & Java Programming. Wiley
(2006)

29. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 Se-
quence Diagrams: a survey. Softw. Syst. Model. 10(4), 489–514 (2011).
https://doi.org/10.1007/s10270-010-0157-9

30. Milner, R., Moller, F.: Unique Decomposition of Processes. Theor. Comput. Sci.
107(2), 357–363 (1993). https://doi.org/10.1016/0304-3975(93)90176-T

31. Proença, J., Edixhoven, L.: Caos: A Reusable Scala Web Animator of Operational
Semantics. In: COORDINATION. LNCS, vol. 13908, pp. 163–171. Springer (2023).
https://doi.org/10.1007/978-3-031-35361-1_9

32. Teren, V., Cortadella, J., Villa, T.: Decomposition of transition systems into
sets of synchronizing state machines. In: DSD. pp. 77–81. IEEE (2021).
https://doi.org/10.1109/DSD53832.2021.00021

33. Teren, V., Cortadella, J., Villa, T.: Decomposition of transition systems into sets
of synchronizing Free-choice Petri Nets. In: DSD. pp. 165–173. IEEE (2022).
https://doi.org/10.1109/DSD57027.2022.00031

34. Tuosto, E., Guanciale, R.: Semantics of global view of chore-
ographies. J. Log. Algebr. Meth. Program. 95, 17–40 (2018).
https://doi.org/10.1016/j.jlamp.2017.11.002

19

https://doi.org/10.1145/503209.503226
https://doi.org/10.1007/BFb0084783
https://doi.org/10.7551/mitpress/2516.001.0001
https://doi.org/10.1007/0-306-48738-1_4
https://doi.org/10.1007/978-3-030-23220-7_1
https://doi.org/10.1007/978-3-030-23220-7_1
https://doi.org/10.1007/978-3-030-03424-5_3
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1016/j.tcs.2015.10.013
https://ir.cwi.nl/pub/18164
https://doi.org/10.1007/s10270-010-0157-9
https://doi.org/10.1016/0304-3975(93)90176-T
https://doi.org/10.1007/978-3-031-35361-1_9
https://doi.org/10.1109/DSD53832.2021.00021
https://doi.org/10.1109/DSD57027.2022.00031
https://doi.org/10.1016/j.jlamp.2017.11.002

	Realisability of Global Models of Interaction

