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Abstract 
Consider the problem of scheduling a task set of implicit-deadline sporadic tasks to meet all deadlines on a t-type 
heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor 
platform has mk processors of type-k, where k ∈ {1, 2, . . . , t}. The execution time of a task depends on the type of 
processor on which it executes. The set of shared resources is denoted by R. For each task τi, there is a resource 
set Ri (which is a subset of R) such that for each job of task τi, during one phase of its execution, the job 
requests to hold the resource set Ri exclusively with the interpretation that (i) the job makes a single request to 
hold all the resources in the resource set Ri and (ii) at all times, when a job of task τi holds Ri, no other job holds 
any resource in Ri. Each job of task τi may request the resource set Ri at most once during its execution. A job is 
allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed 
to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance.  

We propose an algorithm, LP-EE-vpr, for scheduling an implicit-deadline sporadic task set on a t-type 
heterogeneous multiprocessor platform that allows a job to migrate only when it requests or releases a resource 
set. We also prove its speed competitive ratio. To the best of our knowledge, LP-EE-vpr is the first algorithm with 
proven speed competitive ratio for real-time scheduling of sporadic tasks with resource sharing on t-type 
heterogeneous multiprocessors. 
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Abstract Consider the problem of scheduling a task set ⌧ of implicit-deadline
sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor
platform where tasks may access multiple shared resources. The multiprocessor
platform has m

k

processors of type-k, where k 2 {1, 2, . . . , t}. The execution time
of a task depends on the type of processor on which it executes. The set of shared
resources is denoted by R. For each task ⌧

i

, there is a resource set R
i

✓ R such that
for each job of ⌧

i

, during one phase of its execution, the job requests to hold the
resource set R

i

exclusively with the interpretation that (i) the job makes a single
request to hold all the resources in the resource set R

i

and (ii) at all times, when a
job of ⌧

i

holds R
i

, no other job holds any resource in R

i

. Each job of task ⌧

i

may
request the resource set R

i

at most once during its execution. A job is allowed to
migrate when it requests a resource set and when it releases the resource set but
a job is not allowed to migrate at other times. Our goal is to design a scheduling
algorithm for this problem and prove its performance.

We propose an algorithm, LP-EE-vpr, which o↵ers the guarantee that if an
implicit-deadline sporadic task set is schedulable on a t-type heterogeneous mul-
tiprocessor platform by an optimal scheduling algorithm that allows a job to mi-
grate only when it requests or releases a resource set, then our algorithm also
meets the deadlines with the same restriction on job migration, if given processors

4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

min{m1,m2,...,mt

}

m⌘

times as fast. (Here MAXP and |P |
are computed based on the resource sets that tasks request.) For the special case
that each task requests at most one resource, the bound of LP-EE-vpr collapses

to 4⇥
⇣

1 + 3

2

⇥
l

|R|
min{m1,m2,...,mt

}

m⌘

. To the best of our knowledge, LP-EE-vpr is

the first algorithm with proven performance guarantee for real-time scheduling of
sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.

Keywords heterogeneous multiprocessors · real-time scheduling · resource
sharing
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1 Introduction

A real-time software system is often modeled as a set of tasks where each task
generates a (potentially infinite) sequence of jobs. Each job of a task may arrive
at any time once a minimum inter-arrival time has elapsed since the arrival of
the previous job of the same task. Each job has an execution time and a deadline
within which it has to complete its execution. Tasks typically share a processor
but in many computer systems, tasks also share other resources such as data
structures, sensors, etc. and tasks must operate on such resources in a mutually

exclusive manner while accessing the resource, that is, at all times, when a job
of a task holds a resource, no other job of any task can hold that resource. Even
on a single processor, the sharing of such resources can have a profound e↵ect
on timing behavior as witnessed by the near failure of the NASA mission, Mars

Pathfinder, because the resource-sharing protocol in the operating system was not
enabled [30]. Scheduling real-time tasks that share resources on a multiprocessor

platform is more complex. Our goal in this work is to design an algorithm for
scheduling real-time tasks that share resources (apart from processors) on t-type
heterogeneous multiprocessors so as to meet all the deadlines.

In a t-type heterogeneous multiprocessor platform (also called unrelated paral-
lel machine) (i) not all processors are of the same type, (ii) the execution time of
a task depends on the type of processor on which it executes and (iii) the number
of distinct types of processors is a constant and is given by t � 2. Many manufac-
turers o↵er chips combining di↵erent types of processors [1,6,27,28,36,40,46,49,
50,29]. Clearly, such chips are key components in heterogeneous systems, and such
systems are increasingly used in practice. Yet, despite this trend, state-of-the-art in
real-time scheduling theory for heterogeneous multiprocessors is under-developed.
The reasons include (i) processors typically share low-level hardware resources such
as caches and interconnects, which make task execution times interdependent and
(ii) dispatching limitations, for example, some processors depend on another pro-
cessor for dispatching [22]. Such idiosyncratic challenges must be addressed on a
case-by-case basis, accounting for the particularities of the architecture. The state-
of-the-art does o↵er some general ideas on analyzing shared low-level hardware
resources [18,19,33,35,37,45,47] and scheduling co-processors [13,21,31]. Unlike
the idiosyncratic challenges though, the dependency of the execution time of a
task on the type of processor to which it is assigned is an inherent property of
heterogeneous multiprocessors. Therefore, designers using heterogeneous multipro-
cessors today and in the future can benefit from scheduling theories that consider
this inherent property. And for this reason, in this work, we design an algorithm
(considering this property) to schedule tasks that share resources (in addition to
processors) on t-type heterogeneous multiprocessors and prove its performance.

Commonly, the performance of a scheduling algorithm is characterized using
the notion of utilization bound [34]. This metric has been used to evaluate schedul-
ing algorithms on uniprocessors [34], identical multiprocessors [2] (for such a plat-
form, the speeds of all processors are the same) and uniform multiprocessors [17]
(for such a platform, the speeds of the processors are di↵erent). However, it does
not translate to algorithms on heterogeneous multiprocessors (even when tasks do
not share resources), hence we rely on the resource augmentation framework [38]
to characterize the performance of the algorithm under design. We say that an
algorithm A has a speed competitive ratio SCRA if, for every task set for which
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it is possible to meet all deadlines, A succeeds to schedule the tasks to meet all
deadlines as well if the speed of each processor is SCRA times faster.

A low speed competitive ratio indicates high performance; the best achievable
is one (which reflects the optimal algorithm for a given problem). If a scheduling
algorithm has an infinite speed competitive ratio then a task set exists which could
be scheduled (by another algorithm) to meet deadlines but would miss deadlines
with the actually used algorithm even if processor speeds were multiplied by an
“infinite” factor. Therefore, a scheduling algorithm with a finite (ideally small)
speed competitive ratio is desirable because it can ensure the designer that dead-
lines will be met by using faster processors. Consequently, the real-time systems
community has embraced the development of scheduling algorithms with finite
speed competitive ratio, e.g., [5,10,20]. Unfortunately, the community has not yet
developed a multiprocessor scheduling algorithm with a proven speed competitive
ratio for the problem of scheduling tasks that share resources on t-type heteroge-

neous multiprocessors. Therefore, in this paper, we present an algorithm for this
problem and prove its performance.

Problem Statement. We consider the problem of scheduling a task set ⌧ of
implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous
multiprocessor platform where a task may access multiple shared resources. There
are m

k

processors of type-k, where k 2 {1, 2, . . . , t}. The execution time of a task
depends on the processor type on which it executes. There is a set R of resources.
For each task ⌧

i

, there is a resource set R
i

✓ R such that for each job of ⌧
i

, during
one phase of its execution, the job requests to hold the resource set R

i

exclusively
with the interpretation that (i) the job makes a single request to hold all the
resources in the resource set R

i

and (ii) at all times, when a job of ⌧
i

holds R
i

, no
other job holds any resource in R

i

. We assume that each job of task ⌧

i

may request
the resource set R

i

at most once during its execution. We also assume (like the
previous work on D-PCP [41]) that a job is allowed to migrate when it requests a
resource set and when it releases a resource set but a job is not allowed to migrate
at other times. One can show (through mapping an instance of 3-PARTITION to
an instance of our problem) that our problem is NP-Complete in the strong sense.
Our goal is to design a scheduling algorithm for this problem and prove the speed
competitive ratio of this algorithm.

Related Work. Scheduling a collection of jobs that share resources is well-studied
in operations research (see [12], for example) but unfortunately these algorithms
deal with jobs which make them less suited for real-time systems because real-time
systems tend to be implemented with tasks that generate a (potentially infinite)
sequence of jobs. The problem of scheduling a set of implicit-deadline sporadic
tasks on heterogeneous multiprocessors has been studied in the past [7–9,16,32,4,
42–44,51] but without considering the case when tasks share resources. However,
recently, a run-time synchronization protocol, PSRP, is proposed in [24] for the
problem of scheduling parallel tasks on a platform comprising multiple heteroge-
neous resources. It considers a parallel task model in which a task may execute on
several processors at the same time whereas we consider a sequential task model in
which a task can execute on at most one processor at any time. In this respect, the
task model considered in [24] is more general than the one considered in this work.
However, the PSRP algorithm of [24] does not have a proven speed competitive
ratio whereas we prove the speed competitive ratio for our algorithm. More im-
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portantly, the work in [24] proposes a “run-time synchronization mechanism” and
thus assumes that an assignment of tasks to processors is given; however, in this
work, we propose an algorithm which assigns tasks to processors before run-time
and handles synchronization at run-time. So, the problem addressed and the goals
of [24] are di↵erent than this work although both are related to sharing multiple
resources on multiprocessors.

For the problem of scheduling tasks that share resources on heterogeneous
multiprocessors, one might also consider an obvious solution of assigning tasks to
processors and then applying a resource-sharing protocol conceived for identical
multiprocessors, for example, D-PCP [41]. However, protocols for resource sharing
on an identical multiprocessor (such as D-PCP) are less e↵ective in minimizing
priority inversion when used in heterogeneous multiprocessors as they are in min-
imizing priority inversion when used in identical multiprocessors. The reason for
this is that, a task holding a shared resource may be executing on a processor
where it runs slowly — causing large priority inversion to other tasks and poor
schedulability. Therefore, a resource-sharing protocol for heterogeneous platforms
ought to be cognizant of the execution rate of each task on each processor type.
It should also provide a bound on how much worse it performs, compared to an
optimal scheme.

This work. In this paper, we propose an algorithm, LP-EE-vpr, for scheduling
implicit-deadline sporadic tasks that share resources on a t-type heterogeneous
multiprocessor platform. We also prove the speed competitive ratio of LP-EE-vpr.

A key idea of our new algorithm is to organize the resource sets into resource

request partitions so that for every pair of tasks ⌧

i

and ⌧

i

0 , if there is a resource
shared between these two tasks (that is, if R

i

T

R

i

0 6= ;) then the resource sets
(R

i

and R

i

0) belong to the same resource request partition. Hence, if two resource
sets of di↵erent tasks belong to di↵erent resource set partitions then we know that
these tasks do not share resources. We will create a procedure for forming the
resource request partitions and then we let P denote the set of resource request
partitions and MAXP denote the number of elements in the resource request par-
tition with the largest number of elements. (P and MAXP will be defined formally
in Section 2.)

The algorithm, LP-EE-vpr, o↵ers the guarantee that if a task set is schedulable
on a t-type heterogeneous multiprocessor platform by an optimal scheduling algo-
rithm that allows a job to migrate only when it requests or releases the resources,
then our algorithm also meets the deadlines with the same restriction on the job

migration, if given processors 4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

min{m1,m2,...,mt

}

m⌘

times as

fast. In order to prove this bound, we create a new algorithm, ra-np-pEDF-fav,
which is used as one part of LP-EE-vpr and prove a lemma which compares fea-
sibility of tasks on a multiprocessor with schedulability of tasks scheduled by
ra-np-pEDF-fav. For the special case that each task requests at most one resource,

the bound of LP-EE-vpr collapses to 4⇥
⇣

1 + 3

2

⇥
l

|R|
min{m1,m2,...,mt

}

m⌘

.

Contributions and Significance of this work. For the problem of scheduling
implicit-deadline sporadic tasks that share multiple resources on t-type hetero-
geneous multiprocessors, no previous algorithm exists and hence our algorithm,
LP-EE-vpr, is the first for this problem with a proven speed competitive ratio.
Organization of the paper. The rest of the paper is organized as follows. Sec-
tion 2 briefs the system model. Section 3 gives an overview of our algorithm and
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Section 4 describes the algorithm in detail. Section 5 proves the speed competitive
ratio of ra-np-pEDF-fav (an intermediate result) as well as the speed competi-
tive ratio of LP-EE-vpr (the main result of this paper). Section 6 discusses useful
properties of the proposed algorithm and finally, Section 7 concludes.

2 System Model

We consider the problem of scheduling a task set ⌧ = {⌧
1

, ⌧

2

, . . . , ⌧

n

} of n implicit-
deadline sporadic tasks that share a set R = {r

1

, r

2

, . . . , r

⇢

} of ⇢ resources on a
t-type heterogeneous multiprocessor platform ⇡ = {⇡

1

,⇡

2

, . . . ,⇡

m

} comprising m

processors of which m

k

processors are of type-k, where k 2 {1, 2, . . . , t}.
In the task set, each implicit-deadline sporadic task ⌧

i

generates a (potentially
infinite) sequence of jobs, with the first job arriving at any time and subsequent
jobs arriving at least T

i

time units apart (referred to as minimum inter-arrival
time). Each job of a task ⌧

i

has to complete its execution within D

i

time units
from its arrival (referred to as deadline).

In the computing platform, a processor ⇡
p

2 ⇡ belongs to one of the t di↵erent
types of processors. The computing platform consists of m

k

processors of type-k,
where k 2 {1, 2, . . . , t}, i.e., it consists of m

1

processors of type-1, m
2

processors
of type-2, . . ., m

t

processors of type-t; hence, m
1

+m

2

+ · · ·+m

t

= m.
The tasks share resources from the set R = {r

1

, r

2

, . . . , r

⇢

} of ⇢ resources.
Specifically, for each task ⌧

i

2 ⌧ , there is a resource set R
i

✓ R such that for each
job of ⌧

i

, during one phase of its execution, the job requests to hold the resource
set R

i

exclusively, that is, at all times, when a job of ⌧
i

holds R

i

, no other job
holds any resource in R

i

. We assume that each job of task ⌧

i

may request the
corresponding resource set R

i

at most once during its execution and further each
job must request all the resources in this set together. We also assume that a job
of a task can execute on at most one processor at any given time.

For a job of a task ⌧

i

such that R

i

6= ;, we categorize the execution into three
phases as follows. Let phase-A execution of a job of task ⌧

i

denote the execution the
job performs from when it arrives until it requests R

i

. Let phase-B execution of a
job of task ⌧

i

denote the execution the job performs from when it requests R
i

until
it releases R

i

. Let phase-C execution of a job of task ⌧

i

denote the execution the
job performs from when it releases R

i

until it finishes execution. This is illustrated
in Figure 1. For a job of a task ⌧

i

such that R

i

= ;, we categorize its execution
into a single phase, phase-A, which denotes the entire execution of the job, i.e.,
the execution the job performs from when it arrives until it finishes execution.

In our model, we allow a job of task ⌧

i

to migrate at the time when it requests
the resource set R

i

and when it releases the resource set R

i

but the job is not
allowed to migrate at other times. (This assumption is similar to previous work on
D-PCP [41].) We assume that the processors a job migrates to/from is determined
by the task that generated the job and consequently, all jobs of the same task
migrate between the same processors. Specifically, phase-A executions of all jobs
of task ⌧

i

are assigned to the same processor (let p

i,a

denote this processor).
Analogously, phase-B executions of all jobs of task ⌧

i

are assigned to the same
processor (let p

i,b

denote this processor). Phase-C executions of all jobs of task ⌧

i

are assigned to the same processor (let p

i,c

denote this processor). Thus, all jobs
of task ⌧

i

only migrate between these (at most three) processors. Note that for a
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A job of task 
Ĳi arrives Job finishes 

Phase-A Phase-B Phase-C 
Time 

Job requests 
resource set Ri 

Job releases 
resource set Ri 

Fig. 1: Categorization of the execution of a task that requests a resource into three
phases.

given task ⌧

i

, it can happen that the processors p

i,a

, p
i,b

and p

i,c

are of di↵erent
types. We refer to such assumption of migration as restricted migration.

Since a job executing within a phase cannot migrate, we can speak about the
execution time of a job in a phase for a given processor type. Let CA

k

i

denote an
upper bound on the execution time of phase-A of a job of task ⌧

i

if this phase-A
execution is assigned to a processor of type-k. Analogously, let CB

k

i

denote an
upper bound on the execution time of phase-B of a job of task ⌧

i

if this phase-B
execution is assigned to a processor of type-k. Let CC

k

i

denote an upper bound
on the execution time of phase-C of a job of task ⌧

i

if this phase-C execution is
assigned to a processor of type-k. For convenience, we introduce the symbol Ck

i

as

follows: For a task ⌧

i

whose jobs access a resource set, Ck

i

def

= CA

k

i

+CB

k

i

+CC

k

i

.

For a task ⌧

i

whose jobs do not access a resource set, Ck

i

def

= CA

k

i

. Intuitively, Ck

i

denotes the execution time of a job of task ⌧

i

if all its phases would be assigned
to a processor of type-k. For convenience, we also use the following notation. The
utilization of a task ⌧

i

on a type-k processor (assuming that all phases of the task

are assigned to processors of type-k) is denoted by u

k

i

and is defined as uk

i

def

=
C

k

i

T

i

.

As mentioned earlier, in this work, we consider implicit-deadline sporadic tasks,
that is, for each task ⌧

i

: D
i

= T

i

. In some parts of our discussion, however, we
discuss constrained-deadline sporadic tasks, that is, for each task ⌧

i

: D
i

 T

i

.
For a constrained-deadline sporadic task ⌧

i

, its density on a type-k processor is

denoted as �k
i

and is defined by �

k

i

def

=
C

k

i

min(D

i

,T

i

)

=
C

k

i

D

i

.

Recall that tasks request resources from set R of resources. This is illustrated
in Figure 2a. It is helpful to introduce auxiliary variables and form a graph de-
scribing the potential conflicts of resource requests. Let UNER denote the set of
unique non-empty resource sets that tasks request. Formally UNER is defined as

UNER
def

=
S

⌧

i

2⌧^R

i

6=;{Ri

}. The graph (V ,E), with the set of vertices V and
the set of edges E is then formed as follows: (i) there is a function FUN that
maps an element in UNER to an element in V , and this is a one-to-one corre-
spondence, and (ii) there is an edge between vertex V

k1

and vertex V

k2

if and
only if (FUN�1(V

k1

))
T

(FUN�1(V
k2

)) 6= ;. Such a graph is shown in Figure 2b.
Let PV =

�

PV

1

, PV

2

, . . . , PV|PV |
 

denote the set of |PV | connected components
of this graph. The connected components in a graph can be found in linear time
using a standard technique [25]. For a connected component and the set of con-
nected components, we introduce symbols that describe potential conflicts between
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W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

r1 r2 r3 r4 r5 r6 r7 

R1 = {r1} 
R2 = {r1, r2} 
R3 = {r4, r5} 

R4 = {r6} 
R5 = {r2, r3} 
R6 = ̴ 
R7 = {r7} 

R8 = {r4, r5} 
R9 = {r6} 
R10 = {r4} 

W = {W1, W2, W3, W4, W5, W6, W7, W8, W9, W10}  R = {r1, r2, r3, r4, r5, r6, r7} 

      
          

(a) A visualization of the resources requested by tasks. An
arrow from a task to a resource indicates that the task re-
quests the resource.

R1  R2  

R5  

R3  

R10  

R4 

R7  

UNER = {R1, R2, R3, R4, R5, R7, R10} 

(b) Construction of the graph from resource sets re-
quested. Each vertex has an associated resource set.

R1 R2  

R5  

R3  

R10  

R4  

R7  

PV1  PV2  PV3  

PV4  

(c) The set PV = {PV
1

, PV
2

, PV
3

, PV
4

} of connected compo-
nents. From PV , we obtain set P = {P

1

, P
2

, P
3

, P
4

} of resource
request partitions where P

1

= {R
1

, R
2

, R
5

}, P
2

= {R
3

, R
10

},
P
3

= {R
4

}, P
4

= {R
7

} and MAXP = 3.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

r1 r2 r3 r4 r5 r6 r7 

r(P1) = {r1, r2, r3} r(P2) = {r4, r5} r(P3) = {r6} r(P4) = {r7} 

(d) The resource partition R(P
j

) for each resource request parti-
tion P

j

.

Fig. 2: An example to illustrate the resource request information of tasks and how
to construct the graph and connected components using this information.
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resource sets. Let P

j

denote the set of unique non-empty resource sets that cor-
respond to the vertices in PV

j

. We refer to P

j

as a resource request partition.

Formally, P
j

def

= {UNER
k

: (UNER
k

2 UNER) ^ (FUN(UNER
k

) 2 PV

j

)}. Let P

be defined as follows: P
def

= {P
j

: PV

j

2 PV } and let MAXP be defined as follows:

MAXP
def

= max
P

j

2P

|P
j

|. These concepts are illustrated in Figure 2c. Let R(P
j

)

be defined as follows: R(P
j

)
def

= {r
`

: 9⌧
i

2 ⌧ such that R
i

2 P

j

and r

`

2 R

i

}. In-
formally, R(P

j

) denotes all the resources in resource request partition P

j

. We refer
to R(P

j

) as a resource partition.
Note that for each P

j

2 P, P

j

0 2 P such that P

j

6= P

j

0 , both of the following
statements are true:

1. R(P
j

) \ R(P
j

0) = ;
2. 8R

i

2 P

j

, 8R
i

0 2 P

j

0 it holds that R
i

\R

i

0 = ;

Also, note that for each task ⌧

i

, it holds that there is at most one element P
k

2 P

such that R
i

2 P

k

. Hence, the tasks in the given task set can be partitioned based
on the resources they request. With this partitioning, it holds that for two tasks
in di↵erent partitions, there is no resource that they share. This is illustrated in
Figure 2d.

Figure 3 and Figure 4 show two algorithms ra-np-pEDF and ra-np-pEDF-fav
which we will find very useful as building blocks in the design of our new algo-
rithm. The algorithm ra-np-pEDF runs on an identical multiprocessor whereas the
algorithm ra-np-pEDF-fav runs on a t-type heterogeneous multiprocessor. The al-
gorithm ra-np-pEDF executes a task on a processor specific for its resource set
and hence the execution of a task can only be delayed because of execution of
another task whose resource set intersects with it. The algorithm ra-np-pEDF-fav
works like ra-np-pEDF but ra-np-pEDF-fav assumes that each task is assigned to
a processor that is its favorite type (a type such that there is no other type for
which the task has smaller execution time).

3 Overview of Our Algorithm

The algorithm, LP-EE-vpr, can be summarized in four steps as shown in Figure 5.
Steps 1-3 are executed before run-time and only step 4 is executed at run-time.
Step 1 produces subtasks from each task so that if the deadlines are met for these
subtasks then the original task meets deadlines as well. Step 2 creates virtual
processors from physical processors. Step 3 assigns subtasks to virtual processors.
Finally, in Step 4, jobs are dispatched at run-time. We now provide more details
about each of these steps.

Step 1 – Creation of subtasks. Categorize the execution of a task that
requests a resource set into three phases as shown in Figure 6. The three phases
of execution are phase-A, phase-B and phase-C, as mentioned in Section 2. Then
create three constrained-deadline sporadic subtasks (one corresponding to each
phase) out of each implicit-deadline sporadic task that requests a resource set and
make di↵erent scheduling provisions for each of these subtasks. A task which does
not request a resource set is categorized into phase-A alone and only one subtask
is created for such a task.
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ra-np-pEDF (Resource-Aware-Non-Preemptive-Partitioned-EDF)
Assumptions: Consider R, a set of resources and a task set such that when-

ever a task performs execution it must be holding its resource
set. Consider a computer platform with |UNER| or more iden-
tical processors.

Before run-time: Select |UNER| processors and call them ACT-processors
and call the other processors NACT-processors. For ACT-
processors, associate a resource set to each ACT-processor so
that the following holds (i) no two ACT-processors are asso-
ciated with the same resource set in UNER and (ii) no two
resource sets in UNER are associated with the same ACT
processor and (iii) every ACT processor is associated with ex-
actly one resource set in UNER and (iv) every resource set
in UNER is associated with exactly one ACT processor. For
NACT-processors, do not associate any resource set to these
processors. A task is assigned to an ACT-processor whose as-
sociated resource set is equal to the resource set of the task.

At run-time: A job is said to be active at time t if the arrival time of the job
is  t and the finishing time of the job is � t. A job J is said
to be eligible at time t if it is active and no currently executing
job holds a resource set that intersects with the resource set
of job J . At each instant t, consider the set of active jobs in
earliest-deadline-first order. If the current job is eligible then
start its execution on the processor to which its corresponding
task is assigned. If the current job is not eligible then do not
execute it; consider the next job in the set of active jobs.

Fig. 3: The behavior of ra-np-pEDF.

For a task that requests a resource set, the “arrival” of both phase-B and phase-
C subtasks have fixed o↵sets from the arrival of the respective phase-A subtask.
This guarantees that the subtasks have the same inter-arrival time as the original
task thereby exhibiting no jitter in their arrival times. Section 4.1 shows how
these constrained-deadline subtasks are created and their parameters (worst-case
execution times, minimum inter-arrival times and deadlines) are determined.

Step 2 – Creation of virtual processors. Virtual processors are logical
constructs, used as task assignment targets by our algorithm1. Create two sets
of virtual processors, namely, VP

AC

and VP
B

virtual processors from the given
physical processors. The VP

B

virtual processors are then grouped together so as to
create |P | virtual processor groups, one group for every resource request partition
in P . The virtual processor group corresponding to the resource request partition
P

j

is denoted as Group
B

[j]. The specification of the virtual processors (i.e., number
of virtual processors and their speeds), their creation and grouping technique is
discussed in Section 4.2.

Step 3 – Task assignment. The phase-A and phase-C subtasks created from
a task ⌧

i

are assigned to the same virtual processor in VP
AC

. The phase-B subtask

1 A virtual processor acts equivalent to a physical processor with speed 1

f

and we assume

that it can be “emulated” on a physical processor of speed 1, using no more than 1

f

of its

processing capacity. One intuitive way of achieving this is by dividing time into short slots of
length S and using 1

f

⇥ S time units in each slot to serve the workload of virtual processor.

By selecting S, we can then make the speed of the emulated processor arbitrarily close to 1

f

(and in practice, S need rarely be impractically short) [14].
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ra-np-pEDF-fav (Resource-Aware-Non-Preemptive-Partitioned-EDF-Favorite-Processor)
Assumptions: Consider R, a set of resources and a task set such that when-

ever a task performs execution it must be holding its resource
set. Consider a t-type heterogeneous multiprocessor platform
with |UNER| or more identical processors of each type.

Before run-time: For each type k 2 {1, 2, . . . , t}, select |UNER| processors
and call them ACT-processors and call the other proces-
sors NACT-processors. For ACT-processors, associate a re-
source set to each ACT-processor so that for each type k 2
{1, 2, . . . , t} the following holds: (i) no two ACT-processors
of type-k are associated with the same resource set in UNER
and (ii) no two resource sets in UNER are associated with the
same ACT processor of type-k and (iii) every ACT processor
of type-k is associated with exactly one resource set in UNER
and (iv) every resource set in UNER is associated with ex-
actly one ACT processor of type-k. For NACT-processors, do
not associate any resource set to these processors. A task is
assigned to an ACT-processor whose associated resource set
is equal to the resource set of the task and whose type is such
that there is no other type where the task has smaller execu-
tion time.

At run-time: A job is said to be active at time t if the arrival time of the job
is  t and the finishing time of the job is � t. A job J is said
to be eligible at time t if it is active and no currently executing
job holds a resource set that intersects with the resource set
of job J . At each instant t, consider the set of active jobs in
earliest-deadline-first order. If the current job is eligible then
start its execution on the processor to which its corresponding
task is assigned. If the current job is not eligible then do not
execute it; consider the next job in the set of active jobs.

Fig. 4: The behavior of ra-np-pEDF-fav.

created from task ⌧

i

requesting the resource set R
i

which is in a resource request
partition, say P

j

, i.e., R
i

✓ R(P
j

), is assigned to Group
B

[j]. This step is discussed
in detail in Section 4.3.

Step 4 – Task scheduling. All phase-A and phase-C subtasks are scheduled
using preemptive Earliest-Deadline-First (EDF) algorithm [34] on their assigned
virtual processors in VP

AC

. All phase-B subtasks that are assigned to virtual
processors in a VP

B

virtual processor group are scheduled using ra-np-pEDF-fav.

Remark: In the rest of the manuscript, to avoid tedium, we skip special mention-
ing of tasks that do not request a resource set (which are split into only phase-A)
and hence, for such tasks, the discussion about phase-B and phase-C does not
apply.

4 The New Algorithm LP-EE-vpr

In this section, we describe the new algorithm, LP-EE-vpr, in detail and also
provide its pseudo-code.
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B
efore run-tim

e 
A

t run-tim
e 

Tasks Processors Resources 

Subtasks Resources Processors 

Subtasks Resources Virtual 
Processors 

Schedule 

 Step 3: Assign subtasks to processors 

Step 2: Create virtual processors 

Step 1: Create subtasks 

 Step 4: Run-time dispatching 

Assignment of subtasks 
to processors 

Arrival of 
jobs 

Fig. 5: Four steps of our new algorithm LP-EE-vpr. Each of the three first steps
takes three inputs and produces outputs. Some outputs are identical to the inputs
(e.g., in Step 1, “processors” are inputs and they are outputs) and they are marked
in white. Some outputs, however, are produced (e.g., “subtasks” are outputs from
Step 1 and they are not inputs to Step 1) and they are marked in gray.

4.1 Creating the Subtasks

LP-EE-vpr creates subtasks. It creates three subtasks from each task, one subtask
for each phase of the task and it assigns minimum inter-arrival time, deadlines
and execution times to each subtask. Specifically, each subtask will have t di↵erent
execution times, one for each type of processor and each subtask will also have
t di↵erent deadlines, one for each type of processor. When a subtask is assigned
to a processor, only one of its execution times is applicable and only one of its
deadlines is applicable; the type of processor on which the subtask is assigned
determines this. The algorithm assigns parameters (minimum inter-arrival time,
deadlines and execution times) to subtasks and assigns subtasks to processors so
that when subtasks are scheduled at run-time it holds that (i) the three subtasks of
a task execute in sequence (that is, one of the subtasks of ⌧

i

must finish execution
before another subtask of ⌧

i

can start execution) and (ii) if each subtask meets its
deadline then the task from which it was formed meets its deadline.
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Job of task Ĳi 
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Phase-A Phase-B Phase-C 

The phase-A 
subtask is  
assigned to 

 vpi,ac ɽ VPAC 

The phase-B subtask 
accessing resources  

is assigned to  
vpi,b ɽ VPB 

The phase-C 
subtask is  

assigned to 
 vpi,ac ɽ VPAC 

Be
fo

re
 

ru
n-

tim
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A
t  

ru
n-

tim
e 

Dispatch  
using 

preemptive EDF 

Dispatch using  
ra-np-pEDF-fav 

t t+Ti Time 

Job requests 
resource set Ri 

Dispatch  
using 

preemptive EDF 

Job releases 
resource set Ri 

Fig. 6: Three execution phases of a job along with the design-time and run-time
decisions of LP-EE-vpr algorithm.

Subtasks of ⌧
i

WCET on type-k Deadline on type-k

Minimum

inter-arrival time

⌧i,A Ck

i,A

= CAk

i

Dk

i,A

=
C

k

i,A

C

k

i

⇥ T

i

2

T
i,A

= T
i

⌧i,B Ck

i,B

= CBk

i

Dk

i,B

= T

i

2

T
i,B

= T
i

⌧i,C Ck

i,C

= CCk

i

Dk

i,C

=
C

k

i,C

C

k

i

⇥ T

i

2

T
i,C

= T
i

Table 1: The three constrained-deadline subtasks that are derived from a given
implicit-deadline sporadic task ⌧

i

that requests a resource set. For a task that does
not request a resource set, only one subtask corresponding to phase-A execution,
i.e., ⌧

i,A

, is derived and hence for such a task, ⌧
i,B

and ⌧

i,C

do not exist.

From each implicit-deadline sporadic task ⌧

i

2 ⌧ , the algorithm creates three
constrained-deadline sporadic subtasks denoted by ⌧

i,A

, ⌧

i,B

and ⌧

i,C

correspond-
ing to phase-A, phase-B and phase-C execution of task ⌧

i

, respectively. In the rest
of the paper, the subscript A,B and C will be used in the notations corresponding
to phase-A, phase-B and phase-C subtasks, respectively. Also, the superscript k

will be used in the notations corresponding to a processor of type-k. For exam-
ple, Ck

i,A

, C

k

i,B

and C

k

i,C

denote the worst-case execution time of task ⌧

i

2 ⌧ on a
processor of type-k before requesting the resource set R

i

(phase-A subtask), while
holding the resource set (phase-B subtask) and after releasing the resource set
(phase-C subtask), respectively2.

The parameters of the three subtasks ⌧
i,A

, ⌧

i,B

and ⌧

i,C

that are derived from
the corresponding task ⌧

i

2 ⌧ are set as shown in Table 1. It is easy to see that
the following property holds: for each task ⌧

i

2 ⌧ and for each pair of processor
types k and k

0, it holds that D

k

i,A

+D

k

0

i,B

+D

k

i,C

 T

i

= D

i

. This implies that if
for each task ⌧

i

2 ⌧ it holds that phase-A and phase-C of ⌧
i

are assigned to the
same processor type then if at run-time we can ensure that all subtasks meet their

2 Recall that, for a task that does not request a resource set, Ck

i,B

and Ck

i,C

do not exist.
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deadlines then the corresponding tasks meet all their deadlines as well. Indeed,
later in Section 4.3 while assigning subtasks to processors, we ensure that this
property holds.

We group these derived subtasks into the following task sets:

⌧

A = {⌧
i,A

| i 2 {1, 2, . . . , n}}
⌧

B,R(Pj) = {⌧
i,B

| i 2 {1, 2, . . . , n} ^ R

i

✓ R(P
j

)}
⌧

C = {⌧
i,C

| i 2 {1, 2, . . . , n}}

Note that ⌧
i,A

refers to a subtask and ⌧

A refers to a set of subtasks. Analogously,
for ⌧

i,B

and ⌧

B,R(Pj). Analogously, for ⌧
i,C

and ⌧

C .
As opposed to the given task set ⌧ which contains implicit-deadline sporadic

tasks, these derived task sets contain constrained-deadline sporadic subtasks. Also,
observe that the task set ⌧

A is derived such that, on a processor of type-k, the
density of every subtask ⌧

i,A

2 ⌧

A is twice the utilization of the corresponding
task ⌧

i

2 ⌧ . Formally,

8⌧
i,A

2 ⌧

A : �

k

i,A

=
C

k

i,A

D

k

i,A

=
C

k

i,A

C

k

i,A

⇥T

i

C

k

i

⇥2

=
2⇥ C

k

i

T

i

= 2⇥ u

k

i

of ⌧
i

2 ⌧ (1)

Analogously, it can be seen that, the density of every subtask ⌧

i,C

2 ⌧

C is twice
the utilization of the corresponding task ⌧

i

2 ⌧ .

4.2 Creating Virtual Processors from a t-type Heterogeneous Multiprocessor
Platform

In this section, we describe the creation of virtual processors from the given phys-
ical processors of a t-type heterogeneous multiprocessor platform.

We create m + t ⇥ |P | ⇥MAXP virtual processors from the given m physical
processors as shown in Figure 7. The main idea is as follows. We treat physical
processors of each type as an identical multiprocessor platform and create a certain
number of virtual processors of the corresponding type from this platform. To be
precise, m

k

physical processors of type-k are treated as an identical multiprocessor
platform and m

k

+ |P | ⇥ MAXP virtual processors of type-k are created from
them (see di↵erent columns in Figure 7, separated by “solid vertical lines”) and
ordered as shown in Figure 7. Now, if we look at the first and the second row in
Figure 7 (separated by “dashed horizontal lines”), each of these rows represent a
t-type heterogeneous multiprocessor platform of virtual processors — the first row
represents a t-type heterogeneous multiprocessor platform with t ⇥ |P | ⇥MAXP
virtual processors of which |P |⇥MAXP virtual processors are of type-k (8k : k 2
{1, 2, . . . , t}) and the second row represents a t-type heterogeneous multiprocessor
platform with m virtual processors of which m

k

virtual processors are of type-k
(8k : k 2 {1, 2, . . . , t}). In this manner, m + t ⇥ |P | ⇥ MAXP virtual processors
are created from m physical processors of a t-type heterogeneous multiprocessor
platform. Precisely, we create the virtual processors with following specifications:
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... ... ... . . . 

Type-1 processors . . . 

m1 physical 
processors 

m2 physical 
processors 

mt physical 
processors 

. . . . . . . . . 

m1 VPAC virtual 
processors 

m2 VPAC virtual 
processors . . . 

mt VPAC virtual 
processors 

. . . . . . . . . 

|P|*MAXP VPB virtual 
processors . . . 

|P|*MAXP VPB 
virtual processors 

|P|*MAXP VPB  
virtual processors 

Type-2 processors Type-t processors 

Fig. 7: m+ t⇥ |P |⇥MAXP virtual processors created from m physical processors
of a t-type heterogeneous multiprocessor platform.

– m virtual processors (denoted as VP
AC

): From m

k

physical processors of
type-k, we create m

k

virtual processors of type-k (8k : k 2 {1, 2, . . . , t}) each
of speed 1

1+

3
2
⇥MAXP⇥

l
|P |⇥MAXP

m

k

m times the speed of a corresponding physical

processor of type-k. So, in total, m such virtual processors are created from
m physical processors. These are later used to schedule phase-A and phase-C
subtasks and are referred to as ‘VP

AC

virtual processors’.
– t⇥ |P |⇥MAXP virtual processors (denoted as VP

B

): From m

k

physical
processors of type-k, we create |P |⇥MAXP virtual processors of type-k (8k :

k 2 {1, 2, . . . , t}) each of speed
3
2
⇥MAXP

1+

3
2
⇥MAXP⇥

l
|P |⇥MAXP

m

k

m times the speed of

a corresponding physical processor of type-k. So, in total, t ⇥ |P | ⇥ MAXP
such virtual processors are created from m physical processors of a t-type
heterogeneous multiprocessor platform. These are later used to schedule phase-
B subtasks and are referred to as ‘VP

B

virtual processors’.

In other words, from each processor type, say type-k, we create m

k

+ |P |⇥MAXP
virtual processors of type-k, i.e., m

k

VP
AC

virtual processors of type-k and |P |⇥
MAXPVP

B

virtual processors of type-k. The way these virtual processors are
created is as follows. From each processor ⇡

p

of type-k (8k : k 2 {1, 2, . . . , t}):
– create one VP

AC

virtual processor of type-k of speed 1

1+

3
2
⇥MAXP⇥

l
|P |⇥MAXP

m

k

m

times the speed of ⇡
p

– then create
l

|P |⇥MAXP

m

k

m

VP
B

virtual processors of type-k of speed
3
2
⇥MAXP

1+

3
2
⇥MAXP⇥

l
|P |⇥MAXP

m

k

m times the speed of ⇡
p

Lemma 1 The earlier specified set of virtual processors, VP
AC

and VP
B

, can be

created from the given t-type heterogeneous multiprocessor platform ⇡ as described
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above. This procedure to create the virtual processors ensures that the capacity of

a virtual processor comes from a single physical processor.

Proof The proof is a direct consequence of the fact that each physical processor of
type-k can emulate one VP

AC

virtual processor of type-k (8k : k 2 {1, 2, . . . , t})
and

l

|P |⇥MAXP

m

k

m

VP
B

virtual processors of type-k, as per the specifications of the

virtual processors. Indeed, for each ⇡

p

2 ⇡, we have

1⇥ 1

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

k

m

| {z }

VPAC virtual processor

+

⇠

|P |⇥MAXP
m

k

⇡

⇥
3

2

⇥MAXP

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

k

m

| {z }

VPB virtual processors

= 1

Thus, m
k

physical processors of type-k can emulate m

k

VP
AC

virtual processors

of type-k and
l

|P |⇥MAXP

m

k

m

⇥m

k

� |P |⇥MAXPVP
B

virtual processors of type-k.

Overall, m physical processors of a t-type heterogeneous multiprocessor platform
can emulate m VP

AC

virtual processors and t⇥ |P |⇥MAXP VP
B

virtual proces-
sors.

From the above discussion, it is trivial to see that no virtual processor is created
using two or more physical processors and hence it holds that the capacity of a
virtual processor comes from a single physical processor alone. Hence the proof.

ut

We now describe the rest of the steps in the algorithm, LP-EE-vpr, for as-
signing and scheduling the tasks that share resources on t-type heterogeneous
multiprocessors with the help of pseudo-code.

4.3 Pseudo-code of LP-EE-vpr

The pseudo-code of LP-EE-vpr is shown in Algorithm 1. The algorithm works as
follows.

On line 1, it creates the sets ⌧A, ⌧B,R(Pj) and ⌧

C of constrained-deadline spo-
radic subtasks from the given set ⌧ of implicit-deadline sporadic tasks as described
in Section 4.1.

On line 2, it creates mVP
AC

and t⇥ |P |⇥MAXPVP
B

virtual processors from
the given t-type heterogeneous multiprocessor platform of m physical processors
as discussed in Section 4.2.

On line 3, it groups t⇥ |P |⇥MAXP VP
B

virtual processors into |P | groups of

VP
B

virtual processors; each group contains t ⇥ MAXP VP
B

virtual processors,
with MAXP virtual processors of each type, i.e., MAXP virtual processors of type-
1, MAXP virtual processors of type-2 and so on. Each group of virtual processors,
denoted by Group

B

[j], where j = {1, 2, . . . , |P |}, is used for scheduling phase-B
subtasks that access a subset of resources from resource partition R(P

j

).
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Algorithm 1: LP-EE-vpr(⌧,⇧ (m
1

,m
2

, . . . ,m
t

), R): for scheduling tasks
that share resources on t-type heterogeneous multiprocessors

// Lines 1-10 execute before run-time; line 11 executes at run-time.

1 Create the sets ⌧A, ⌧B,R(Pj) and ⌧C of constrained-deadline sporadic subtasks from
the given task set ⌧ of implicit-deadline sporadic tasks as described in Section 4.1.

2 Create m VP
AC

and t⇥ |P |⇥MAXP VP
B

virtual processors from the given m
physical processors of a t-type heterogeneous multiprocessor platform as described in
Section 4.2.

3 Form |P | virtual processor groups out of t⇥ |P | VP
B

virtual processors as follows.
Take MAXP VP

B

virtual processors of each type (i.e., t⇥MAXP virtual processors, in
total) and form a virtual processor group, Group

B

[1]; then take MAXP more VP
B

virtual processor of each type and form another virtual processor group, Group
B

[2]
and so on. Overall, we will have |P | VP

B

virtual processor groups; every group
containing t⇥MAXP VP

B

virtual processors; MAXP virtual processors of each type.
4 Assign all the subtasks ⌧

i,A

2 ⌧A to VP
AC

virtual processors using the algorithm
LP-EE [9] (more details in the description of the algorithm in Section 4.3).

5 foreach ⌧
i

2 ⌧ do

6 if

�
9j : j 2 {1, 2, . . . , |P |} ^ R

i

✓ R(P
j

)
�
then

7 Assign ⌧
i,B

to the MAXP virtual processors in the j’th VP
B

virtual processor
group, Group

B

[j], on which subtask ⌧
i,B

has the smallest execution time.
8 end

9 end

10 Assign every subtask ⌧
i,C

2 ⌧C to that virtual processor in VP
AC

to which the

corresponding subtask ⌧
i,A

2 ⌧A has been assigned on line 4.
11 Schedule the subtasks of ⌧A and ⌧C that are assigned on each VP

AC

virtual processor
using preemptive EDF on that virtual processor. Schedule the subtasks of ⌧

i,B

that are
assigned to each VP

B

virtual processor group using ra-np-pEDF-fav, on the respective
virtual processor group.

On line 4, it assigns the set of phase-A subtasks, ⌧A, to VP
AC

virtual processors
using LP-EE algorithm3[9]. The algorithm, LP-EE, is designed for non-migratively
scheduling a set of implicit-deadline sporadic tasks that do not share resources on
t-type heterogeneous multiprocessors. The internals of LP-EE and its performance
bound are described in detail in [9]. The average-case performance of LP-EE is dis-
cussed in [42]. Therefore, we only give an overview of LP-EE here. The algorithm,
LP-EE, has two steps: first, it assigns the tasks to processors and then schedules
the tasks on each processor using EDF. The task assignment step works as follows:

– The assignment problem is formulated as Integer Linear Program (ILP) and
then relaxed to Linear Program (LP). The LP formulation is solved using
an LP solver (such as GUROBI Optimizer [23] or IBM ILOG CPLEX [26]).
Tasks are then assigned to the processors according to the values of the respec-
tive indicator variables in the solution provided by the solver. Using certain
tricks [39], it is shown that there exists a solution (for example, the solution
that lies on the vertex of the feasible region) to the LP formulation in which all
but at most m� 1 tasks are integrally assigned to processors where m denotes
the number of processors.

– The remaining at most m � 1 tasks are integrally assigned on the remaining
capacity of the processors using “exhaustive enumeration”.

3 We selected LP-EE because it is simple to implement and easy to explain and it has a
proven speed competitive ratio. However, a couple of other algorithms can be used instead as
discussed later in Section 6.5
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The abbreviation LP-EE comes from the fact that the algorithm makes use of
Linear Programming and Exhaustive Enumeration techniques to provide the so-
lution [9].

On lines 5–9, it assigns all the phase-B subtasks that request the “related”
resources, i.e., resources that belong to the same resource partition, to the same
VP

B

virtual processor group. Specifically, all the subtasks requesting (a subset of)
resources from resource partition R(P

j

), 8j 2 {1, 2, . . . , |P |}, are assigned to the
j’th VP

B

virtual processor group, Group
B

[j].
On line 10, it assigns every phase-C subtask, ⌧

i,C

, to that virtual processor in
VP

AC

to which the corresponding phase-A subtask, ⌧
i,A

, has been assigned. Such
an assignment does not endanger the schedulability of the tasks assigned on the
VP

AC

virtual processors as there is a precedence constraint between these subtasks
— this is formally proven later in Lemma 9 in Section 5.3. Also, such an assignment
ensures that the number of migrations per job is restricted to at most two. This
is easy to verify because both phase-A and phase-C of a task execute on the
same physical processor as they are assigned to the same virtual processor (recall
that the capacity of a virtual processor comes from a single physical processor
— Lemma 1) and only the phase-B subtask might have to execute on a di↵erent
physical processor as the virtual processor to which phase-B of the task is assigned
might have been created from a di↵erent physical processor.

On line 11, it schedules the subtasks of ⌧A and ⌧

C that are assigned to each
VP

AC

virtual processor using preemptive EDF on that virtual processor. It sched-
ules the subtasks of ⌧B,R(Pj) that are assigned to each VP

B

virtual processor group,
Group

B

[j], using ra-np-pEDF-fav, on the respective virtual processor group. Recall
that all the tasks in ⌧

B,R(Pj) request (a subset of) resources from resource partition
R(P

j

) and hence are assigned to VP
B

virtual processor group, Group
B

[j].
For preemptive EDF scheduling, the following result is well-known (an easily

obtained generalization of the result shown in [34]), which we make use of while
proving the performance of LP-EE-vpr.

Lemma 2 (utilization-based schedulability test)

Let ⌧ [⇡
p

] denote the tasks assigned on a processor ⇡

p

of type-k. If

P

⌧

i

2⌧ [⇡

p

]

u

k

i

 1
and tasks are scheduled with preemptive EDF on ⇡

p

then all deadlines are met.

Note that in Algorithm 1, lines 1–10 execute before run-time and only line 11
executes at run-time. The algorithm, LP-EE-vpr, is named after the fact that it
makes use of the algorithm, LP-EE, for assigning some of the subtasks on v irtual
processors.

5 Performance Analysis of LP-EE-vpr Algorithm

In this section, we prove the speed competitive ratio of the proposed algorithm.
But first we present notations (in Section 5.1), then prove the speed competitive
ratio of ra-np-pEDF (in Section 5.2). After that, we present some useful results (a
previously known and a few new results, in Section 5.3) and the speed competitive
ratio of ra-np-pEDF-fav that are used later while proving the speed competitive
ratio of LP-EE-vpr (in Section 5.4).
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5.1 Notations

Let ⇧ (m
1

,m
2

, . . . ,m
t

) denote a t-type heterogeneous multiprocessor platform of
m processors of which m

k

processors are of type-k, where k 2 {1, 2, . . . , t} and
8k : m

k

> 0; note that m = m

1

+m

2

+ . . .+m

t

.
Let ⇧ (m

1

,m
2

, . . . ,m
t

)⇥ hs
1

, s
2

, . . . , s
t

i denote a t-type platform in which, for
each k 2 {1, 2,. . . , t}, the speed of every type-k processor is s

k

times the speed
of a corresponding type-k processor in ⇧ (m

1

,m
2

, . . . ,m
t

), where s

k

> 0 is a real
number. As a special case of the above, we use ⇧ (m

1

,m
2

, . . . ,m
t

)⇥ hs, s, . . . , si
to denote a t-type platform in which, for each k 2 {1, 2,. . . , t}, the speed of ev-
ery type-k processor is s times the speed of a corresponding type-k processor in
⇧ (m

1

,m
2

, . . . ,m
t

), where s > 0 is a real number. For convenience, we sometimes
denote ⇧ (m

1

,m
2

, . . . ,m
t

)⇥ hs, s, . . . , si as ⇧ (m
1

,m
2

, . . . ,m
t

)⇥ s.
If ⌧ is a task set and y, y

0
, y

00 are positive real numbers then we let the symbol
mulCDT(⌧, y, y0, y00) denote a task set where for each task in ⌧ : its execution time
is multiplied by y; its deadline is multiplied by y

0 and its minimum inter-arrival
time is multiplied by y

00.
We will now introduce three types of predicates (i) predicates that state if a

task set is schedulable for a given scheduling algorithm, (ii) predicates that state
if a task set is feasible and (iii) predicates that state if a task set is schedulable for
a given scheduling algorithm according to a certain class of schedulability tests.

For a task set ⌧ where tasks do not share any resources, we let the symbol
sched (A, ⌧,⇧ (m

1

,m
2

, . . . ,m
t

)) be a predicate that indicates that if ⌧ is scheduled
by algorithm A on platform ⇧ (m

1

,m
2

, . . . ,m
t

) then for each set of jobs that ⌧

can generate according to the model in Section 2, it holds that all jobs meet their
deadlines and the constraint of restricted migration is satisfied (which in this case
means that no migration is allowed because there are only phase-A executions).

For a task set ⌧ where tasks may share resources in R, we let the symbol
sched (A, ⌧, R,⇧ (m

1

,m
2

, . . . ,m
t

)) be a predicate that indicates that if ⌧ is sched-
uled by algorithm A on platform ⇧ (m

1

,m
2

, . . . ,m
t

) then for each set of jobs that
⌧ can generate according to the model in Section 2, it holds that all jobs meet
their deadlines and the constraint of restricted migration is satisfied and there
is no instant where a resource in R is held by more than one job. Analogously,
for a task set ⌧ where tasks may share resources in R, and where P

j

is a re-
source set and ⌧

B,R(Pj) is the task set derived as in Section 4.1, we let the symbol

sched
⇣

A, ⌧

B,R(Pj)
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

)
⌘

be a predicate that indicates that

if ⌧B,R(Pj) is scheduled by algorithm A on platform ⇧ (m
1

,m
2

, . . . ,m
t

) then for
each set of jobs that ⌧B,R(Pj) can generate according to the model in Section 2, it
holds that all jobs meet their deadlines and the constraint of restricted migration
is satisfied (which in this case means that no migration is allowed because there
are only phase-B executions) and there is no instant where a resource in R(P

j

) is
held by more than one job.

For a task set ⌧ where tasks do not share any resources, we let the symbol
nmig-feas (⌧,⇧ (m

1

,m
2

, . . . ,m
t

)) be a predicate that indicates that for each set
of jobs that ⌧ can generate according to the model in Section 2, it holds that
there exist a schedule that meets all deadlines of all jobs and the constraint of
restricted migration is satisfied (which in this case means that no migration is
allowed because there are only phase-A executions).
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For a task set ⌧ where tasks may share resources in R, we let the symbol
rmig-feas (⌧, R,⇧ (m

1

,m
2

, . . . ,m
t

)) be a predicate that indicates that for each set
of jobs that ⌧ can generate according to the model in Section 2, it holds that there
exist a schedule that meets all deadlines of all jobs and the constraint of restricted
migration is satisfied and there is no instant where a resource in R is held by more
than one job. Analogously, for a task set ⌧ where tasks may share resources in
R, and where P

j

is a resource set and ⌧

B,R(Pj) is the task set derived from ⌧ as

in Section 4.1, we let the symbol rmig-feas
⇣

⌧

B,R(Pj)
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

)
⌘

be a predicate that indicates that for each set of jobs that ⌧

B,R(Pj) can generate
according to the model in Section 2, it holds that there exist a schedule that meets
all deadlines of all jobs and the constraint of restricted migration is satisfied (which
in this case means that no migration is allowed because there are only phase-B
executions) and there is no instant where a resource in R(P

j

) is held by more than
one job.

Some of these predicates will be used by adding a su�x “-�” to the schedul-
ing algorithm or algorithm class where applicable, for example, for non-migrative
scheduling of constrained-deadline sporadic subtasks corresponding to di↵erent
phases. Such predicates with su�x -� signify that the schedulability of the task
set other than just being established via some exact test, must additionally be
ascertainable via a (potentially pessimistic) density-based uniprocessor schedula-

bility test (similar to Lemma 2). That is, for ⌧ [⇡
p

] of tasks assigned on a processor
⇡

p

of type-k, to meet deadlines, it must hold that
P

⌧

i

2⌧ [⇡

p

]

�

k

i

 1. For example,

sched(A-�, ⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) denotes a predicate that is true if for the task set
⌧ which does not share resources is ascertained schedulable by algorithm A on plat-
form ⇧ (m

1

,m
2

, . . . ,m
t

) using the above mentioned density-based schedulability
test.

We use a function create-fav-taskset(⌧,⇧ (m
1

,m
2

, . . . ,m
t

)). This function
takes a task set ⌧ as input in which each task ⌧

i

2 ⌧ is characterized by its
minimum inter-arrival time T

i

and its deadline D

i

and its t worst-case execution
times (one WCET on each processor type) C1

i

, C2

i

, . . ., Ct

i

. The function outputs a
task set ⌧ 0 in which each task ⌧

0
i

2 ⌧

0 is characterized by its minimum inter-arrival
time T

0
i

and its deadline D

0
i

and its single worst-case execution time C

0
i

. For each
task ⌧

0
i

2 ⌧

0, it sets T 0
i

= T

i

and D

0
i

= D

i

and C

0
i

= min
k2{1,2,...,t} C

k

i

. Informally,
from the given task set, it constructs another task set in which, the execution time
of each task is equal to the execution time of its corresponding task on its favorite
processor type and the minimum inter-arrival time of each task is equal to the
minimum inter-arrival time of its corresponding task and the deadline of each task
is equal to the deadline of its corresponding task.

We also use a function create-fav-platform(⌧,⇧ (m
1

,m
2

, . . . ,m
t

),m0) which
generates a multiprocessor platform with m

0 identical processors where each pro-
cessor is such that for each task in ⌧ it holds that the execution time is as if it
executed on the processor type in ⇧ (m

1

,m
2

, . . . ,m
t

) for which its execution time
is the smallest.
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5.2 Speed Competitive Ratio of The Algorithm ra-np-pEDF-fav

The LP-EE-vpr makes use of the ra-np-pEDF-fav algorithm (mentioned in Sec-
tion 4.3) to schedule phase-B execution of tasks. For this reason, we need to show
that ra-np-pEDF-fav has a finite speed competitive ratio. We will do so by showing
the speed competitive ratio of ra-np-pEDF and later show (in Section 5.3) how it
translates to a heterogeneous multiprocessor.

As a by-product of our proof of the speed competitive ratio of ra-np-pEDF,
we obtain a corollary which is a new result on the speed competitive ratio of non-
preemptive EDF on a single processor. Previously, it was known that the speed
competitive ratio of non-preemptive EDF on a single processor is at most three.
In this section, we see that it is at most two.

We start by proving a relationship between feasibility of a set of tasks that
executes always holding a resource and the feasibility of this task set on an identical
multiprocessor.

Lemma 3

8⌧, 8⇧ (m
1

,m
2

, . . . ,m
t

), 8R, v � |UNER| such that ⌧ is an implicit� deadline

sporadic task set and 8⌧
i

2 ⌧ : R
i

6= ; and 8⌧
i

2 ⌧ it holds that whenever ⌧

i

executes it holds resource set R

i

:

rmig-feas (⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

))

)

rmig-feas

✓

create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) , R,

create-fav-platform (⌧,⇧ (m
1

,m
2

, . . . ,m
t

), v)

◆

Proof The lemma follows from two observations:

1. The task set ⌧ is such that at each instant, there can be at most |UNER| jobs
executing at this instant.

2. If a task set is feasible then giving each task an execution time as if it executed
on the processor where its execution time is smallest cannot violate feasibility.

The truth of first observation can be seen as follows: Suppose that the first
observation was false. Then there would exist a feasible schedule such that there
exist an instant where |UNER|+1 or more jobs execute at that instant. Then it
follows that there are two or more jobs that execute holding the same resource set
in UNER. Consequently, this schedule is not feasible. Hence the first observation
is true.

The truth of the second observation can be seen as follows: For a feasible
schedule, if we change the execution time of a job to a smaller value then we can
simply idle the processor so that the schedule for all other jobs are the same and
hence feasibility is not violated by reducing the execution time of a job. ut

We can then show (below) how feasibility relates to schedulability of ra-np-pEDF.
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Lemma 4

8⌧, 8⇧ (m
1

,m
2

, . . . ,m
t

), 8R, 8x � 1, v � |UNER| such that ⌧ is an implicit�
deadline sporadic task set and 8⌧

i

2 ⌧ : R
i

6= ; and 8⌧
i

2 ⌧ it holds that

whenever ⌧

i

executes it holds resource set R

i

:

rmig-feas

✓

create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) , R,

create-fav-platform (⌧,⇧ (m
1

,m
2

, . . . ,m
t

), v)

◆

)

sched

✓

ra-np-pEDF,

mulCDT(create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) ,
1

3⇥ v ⇥ x

,

1
x

, 1), R,

create-fav-platform (⌧,⇧ (m
1

,m
2

, . . . ,m
t

), v)

◆

Proof The proof is by contradiction. Suppose that the claim is false. Then there
exists a

⌧,⇧ (m
1

,m
2

, . . . ,m
t

), R, x � 1, v � |UNER| such that ⌧ is an implicit-deadline
sporadic task set and 8⌧

i

2 ⌧ : R
i

6= ; and 8⌧
i

2 ⌧ it holds that whenever ⌧
i

executes it holds resource set R
i

for which it holds that
((2) is true) ^ ((3) is false)

where (2) and (3) are defined as:

rmig-feas

✓

create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) , R,

create-fav-platform (⌧,⇧ (m
1

,m
2

, . . . ,m
t

), v)

◆

(2)

sched

✓

ra-np-pEDF,

mulCDT(create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) ,
1

3⇥ v ⇥ x

,

1
x

, 1), R,

create-fav-platform (⌧,⇧ (m
1

,m
2

, . . . ,m
t

), v)

◆

(3)

Note that both (2) and (3) make statements about a task set and a multipro-
cessor platform with identical processors. Since it is an identical multiprocessor, we
do not need to specify execution times as depending on processor type and hence,
we let C

j

denote the execution time of task ⌧

j

for the task set in (2). Because of
our assumption that the task set ⌧ is an implicit-deadline sporadic task set and
because (2), it follows that:

(C
1

 D

1

= T

1

) ^ (C
2

 D

2

= T

2

) ^ . . . ^ (C
n

 D

n

= T

n

) (4)
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We will now discuss the implication of (3) being false. Since (3) is false, it follows
that there exist an assignment of arrival times to jobs such that a deadline is
missed. Let t

0

denote the earliest time when a deadline is missed. Let us choose
a job whose deadline expires at time t

0

and let us call it DMJ (deadline miss
job). Let t

2

denote the arrival time of the job DMJ. Let ⌧

k

denote the task that
generated DMJ. From (4) we get:

C

k

 D

k

= T

k

(5)

Let S(⌧
k

) be defined as:

S(⌧
k

) = {⌧
k

0 : (⌧
k

0 2 create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)))

^(⌧
k

0 6= ⌧

k

) ^ (|R
k

0 \R

k

| � 1)} (6)

S(⌧
k

) is the set of tasks that can share a resource with task ⌧

k

. If |S(⌧
k

)| = 0 then
DMJ would have executed immediately when it arrived and because of (5) and
because 1

3⇥v⇥x

 1

x

it would follow that ⌧

k

would have met its deadline and this
would be a contradiction. Hence, we know that:

|S(⌧
k

)| � 1 (7)

Let BLT (⌧
k

, DMJ, t

2

) be defined as:

BLT (⌧
k

, DMJ, t

2

) = {⌧
k

0 : (⌧
k

0 2 S(⌧
k

)) ^
(there is a job of task ⌧

k

0 executing at time t

2

)} (8)

BLT (⌧
k

, DMJ, t

2

) is the set of tasks in S(⌧
k

) such that these tasks executed
at time t

2

. Let BLJ(⌧
k

, DMJ, t

2

) be defined as the set of jobs generated by
BLT (⌧

k

, DMJ, t

2

) such that the jobs executed at time t

2

. Clearly, for each ele-
ment in BLJ(⌧

k

, DMJ, t

2

), there is a corresponding element in BLT (⌧
k

, DMJ, t

2

).
Intuitively, BLT means ”blocking-tasks” and BLJ means ”blocking-jobs”.

Let us explore two cases:

1. |BLT (⌧
k

, DMJ, t

2

)| � 1
Let t

1

denote maximum of the finishing times of the jobs in BLJ(⌧
k

, DMJ, t

2

).
Let us choose a job in BLJ(⌧

k

, DMJ, t

2

) that finished at time t

1

and let the
task that generated this job be denoted ⌧

i

and let t
b

denote the starting time
of this job. From the definition of t

2

, we have t

b

 t

2

.
We will now discuss the time interval [t

b

,t
0

) and we let L denote the duration
of this time interval (that is L = t

0

� t

b

). During this time, at each instant
t, at least one of the following is true: (i) the set of jobs executing at time t

includes a job of task ⌧

i

or (ii) the set of jobs executing at time t includes DMJ
(the job of task ⌧

k

) or (iii) the set of jobs executing at time t includes a job of
a task in S(⌧

k

) \ {⌧
i

}.
Since we had a deadline miss, we obtain that:

C

i

3⇥ v ⇥ x

+max(0, b
L� D

k

x

T

k

c+ 1)⇥ C

k

3⇥ v ⇥ x

+

X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, b
L� D

i

0
x

T

i

0
c+ 1)⇥ C

i

0

3⇥ v ⇥ x

> L (9)
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Using (4) on (9) and rewriting yields:

C

i

3⇥ v ⇥ x

+max(0, b
L� T

k

x

+ T

k

T

k

c)⇥ C

k

3⇥ v ⇥ x

+

X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0

3⇥ v ⇥ x

> L (10)

Since at time t

2

, there is a job of task ⌧

i

executing and it follows that this job
of task ⌧

i

started to execute at time t

2

or earlier. Since t

b

is defined as the
starting time of this job we obtain: t

b

 t

2

. This gives us:

t

0

� t

2

 t

0

� t

b

(11)

Note that t
0

� t

2

= D

k

/x. Also note that t
0

� t

b

= L. This gives us:

D

k

x

 L (12)

Using (4) on (12) yields:

T

k

x

 L (13)

We will now discuss the implication of (2) being true. Since (2) is true, it
follows that for every possible assignment of arrival times to jobs in the task
set create-fav-taskset (⌧,⇧ (m

1

,m
2

, . . . ,m
t

)), all deadlines are met on an
identical multiprocessor with v processors and where it is required that the
resource sharing constraints are respected. Let us consider the case that tasks
arrive periodically. Then it follows that there exist a time when a job of task
⌧

i

arrives. And since deadlines are met, this job must have finished at most T
i

time units later and hence there exist a time when a job of task ⌧

i

executed.
Let tarbegin denote the time when this job of task ⌧

i

started to execute and
let tarend denote the time L

0 time units later. (Clearly, tarend-tarbegin = L

0).
We can also observe that for some other task ⌧

i

0 , it holds that at each instant,
a job of task ⌧

i

0 arrives at most T

i

0 time units later. Hence, during this time
interval [tarbegin,tarend] (of duration L

0), there are at least

max(0, bL
0 � T

i

0

T

i

0
c) (14)

jobs of task ⌧

i

0 with arrival time [tarbegin,tarend].
Hence, during this time interval [tarbegin,tarend] (of duration L

0), there are
at least

max(0, bL
0 � T

i

0 �D

i

0

T

i

0
c) (15)

jobs of task ⌧

i

0 with arrival time and deadline within [tarbegin,tarend].
Using (4) gives us that during this time interval [tarbegin,tarend] (of duration
L

0), there are at least

max(0, bL
0 � 2T

i

0

T

i

0
c) (16)
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jobs of task ⌧

i

0 with arrival time and deadline within [tarbegin,tarend].
Note that for the feasible schedule, at each instant, there can be at most v jobs
executing (because otherwise there would be two jobs executing while holding
the same resource set). With this observation and using (16) gives us:

min(C
i

, L

0) + max(0, bL
0 � 2T

k

T

k

c)⇥ C

k

+

X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, bL
0 � 2T

i

0

T

i

0
c)⇥ C

i

0

 v ⇥ L

0 (17)

This expression (17) applies for any choice of L0. Applying it with L

0 = 3L⇥x

gives us:

min(C
i

, 3L⇥ x) + max(0, b3L⇥ x� 2T
k

T

k

c ⇥ C

k

) +

X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

 v ⇥ 3L⇥ x (18)

Let us explore two cases.

(a) C

i

> 3L⇥ x

We will show that if this case is true then it contradicts (2). Note that
⌧

i

and ⌧

k

share at least one resource and hence it is impossible for them
to execute simultaneously. Recall that (2) states that there is a feasible
schedule so in this feasible schedule, it must hold that ⌧

i

and ⌧

k

never
execute simultaneously. With reasoning similar to (16), we obtain that, for
the case of periodically arriving tasks, in a time interval of duration 2T

k

,
there is at least one job of task ⌧

k

that has arrived and whose deadline
expired. Hence, from (2), it follows that in a time interval of duration 2T

k

,
there is at least one job of task ⌧

k

that has executed entirely. Using (13)
and the condition of the case gives us that C

i

> 3T
k

. Hence, during the
time when a job of ⌧

i

executes, there is at least one job of ⌧
k

executing.
But this is impossible because ⌧

i

and ⌧

k

share resources. Hence, this is a
contradiction.

(b) C

i

 3L⇥ x

Using the condition of the case on (18) and dividing by 3v ⇥ x gives us:

C

i

3⇥ v ⇥ x

+max(0, b3L⇥ x� 2T
k

T

k

c)⇥ C

k

3⇥ v ⇥ x

+

X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

3⇥ v ⇥ x

 L (19)

Combining (19) with (10) and multiplying by 3v⇥x and observing that the
resulting equation has the same term on both side and this can be canceled
out gives us:
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max(0, b3L⇥ x� 2T
k

T

k

c ⇥ C

k

+
X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

<

max(0, b
L� T

k

x

+ T

k

T

k

c)⇥ C

k

+
X

⌧

i

02(S(⌧

k

)\{⌧
i

})

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0

(20)

Observe that the left-hand side can be rewritten as a single sum. And also
observe that the right-hand side can be rewritten as a single sum. Rewriting
each of the sums as two sums gives us:

X

⌧

i

02((S(⌧

k

)[{⌧
k

})\{⌧
i

})^(T

i

0L� T

i

0
x

+T

i

0 )

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0 +

X

⌧

i

02((S(⌧

k

)[{⌧
k

})\{⌧
i

})^(T

i

0>L� T

i

0
x

+T

i

0 )

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

<

X

⌧

i

02((S(⌧

k

)[{⌧
k

})\{⌧
i

})^(T

i

0L� T

i

0
x

+T

i

0 )

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0 +

X

⌧

i

02((S(⌧

k

)[{⌧
k

})\{⌧
i

})^(T

i

0>L� T

i

0
x

+T

i

0 )

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0

(21)

Observing that the last sum is zero and relaxing the second term on the
left-hand side gives us:

X

⌧

i

02((S(⌧

k

)[{⌧
k

})\{⌧
i

})^(T

i

0L� T

i

0
x

+T

i

0 )

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

<

X

⌧

i

02((S(⌧

k

)[{⌧
k

})\{⌧
i

})^(T

i

0L� T

i

0
x

+T

i

0 )

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0(22)

Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 ((S(⌧
k

) [ {⌧
k

}) \ {⌧
i

})) ^ (T
i

0  L� T

i

0

x

+ T

i

0) ^

(max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0
< max(0, b

L� T

i

0
x

+ T

i

0

T

i

0
c ⇥ C

i

0)) (23)

Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 ((S(⌧
k

) [ {⌧
k

}) \ {⌧
i

})) ^ (T
i

0  L� T

i

0

x

+ T

i

0) ^

(3L⇥ x� 2T
i

0
< L� T

i

0

x

+ T

i

0) (24)
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Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 ((S(⌧
k

) [ {⌧
k

}) \ {⌧
i

})) ^ (
T

i

0

x

 L) ^

((3x� 1)⇥ L < (3� 1/x)⇥ T

i

0) (25)

Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 ((S(⌧
k

) [ {⌧
k

}) \ {⌧
i

})) ^

((3x� 1)⇥ T

i

0

x

< (3� 1/x)⇥ T

i

0) (26)

This is a contradiction.

2. |BLT (⌧
k

, DMJ, t

2

)| = 0
From the case, we obtain that there is no task in S(⌧

k

) such that this task
executed at the time when DMJ arrived. We will now discuss the time interval
[t
2

,t
0

). We let L denote the duration of this time interval. Clearly,

L =
D

k

x

(27)

Using (4) on (27) yields:

L =
D

k

x

=
T

k

x

(28)

During this time interval [t
2

,t
0

), at each instant, either (i) the set of jobs exe-
cuting includes a job of task ⌧

k

or (ii) the set of jobs executing includes a job
of a task in S(⌧

k

).
Since we had a deadline miss, we obtain that:

C

k

3⇥ v ⇥ x

+

X

⌧

i

02S(⌧

k

)

max(0, b
L� D

i

0
x

T

i

0
c+ 1)⇥ C

i

0

3⇥ v ⇥ x

> L (29)

Using (4) on (29) and rewriting yields:

C

k

3⇥ v ⇥ x

+

X

⌧

i

02S(⌧

k

)

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0

3⇥ v ⇥ x

> L (30)

We can discuss the implication of (2) being true just like in Case 1 and this
gives us:

max(0, b3L⇥ x� 2T
k

T

k

c)⇥ C

k

3⇥ v ⇥ x

+

X

⌧

i

02S(⌧

k

)

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

3⇥ v ⇥ x

 L (31)
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Combining (31) with (30) and multiplying by 3v ⇥ x and observing that
max(0, b3L⇥x�2T

k

T

k

c) = max(0, b3T

k

�2T

k

T

k

c) = 1 and rewriting gives us:

X

⌧

i

02S(⌧

k

)

max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

<

X

⌧

i

02S(⌧

k

)

max(0, b
L� T

i

0
x

+ T

i

0

T

i

0
c)⇥ C

i

0

(32)

Rewriting each of the sums as two sums gives us:

X

⌧

i

02((S(⌧

k

)[{⌧
k

}))^(T

i

0L� T

i

0
x

+T

i
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max(0, b3L⇥ x� 2T
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0

T

i

0
c)⇥ C

i
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X

⌧

i
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k
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k
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i

0>L� T

i

0
x

+T

i
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max(0, b3L⇥ x� 2T
i

0

T

i

0
c)⇥ C

i

0

<
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⌧

i

02((S(⌧

k
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k
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i
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i

0
x

+T

i

0 )

b
L� T

i

0
x

+ T

i

0

T

i

0
c ⇥ C

i

0 +

X

⌧

i

02((S(⌧

k
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k

}))^(T

i

0>L� T

i

0
x

+T

i

0 )

b
L� T

i

0
x

+ T

i

0

T

i

0
c ⇥ C

i

0 (33)

Observing that the last sum is zero and relaxing the second term on the left-
hand side gives us:

X

⌧

i

02((S(⌧

k

)[{⌧
k

}))^(T

i

0L� T

i

0
x

+T

i

0 )

max(0, b3L⇥ x� 2T
i

0

T

i

0
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i
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<
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⌧

i
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k
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i
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0
x

+T

i

0 )

b
L� T

i

0
x

+ T

i

0

T

i

0
c ⇥ C

i

0 (34)

Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 (S(⌧
k

) [ {⌧
k

})) ^ (T
i

0  L� T

i

0

x

+ T

i

0) ^ (L =
T

k

x

) ^

(3L⇥ x� 2T
i

0
< L� T

i

0

x

+ T

i

0) (35)

Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 (S(⌧
k

) [ {⌧
k

})) ^ (
T

i

0

x

 L) ^ (L =
T

k

x

) ^

((3x� 1)⇥ L < (3� 1
x

)⇥ T

i

0) (36)
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Hence, there exists a task ⌧

i

0 such that

(⌧
i

0 2 (S(⌧
k

) [ {⌧
k

})) ^ (
T

i

0

x

 L) ^

((3x� 1)⇥ T

i

0

x

< (3� 1
x

)⇥ T

i

0) (37)

This is a contradiction.

Hence, if the lemma is false then we obtain a contradiction. Consequently, the
lemma is true. ut

Combining the two previous lemmas gives us (below) a relationship between
feasibility on a heterogeneous multiprocessor and schedulability of ra-np-pEDF.

Lemma 5

8⌧, 8⇧ (m
1

,m
2

, . . . ,m
t

), 8R, 8x � 1, v � |UNER| such that ⌧ is an implicit�
deadline sporadic task set and 8⌧

i

2 ⌧ : R
i

6= ; and 8⌧
i

2 ⌧ it holds that

whenever ⌧

i

executes it holds resource set R

i

:

rmig-feas (⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

))

)

sched

✓

ra-np-pEDF,

mulCDT(create-fav-taskset (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) ,
1

3⇥ v ⇥ x

,

1
x

, 1), R,

create-fav-platform (⌧,⇧ (m
1

,m
2

, . . . ,m
t

), v)

◆

Proof Follows from Lemma 3 and Lemma 4. ut

Corollary 1 Consider an implicit-deadline sporadic tasks set that is o✏ine non-

preemptive feasible on a single processor. If this task set is scheduled by the al-

gorithm non-preemptive EDF on a processor with three times the speed then this

task set is schedulable.

Proof Follows from specializing Lemma 5 with v = 1 and x = 1 and a system with
a single processor and a single resource and all tasks share this single resource and
whenever a task executes it needs to hold this resource. ut

5.3 Useful Results

In this section, we present a previously known (Lemma 6) result and some new
results (Lemma 7-10 and Corollary 2) that we use while proving the speed com-
petitive ratio of our algorithm, LP-EE-vpr, in Section 5.4.

Lemma 6 states that the speed competitive ratio of algorithm, LP-EE, proposed
in [9] is two. The algorithm, LP-EE, non-migratively schedules a set of implicit-
deadline sporadic tasks that do not share resources on a t-type heterogeneous
multiprocessor platform.
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Lemma 6 (From Theorem 3 in [9])

nmig-feas (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) ) sched (LP-EE, ⌧,⇧ (m
1

,m
2

, . . . ,m
t

)⇥2)

We now show that if an implicit-deadline sporadic task set ⌧ in which tasks
do not share resources is non-migrative-o✏ine schedulable on a t-type heteroge-
neous multiprocessor platform ⇧ (m

1

,m
2

, . . . ,m
t

) then the constrained-deadline
sporadic task set ⌧

A (in which tasks do not share resources as well) which is de-
rived from ⌧ (as described in Section 4.1) is also non-migrative o✏ine schedulable
but on platform ⇧ (m

1

,m
2

, . . . ,m
t

)⇥2 (e.g., by non-migrative preemptive EDF).
This is shown with the help of a density-based schedulability test by exploiting
the fact that, on a processor ⇡

p

of type-k, the density �

k

i,A

of a task ⌧

i,A

2 ⌧

A

is always twice the utilization u

k

i

of the corresponding task ⌧

i

2 ⌧ (see Expres-
sion (1)). Hence, the density of the task ⌧

i,A

2 ⌧

A on a twice faster platform
⇧ (m

1

,m
2

, . . . ,m
t

)⇥2 is equal to the utilization of the corresponding task ⌧

i

2 ⌧

on platform ⇧ (m
1

,m
2

, . . . ,m
t

).

Lemma 7

nmig-feas (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) ) nmig-feas-�
⇣

⌧

A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥2
⌘

Proof Suppose that the left-hand side, nmig-feas (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)), is true.
Then let us arbitrarily choose one set of jobs JS generated by ⌧ . Since it holds
that nmig-feas (⌧,⇧ (m

1

,m
2

, . . . ,m
t

)) is true, there exists a non-migrative-o✏ine
schedule for this job set on platform ⇧ (m

1

,m
2

, . . . ,m
t

) in which all the deadlines
are met. Since jobs do not migrate and since there is only one phase per job
(because there are no resource requests) and since it holds (as stated in Section 2)
that all phase-A executions of a given task execute on the same processor, we can
form, from this schedule, a partitioning of the tasks. In this schedule, let ⌧ [⇡

p

] be
the set of tasks assigned to processor ⇡

p

. This gives us:

8k : 8⇡
p

of type-k 2 ⇧ (m
1

,m
2

, . . . ,m
t

) :
X

⌧

i

2⌧ [⇡

p

]

u

k

i

 1 (38)

We now show that there must also exist a non-migrative-o✏ine schedule for the
derived task set ⌧

A on platform ⇧ (m
1

,m
2

, . . . ,m
t

)⇥2 in which all the deadlines
are met. By definition of ⌧

A, we know that, for every task ⌧

i

2 ⌧ , there exists
a corresponding task ⌧

i,A

2 ⌧

A. Also, from Expression (1), we know that, on a
processor of type-k, where k 2 {1, 2, . . . , t}, density �

k

i,A

of task ⌧

i,A

2 ⌧

A is twice

the utilization u

k

i

of the corresponding task ⌧

i

2 ⌧ .
Let us assign the tasks in ⌧

A on platform ⇧ (m
1

,m
2

, . . . ,m
t

)⇥2 as follows: if
⌧

i

2 ⌧ is assigned to a processor of type-k, say ⇡

p

of type-k 2 ⇧ (m
1

,m
2

, . . . ,m
t

),
in the non-migrative-o✏ine schedule which meets all deadlines, then we assign its
corresponding task ⌧

i,A

to the corresponding processor in the faster platform, i.e.,
to processor ⇡

p

of type-k 2 ⇧ (m
1

,m
2

, . . . ,m
t

)⇥2. From the fact that this assign-
ment of ⌧A, which is identical to the assignment of ⌧ , is made on a platform twice
faster (on which the densities of tasks will be halved) and from Expressions (1)
and (38), we get:

8k : 8⇡
p

of type-k 2 ⇧ (m
1

,m
2

, . . . ,m
t

)⇥2 :
X

⌧

i,A

2⌧

A

[⇡

p

]

�

k

i,A

 1 (39)
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which satisfies density-based schedulability test of non-migrative EDF on a t-type
heterogeneous multiprocessor platform. We can repeat this reasoning for any choice
of JS. Hence, ⌧A is non-migrative-o✏ine feasible on ⇧ (m

1

,m
2

, . . . ,m
t

)⇥2. Hence
the lemma. ut

Corollary 2

nmig-feas-�
⇣

⌧

A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥2
⌘

) nmig-feas (⌧,⇧ (m
1

,m
2

, . . . ,m
t

))

Proof Follows from reasoning analogous to the reasoning for the proof of Lemma 7.
ut

The following lemma is an extension of Lemma 6 obtained by applying density-
based test instead of utilization-based test and on twice faster platforms.

Lemma 8

nmig-feas-�
⇣

⌧

A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥2
⌘

)

sched
⇣

LP-EE-�, ⌧A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥4
⌘

Proof Let us assume that the left-hand side predicate of the claim holds true,
i.e., nmig-feas-�

�

⌧

A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥2
�

is true. Using Corollary 2, we obtain
nmig-feas (⌧,⇧ (m

1

,m
2

, . . . ,m
t

)). Then, from Lemma 6, the predicate sched(LP-EE,
⌧ , ⇧ (m

1

,m
2

, . . . ,m
t

) ⇥ 2) must hold true. From Expression (1), we know that on a
processor of type-k, density �

k

i,A

of every task ⌧

i,A

2 ⌧

A is twice the utilization u

k

i

of

the corresponding task ⌧

i

2 ⌧ , and hence sched
�

LP-EE-�, ⌧A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥4
�

must hold true as well, from a similar reasoning as used in Lemma 7. Hence the
proof. ut

The following lemma states that if tasks from ⌧

A are preemptive EDF schedula-
ble on a processor ⇡

p

of type-k then we can assign the respective phase-C subtasks
from ⌧

C as well onto processor ⇡
p

and after this assignment, the entire set of tasks
assigned to processor ⇡

p

is preemptive EDF schedulable.

Lemma 9 Let ⌧

A[⇡
p

] denote the set of phase-A subtasks assigned on processor

⇡

p

of type-k. If ⌧

A[⇡
p

] is preemptive-EDF schedulable ascertainable with a density-

based test on ⇡

p

, i.e.,

�

k

⌧

A

[⇡

p

]

def

=
X

⌧

i,A

2⌧

A

[⇡

p

]

�

k

i,A

 1

then ⌧

A[⇡
p

][ ⌧

C [⇡
p

] (where ⌧

C [⇡
p

] is the set of respective phase-C subtasks whose

arrivals have fixed o↵set from the arrival of respective phase-A subtasks) is preemptive-

EDF schedulable on processor ⇡

p

of type-k.

Proof We know that the task set ⌧A[⇡
p

] is preemptive-EDF schedulable, ascertain-
able with a density-based test, on processor ⇡

p

of type-k, i.e., �k
⌧

A

[⇡

p

]

 1. To show

that ⌧

A[⇡
p

] [ ⌧

C [⇡
p

] is schedulable on processor ⇡

p

, it is su�cient to show that
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Dk
i,A

 Ti ≥  Dk
i,A + Dk

i,B + Dk
i,C

 

t 

Ck
i,A

 

Ck
i,A  + Ck

i,C
 

2 * (Ck
i,A + Ck

i,B + Ck
i,C) 

Fig. 8: Assigning phase-C subtasks to the same virtual processor as the respective
phase-A subtasks (earlier assigned using a density-based test) preserves schedula-
bility.

the demand-bound function

4, DBF(⌧A[⇡
p

][ ⌧

C [⇡
p

], t), of task set ⌧A[⇡
p

][ ⌧

C [⇡
p

],
never exceeds �k

⌧

A

[⇡

p

]

⇥ t at any instant t [11].

The following holds for every phase-A subtask ⌧

i,A

2 ⌧

A and respective phase-
C subtask ⌧

i,C

2⌧C :

DBF ({⌧
i,A

} [ {⌧
i,C

}, t)  t⇥ �

k

i,A

= t⇥
C

k

i,A

D

k

i,A

(40)

This can be verified from Figure 8 since the maximum “slope” to any point in the

graph of DBF({⌧
i,A

} [ {⌧
i,C

}, t) from the origin is �

k

i,A

=
C

k

i,A

D

k

i,A

(which is equal

to 2 ⇥ u

k

i

of ⌧
i

2 ⌧ , as per our choice of Dk

i,A

), at abscissa t = D

k

i,A

. Summing

Expression (40) for all the subtasks ⌧
i,A

2 ⌧

A[⇡
p

] and the corresponding subtasks
⌧

i,C

2 ⌧

C [⇡
p

] yields:

DBF(⌧A[⇡
p

] [ ⌧

C [⇡
p

], t)  t⇥
X

⌧

i,A

2⌧

A

[⇡

p

]

�

k

i,A

= t⇥ �

k

⌧

A

[⇡

p

]

Hence the proof. ut

We will now prove a guarantee on the schedulability of ra-np-pEDF-fav.

Lemma 10 Let ⌧ denote an implicit-deadline sporadic task set. Let R denote the

set of resources in the system. Let P

j

denote one resource request partition of R

and let R(P
j

) denote the resources belonging to this resource request partition.

rmig-feas(⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)) )

sched

✓

ra-np-pEDF-fav, ⌧B,R(Pj)
,R(P

j

),⇧ (|P
j

|, |P
j

|, . . . , |P
j

|)⇥6⇥ |P
j

|
◆

(41)

4 The demand bound function of a task ⌧
i

, dbf(⌧
i

, t), is the maximum possible execution
demand by jobs of ⌧

i

, that have both arrival and deadline within any interval of length t. The
demand bound function of a task set ⌧ is defined as: DBF(⌧, t) =

P
⌧

i

2⌧

dbf(⌧
i

, t) [11].
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Proof Let ⌧ 0 denote the subset of tasks in ⌧ that request a resource set in P

j

. Let
⌧

00 denote a set tasks derived from ⌧

0 but where a task in ⌧

00 does not perform any
execution before requesting a resource set and a task in ⌧

00 does not perform any
execution after releasing a resource set.

Then consider the three claims below:

1. rmig-feas(⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)) ) rmig-feas(⌧ 00
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

))
2. rmig-feas(⌧ 00

,R(P
j

),⇧ (m
1

,m
2

, . . . ,m
t

)) )

sched

✓

ra-np-pEDF-fav, ⌧ 00B,R(Pj)
,R(P

j

),⇧ (|P
j

|, |P
j

|, . . . , |P
j

|)⇥6⇥ |P
j

|
◆

3. ⌧

00B,R(Pj) = ⌧

B,R(Pj)

If we can prove these three claims then the correctness of the lemma follows. Hence,
we prove the claims below.

Proving 1. This claim follows from the fact that feasibility cannot be violated
by only considering a subset of the tasks and by only considering a subset of the
resources and by only considering some of the execution of a task.

Proving 2. Applying Lemma 5 with the task set ⌧ 00 and the resource set R(P
j

)
and with x = 2 and v = |P

j

| yields:

rmig-feas
�

⌧

00
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

)
�

)

sched

✓

ra-np-pEDF,

mulCDT(create-fav-taskset
�

⌧

00
,⇧ (m

1

,m
2

, . . . ,m
t

)
�

, 1,
1
2
, 1),R(P

j

),

create-fav-platform

�

⌧

00
,⇧ (m

1

,m
2

, . . . ,m
t

), v
�

⇥ 6⇥ |P
j

|
◆

(42)

The order in which the functions mulCDT and create-fav-taskset are ap-
plied can be changed without a↵ecting the result. And the result of the func-
tion create-fav-platform when taken ⌧

00 as input is the same as when taken
mulCDT(⌧ 00

, 1, 1

2

, 1) as input. This gives us:

rmig-feas
�

⌧

00
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

)
�

)

sched

✓

ra-np-pEDF,

create-fav-taskset

✓

mulCDT(⌧ 00
, 1,

1
2
, 1),⇧ (m

1

,m
2

, . . . ,m
t

)

◆

,R(P
j

),

create-fav-platform

✓

mulCDT(⌧ 00
, 1,

1
2
, 1),⇧ (m

1

,m
2

, . . . ,m
t

), v

◆

⇥ 6⇥ |P
j

|
◆

(43)

Observing that mulCDT(⌧ 00
, 1, 1

2

, 1) = ⌧

00B,R(Pj) gives us:
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rmig-feas
�

⌧

00
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

)
�

)

sched

✓

ra-np-pEDF,

create-fav-taskset

⇣

⌧

00B,R(Pj)
,⇧ (m

1

,m
2

, . . . ,m
t

)
⌘

,R(P
j

),

create-fav-platform

⇣

⌧

00B,R(Pj)
,⇧ (m

1

,m
2

, . . . ,m
t

), v
⌘

⇥ 6⇥ |P
j

|
◆

(44)

Observe that the schedule generated by ra-np-pEDF scheduling of tasks in

the task set create-fav-taskset
⇣

⌧

00B,R(Pj)
,⇧ (m

1

,m
2

, . . . ,m
t

)
⌘

on processors in

the platform create-fav-platform

⇣

⌧

00B,R(Pj)
,⇧ (m

1

,m
2

, . . . ,m
t

), v
⌘

is identical

to the schedule generated by ra-np-pEDF-fav scheduling of tasks in ⌧

00B,R(Pj) on
⇧ (|P

j

|, |P
j

|, . . . , |P
j

|). Combining this observation with (44) gives us:

rmig-feas
�

⌧

00
,R(P

j

),⇧ (m
1

,m
2

, . . . ,m
t

)
�

)

sched

✓

ra-np-pEDF-fav, ⌧ 00B,R(Pj)
,R(P

j

),⇧ (|P
j

|, |P
j

|, . . . , |P
j

|)⇥6⇥ |P
j

|
◆

(45)

This states the Claim 2.
Proving 3. This correctness of this claim (⌧ 00B,R(Pj) = ⌧

B,R(Pj)) can be seen
directly from the definition of ⌧ 00B,R(Pj).

Hence the lemma. ut

5.4 The Speed Competitive Ratio of LP-EE-vpr Algorithm

We now prove the speed competitive ratio of the proposed algorithm.

Theorem 1 The algorithm LP-EE-vpr has the following speed competitive ratio:

4⇥
⇣

1 +MAXP⇥
l

|P |⇥MAXP

min{m1,m2,...,mt

}

m⌘

.

Proof We prove the claim by considering the scheduling of tasks in each of the three
phases independently and then merging the results from these three scenarios.

Consider phase-A scheduling. Combining Lemma 7 and Lemma 8, yields:

rmig-feas (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) ) sched
⇣

LP-EE-�, ⌧A

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥4
⌘

(46)

Consider phase-C scheduling. Note that LP-EE-vpr assigns a phase-C subtask,
⌧

i,C

2 ⌧

C , to the same VP
AC

virtual processor to which the corresponding phase-A



34 Björn Andersson, Gurulingesh Raravi

subtask, ⌧
i,A

2 ⌧

A, is assigned (see line 10 in Algorithm 1). For convenience, let
LP-EE-�-cp denote such a task assignment policy, i.e., using LP-EE-� to assign
phase-A subtasks and ‘copying’ the assignment for respective phase-C subtasks.
Lemma 9 showed that such an assignment preserves schedulability of the relevant
tasks. From Lemma 9 and Expression (46), we get:

rmig-feas (⌧,⇧ (m
1

,m
2

, . . . ,m
t

)) )

sched
⇣

LP-EE-�-cp, ⌧A [ ⌧

C

,⇧ (m
1

,m
2

, . . . ,m
t

)⇥4
⌘

(47)

Now let us discuss phase-B scheduling.

rmig-feas (⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)) )

sched

✓

ra-np-pEDF-fav,R(P
j

), ⌧B,R(Pj)
, P

j

,⇧ (|P
j

|, |P
j

|, . . . , |P
j

|)⇥6⇥ |P
j

|
◆

(48)

We know that, MAXP = max
P

j

2P

|P
j

|. Using this, Expression (48) can be rewrit-
ten as:

8P
j

2 P, rmig-feas (⌧,R(P
j

),⇧ (m
1

,m
2

, . . . ,m
t

)) )

sched
⇣

ra-np-pEDF-fav, ⌧B,R(Pj)
,R(P

j

),⇧ (|P
j

|, |P
j

|, . . . , |P
j

|)⇥MAXP⇥6
⌘

(49)

Let us now combine the results obtained for task sets ⌧

A [ ⌧

C and ⌧

B,R(Pj).
Dividing the type-k (8k : k 2 {1, 2, . . . , t}) processor speeds in Expression (47) by

4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

k

m⌘

, we get:

rmig-feas(⌧,⇧ (m
1

,m
2

, . . . ,m
t

)⇥
⌧

1

4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP
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m⌘

, . . . ,

1

4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

t
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�

) )

sched
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LP-EE-�-cp, ⌧A [ ⌧

C
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,m
2

, . . . ,m
t

)⇥
⌧

1

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP
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m

, . . . ,

1

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

t

m

�◆

(50)

Dividing the type-k (8k : k 2 {1, 2, . . . , t}) processor speeds in Expression (49) by

4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

k

m⌘

, we get:

8P
j

2 P : rmig-feas(⌧,R(P
j

),⇧ (m
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,m
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, . . . ,m
t

)⇥
⌧

1

4⇥
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l
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sched

✓
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j
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j

|, |P
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|)⇥
⌧

3

2

⇥MAXP

1 + 3

2
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l
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l

|P |
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�◆

(51)
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The specifications of the processors in the right-hand side predicates of Expres-
sion (50) and Expression (51) match those of the virtual processors that LP-EE-vpr
created (see Section 4.2). Recall that LP-EE-vpr assigned phase-A and phase-C
subtasks to VP

AC

virtual processors and phase-B subtasks to VP
B

virtual pro-
cessors. Hence, combining Expression (50) and |P | instances of Expression (51),
yields:

rmig-feas(⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)⇥
⌧

1

4⇥
⇣

1 + 3
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⇥MAXP⇥
l

|P |⇥MAXP

m1

m⌘

, . . . ,

1

4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

m

t

m⌘

�

) )

sched (LP-EE-vpr, ⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)) (52)

We know that higher speed processors do not jeopardize the feasibility of a
task set. Hence, we can write:

rmig-feas (⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)⇥hmin {s
1

, s
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, . . . , s
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Substituting s

k

= 1

4⇥
⇣
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3
2
⇥MAXP⇥

l
|P |⇥MAXP

m

k

m⌘ , 8k : k 2 {1, 2, . . . , t}, in the

above expression and combining with Expression (52) and rewriting gives:
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1

,m
2

, . . . ,m
t

)) (53)

Multiplying the speeds of all the processors in Expression (53) by a factor of

4⇥
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, . . . ,

l
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, we get:

rmig-feas (⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)) )

sched

✓

LP-EE-vpr, ⌧, R,⇧ (m
1

,m
2

, . . . ,m
t

)⇥
⌧

4⇥
✓

1 +
3
2
⇥MAXP⇥max

⇢⇠

|P |⇥MAXP
m

1

⇡

, . . . ,

⇠

|P |⇥MAXP
m

t

⇡�◆

, . . . ,

4⇥
✓

1 +
3
2
⇥MAXP⇥max

⇢⇠

|P |⇥MAXP
m

1

⇡

, . . . ,

⇠

|P |⇥MAXP
m

t

⇡�◆�◆



36 Björn Andersson, Gurulingesh Raravi

By rewriting the right-hand side predicate of the above expression, we get:

rmig-feas (⌧, R,⇧ (m
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,m
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, . . . ,m
t

)) )

sched
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, . . . ,m
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, . . . ,m

t

}

⇡◆�◆

Hence the theorem. ut

Theorem 2 Consider the case in which each task can request at most one re-

source, i.e, 8⌧
i

2 ⌧ : |R
i

|  1. For this case, LP-EE-vpr has a speed competitive

ratio of 4⇥
⇣

1 + 3

2

⇥
l

|R|
min{m1,m2,...,mt

}

m⌘

.

Proof If 8⌧
i

2 ⌧ : |R
i

|  1 then every connected component in the graph has
one vertex and hence every resource request partition has one element. Thus,
MAXP = 1. Also, the number of resource request partitions |P | is no greater than
|R|, i.e., |P |  |R|. Applying this on Theorem 1 gives us the theorem. ut

6 Discussion

In this section, we briefly discuss run-time mechanisms for realizing virtual proces-
sors and the preemptions generated and also highlight a couple of useful properties
of LP-EE-vpr such as deadlock-free property, nested resource access and the bound
on number of migrations per job. Also, a couple of tricks to improve the perfor-
mance of LP-EE-vpr are discussed as well.

6.1 Run-time Mechanism for Realizing Virtual Processors and the Preemptions
Generated

Given that the research literature has been lacking a scheduling algorithm for
heterogeneous multiprocessors with resource sharing such that the algorithm has
a proven speed competitive ratio, our focus in this paper has been to create one.
We did not deal with the cost of preemption.

Assuming that there is no cost of a preemption, one can create a set of virtual
processors from a single physical processor without losing capacity as follows.
Choose a timeslot size (denoted as S) and subdivide time into time intervals,
each being of duration equal to the timeslot size S. Then if we want to create

a set VP =
n

vp
1

, vp
2

, ..., vp|VP |

o

of virtual processors where virtual processor

vp
l

(where l 2 {1, 2, . . . , |VP |}) has speed SP
l

and accomplish this as long as
P

l2{1,2,...,|VP |} SPl

 1, then this can be done as follows. Create a reserve for
vp

l

in the timeslot so that this reserve has the duration S ⇥ vp
l

and let the time
of this reserve supply time to the virtual processor vp

l

. Then let S be arbitrarily
small. This gives us the desired virtual processors and this is the idea we have
assumed in this paper.
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Unfortunately, this approach generates an infinite number of preemptions. One
could generate virtual processors in two other ways. First, by choosing S being
the greatest common denominator of the parameters of the subtasks, one can still
form virtual processors as mentioned above and still utilize 100% of the capacity of
a physical processor [3]. This approach has two problems (i) the greatest common
divisor of the parameters of the subtasks may not exist (this is an issue for the case
that parameters are not rational numbers) and (ii) even if the greatest common
divisor of the parameters of the subtasks exists, it may still be very small and
hence may generate a very large number of preemptions. A second way to choose
S (which avoids this drawback) is to choose a positive integer � and then choose
S as the minimum of all parameters of subtasks divided by �. This approach has
been used for creating virtual processors in [3,14] so that as long as the sum of
the speeds of the virtual processors desired to be formed does not exceed a given
bound UB(�) (higher than 60% but lower than 100%), which is a function of �,
then all virtual processors can be formed. We can use such approaches at the cost
of having a speed competitive ratio being multiplied by 1/UB(�).

6.2 Bound on the Number of Migrations per Job

The algorithm, LP-EE-vpr, by design, limits the number of migrations per job to
at most two. Recall that, LP-EE-vpr assigns both phase-A and phase-C executions
of a task ⌧

i

to the same VP
AC

virtual processor and phase-B of that task to another
VP

B

virtual processor. Since the algorithm creates the virtual processors in such
a manner that the capacity of no virtual processor comes from more than one
physical processor (Lemma 1 in Section 4.2), it is clear that both phase-A and
phase-C of a task are assigned to the same physical processor. Since the virtual
processor in VP

B

to which phase-B of task ⌧

i

is assigned may come from a di↵erent
physical processor, migration of a job of task ⌧

i

can only occur at time instants
when the job requests or releases the resource set R

i

. Thus, the algorithm limits
the number of migrations per job to at most two.

6.3 Nested Resource Access

To enable our algorithm for handling tasks with nested resource access, one of the
two below mentioned techniques can be used.

– Group locking. It is a previously known technique [15] in which the inner
locks of a nested resource access are removed and only an outer lock (referred
to as a group lock) is retained. The following example illustrates how nested
resource access can be handled with the help of group locks. Consider a nested
resource access in which jobs of a task ⌧

i

request and release the resources in
the following order: Each job of task ⌧

i

does the following (in order):

request(r
1

)

request(r
2

)

release(r
2

)

request(r
3

)
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release(r
3

)

release(r
1

)

With group locking, a new lock would be created, say r

123

and then task ⌧

i

would be changed such that each job of ⌧
i

now does the following (in order):

request(r
123

)

release(r
123

)

If there is any other task that requests one or more of these resources (i.e.,
resource r

1

, r
2

and r

3

) then these tasks need to be changed as well.
– A variant of group locking. Another way to handle nested resource access

is to request all the resources in the nested block at the beginning of the nested
block and release all the resources at the end of this block. With this technique,
in the above example, task ⌧

i

would be changed such that each job of task ⌧

i

now does the following (in order):

request(r
1

and r

2

and r

3

)

release(r
1

and r

2

and r

3

)

Since we allow multiple resources to be requested simultaneously, we can use any
of the above two techniques for handling tasks with nested resource access.

6.4 Deadlock Free Property

Partial allocation describes a situation where a task is “waiting” for additional
resource(s) while “holding” previously acquired one(s). Partial allocation is a nec-
essary condition for deadlock to occur — see Chapter 7 in [48]. Recall that, we
assume (as mentioned in Section 2) that a job of task ⌧

i

performs a single request
for the resource set R

i

and then releases all the resources in the resource set R

i

at once. And hence with this assumption, partial allocation never happens. And
consequently, the algorithm LP-EE-vpr, for the assumptions stated in Section 2,
cannot enter a deadlocked state.

6.5 Performance Improvement

In this section, we describe a couple of tricks to improve the performance of the
algorithm.

First, we dimensioned the phase-B virtual processors without considering the
parameters of the subtasks that will execute on this virtual processor. A possible
way to increase the performance of our algorithm though would be to determine,
for each resource request partition, what is the lowest speed that is needed in
order for the subtasks requesting the resources from the corresponding resource
partition to be ra-np-pEDF-fav schedulable.

Second, our algorithm is based on LP-EE [9] for assigning phase-A and phase-
C subtasks. We selected LP-EE because it is simple to implement and easy to
explain and it has a proven speed competitive ratio. Unfortunately, this algo-
rithm has a time-complexity that is exponential with the number of processors.
But we can replace LP-EE with another algorithm [8] which has the same speed
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competitive ratio but runs with polynomial time-complexity because it does not
perform exhaustive enumeration. In addition, one could replace LP-EE with the
task assignment algorithm in [51] (which has a better speed competitive ratio than
LP-EE). Then we would have a scheduling algorithm for our problem (with re-
source sharing), with a better speed competitive ratio but at the expense of having
a time-complexity that is a polynomial of very high degree.

7 Conclusions

The heterogeneous multiprocessor model is more generic than identical or uniform
multiprocessor model, in terms of the systems that it can accommodate. Hence, it
is interesting to study heterogeneous multiprocessor systems since a solution de-
signed for such systems can also be applied to identical and uniform multiprocessor
systems. In addition, heterogeneous multiprocessors are increasingly becoming rel-
evant as many chip manufacturers o↵er chips with di↵erent types of processors [1,
6,27,28,36,40,46,49,50]. In many computer systems, apart from processors, tasks
also share resources such as data structures, sensors, etc. and tasks must operate
on such resources in a mutually exclusive manner while accessing the resource.
Scheduling real-time tasks that share resources on a heterogeneous multiproces-
sor platform is a complex problem. In this work, we took the first step to solve
the issue via a scheduling algorithm with a proven speed competitive ratio for
heterogeneous multiprocessors.

This work considered the problem of scheduling a task set of implicit-deadline
sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor
platform where tasks may share multiple resources. The tasks must operate on
such resources in a mutually exclusive manner while accessing the resource, that
is, at all times, when a job of a task holds a resource, no other job of any task
can hold that resource. Each job may request (a subset of) resources at most once
during its execution and it has to request all the resources in the subset together.
A job is allowed to migrate when it requests/releases the resources but a job is
not allowed to migrate at other times.

We presented an algorithm LP-EE-vpr and proved its performance bound.
Specifically, we proved that if an implicit-deadline sporadic task set is schedula-
ble on a t-type heterogeneous multiprocessor platform by an optimal scheduling
algorithm that allows a job to migrate only when it requests or releases a resource
set, then our algorithm also meets the deadlines with the same restriction on job

migration, if given processors 4⇥
⇣

1 + 3

2

⇥MAXP⇥
l

|P |⇥MAXP

min{m1,m2,...,mt

}

m⌘

times

as fast. For the special case that each task requests at most one resource, the

bound of LP-EE-vpr collapses to 4⇥
⇣

1 + 3

2

⇥
l

|R|
min{m1,m2,...,mt

}

m⌘

. To the best

of our knowledge, LP-EE-vpr is the first algorithm with proven performance guar-
antee for real-time scheduling of sporadic tasks with resource sharing on t-type
heterogeneous multiprocessors.

Acknowledgments

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University



40 Björn Andersson, Gurulingesh Raravi

for the operation of the Software Engineering Institute, a federally funded research
and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFT-
WARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-
IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PUR-
POSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREE-
DOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
This material has been approved for public release and unlimited distribution.

DM-0000141

References

1. AMD Inc.: AMD Accelerated Processing Units. http://www.amd.com/fusion (2012)
2. Andersson, B., Baruah, S., Jonsson, J.: Static-Priority Scheduling on Multiprocessors. In:

Proceedings of the 22nd IEEE Real-Time Systems Symposium, pp. 193–202 (2001)
3. Andersson, B., Bletsas, K.: Sporadic multiprocessor scheduling with few preemptions. In:

Proceedings of the 20th Euromicro Conference on Real-Time Systems, pp. 243–252 (2008)
4. Andersson, B., Raravi, G., Bletsas, K.: Assigning real-time tasks on heterogeneous mul-

tiprocessors with two unrelated types of processors. In: Proceedings of the 31st IEEE
International Real-Time Systems Symposium, pp. 239–248 (2010)

5. Andersson, B., Tovar, E.: Competitive Analysis of Partitioned Scheduling on Uniform
Multiprocessors. In: Proceedings of the 15th International Workshop on Parallel and
Distributed Real-Time Systems, pp. 1–8 (2007)

6. Apple Inc.: Apple A5X: Dual-core CPU and Quad-core GPU.
http://www.apple.com/ipad/specs/ (2012)

7. Baruah, S.: Feasibility analysis of preemptive real-time systems upon heterogeneous mul-
tiprocessor platforms. In: Proceedings of the 25th IEEE International Real-Time Systems
Symposium, pp. 37–46 (2004)

8. Baruah, S.: Partitioning real-time tasks among heterogeneous multiprocessors. In: Pro-
ceedings of the 33rd International Conference on Parallel Processing, pp. 467–474 (2004)

9. Baruah, S.: Task partitioning upon heterogeneous multiprocessor platforms. In: Proceed-
ings of the 10th IEEE International Real-Time and Embedded Technology and Applica-
tions Symposium, pp. 536–543 (2004)

10. Baruah, S., Fisher, N.: The Partitioned Dynamic-priority Scheduling of Sporadic Task
Systems. Real-Time Systems 36(3), 199–226 (2007)

11. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic tasks on
one processor. In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 182–190
(1990)

12. Blazewicz, J., Lenstra, J., Kan, A.: Scheduling subject to resource constraints: classification
and complexity. Discrete Applied Mathematics 5(1), 11–24 (1983)

13. Bletsas, K.: Worst-case and best-case timing analysis for real-time embedded systems with
limited parallelism. Ph.D. thesis, The University of York (2007)

14. Bletsas, K., Andersson, B.: Notional Processors: An Approach for Multiprocessor Schedul-
ing. In: Proceedings of the 15th IEEE International Real-Time and Embedded Technology
and Applications Symposium, pp. 3–12 (2009)

15. Block, A., Leontyev, H., Brandenburg, B., Anderson, J.: A Flexible Real-Time Locking
Protocol for Multiprocessors. In: Proceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pp. 47–56 (2007)

16. Correa, J., Skutella, M., Verschae, J.: The power of preemption on unrelated machines
and applications to scheduling orders. Math. Oper. Res. 37(2), 379–398 (2012)

17. Darera, V., Jenkins, L.: Utilization Bounds for RM Scheduling on Uniform Multipro-
cessors. In: Proceedings of the 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 315–321 (2006)



Real-Time Scheduling with Resource Sharing on Heterogeneous Multiprocessors 41

18. Dasari, D., Andersson, B., Nélis, V., Petters, S., Easwaran, A., Lee, J.: Response Time
Analysis of COTS-Based Multicores Considering the Contention on the Shared Memory
Bus. In: Proceedings of the 8th IEEE International Conference on Embedded Software
and Systems, pp. 1068–1075 (2011)

19. Dasari, D., Nélis, V.: An Analysis of the Impact of Bus Contention on the WCET in Mul-
ticores. In: Proceedings of the 9th IEEE International Conference on Embedded Software
and Systems, pp. 1450–1457 (2012)

20. Davis, R., Rothvoß, T., Baruah, S., Burns, A.: Exact quantification of the sub-optimality
of uniprocessor fixed priority pre-emptive scheduling. Real-Time Systems 43(3) (2009)

21. Gai, P., Abeni, L., Buttazzo, G.C.: Multiprocessor DSP scheduling in system-on-a-chip
architectures. In: Proceedings of the 14th Euromicro Conference on Real-Time Systems
(ECRTS 2002), pp. 231–238. Vienna, Austria (2002)

22. Gschwind, M., Hofstee, H.P., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.: Syn-
ergistic Processing in Cell’s Multicore Architecture. IEEE Micro 26(2), 10–24 (2006)

23. Gurobi Optimization Inc.: Gurobi optimizer reference manual. http://www.gurobi.com
(2012)

24. Holenderski, M., Bril, R.J., Lukkien, J.J.: Parallel-task scheduling on multiple resources.
In: Proceedings of the 24th Euromicro Conference on Real-Time Systems, pp. 233–244
(2012)

25. Hopcroft, J., Tarjan, R.: E�cient Algorithms for Graph Manipulation. Communications
of the ACM 16(6), 372–378 (1973)

26. IBM: IBM ILOG CPLEX Optimizer. http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/ (2012)

27. Intel Corporation: Intel Atom Processor Z6xx Series with Intel SM35 Express Chipset.
(2012). http://www.intel.com/p/en_US/embedded/hwsw/hardware/atom-z6xx/overview

28. Intel Corporation: The 4th Generation Intel Core i7 Processo.
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
(2013)

29. Jonah Alben: NVIDIA Brings Kepler, World’s Most Advanced Graphics Architecture, to
Mobile Devices. http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile/ as of
Jul 31, 2013

30. Jones, M.: What Happened on Mars? (1997). http://www.ece.cmu.edu/
~

raj/mars.html

31. Lakshmanan, K., Rajkumar, R.: Scheduling Self-Suspending Real-Time Tasks with Rate-
Monotonic Priorities. In: Proceedings of the 16th IEEE International Real-Time and
Embedded Technology and Applications Symposium, pp. 3–12 (2010)
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