

On the Use of Code Mobility Mechanisms in
Real-Time Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-111205

Version:

Date: July/05/2011

Luis Lino Ferreira

Luis Miguel Nogueira

Technical Report HURRAY-TR-111205 On the Use of Code Mobility Mechanisms in Real-Time Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

On the Use of Code Mobility Mechanisms in Real-Time Systems
Luis Lino Ferreira, Luis Miguel Nogueira

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: llf@isep.ipp.pt, luis@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Applications with soft real-time requirements can benefit from code mobility mechanisms, as long as those mechanisms
support the timing and Quality of Service requirements of applications. In this paper, a generic model for code mobility
mechanisms is presented. The proposed model gives system designers the necessary tools to perform a statistical timing
analysis on the execution of the mobility mechanisms that can be used to determine the impact of code mobility in
distributed real-time applications.

Abstract - Applications with soft real-time requirements can

benefit from code mobility mechanisms, as long as those
mechanisms support the timing and Quality of
Service requirements. In this paper , a generic model for code
mobility mechanisms is presented. The proposed model gives
system designers the necessary tools to perform a statistical
timing analysis on the execution of the mobility mechanisms
that can be used to determine the impact of code mobility in
distr ibuted real-time applications.

Index Terms Real-time systems, distr ibuted embedded
systems, mobile systems, code mobility , quality of service

I. INTRODUCTION
Open real-time systems are increasingly shifting from a

set of small, local applications to powerful resource-hungry
distributed applications [4]. By the very nature of open real-
time systems, the availability of resources is unknown before
hand and can only be reserved dynamically as new
applications arrive to the system. Consequently, there is an
increasing demand for supporting distributed applications
with the flexibility to offload parts of their computations to

nodes due to local resource
scarcity. Nevertheless, the real-time behaviour of these
applications must be guaranteed, both during execution and
during reconfiguration, after mobility has occurred.

Therefore, open real-time systems must provide
applications the support to: i) use services provided by
remote components; ii) move part(s) of the application
code to remote nodes; and ii) guarantee real-time behaviour.
The first requirement can be supported by a service-based
infrastructure [4], to easily and transparently interconnect
local and remote parts of an application. The second
requirement can be supported by code mobility frameworks
which allow the installation and execution of parts of an
application in remote nodes [9]. Finally, the third
requirement can be supported by a real-time resource
manager. Capacity reserves have been proved to be
successful in improving the response times of soft real-time
tasks while preserving all hard real-time constraints, both
CPU [3] and network [2].

A. Related work

Although not widely studied, a few solutions have already
been proposed to analyse the impact of code mobility on the
real-time requirements of applications.

In [11], the authors propose and experimentally
characterise the behaviour of a hard real-time framework
that supports the migration of tasks between nodes.
However, the work does not propose a mathematical model
that enables system designers to account for the impact of
the mobility protocol on the overall timing behaviour of
applications.

A strategy for minimising the impact of code mobility in a
hierarchical preemptive fixed priority scheduling system for
Real-Time Java is proposed in [10]. The authors mainly
determine the points in time at which the migration process
should be started, which guarantees that tasks deadlines are
met and that the migration process is executed between
consecutive evocations of a migratable task.

Statefull services require the transfer of state, whose
duration depends on the length of the data being transferred.
However, during this period of time no transactions can be
executed on that service (blackout time). However, such
determination is only possible in systems with a well-known
and controlled timing behaviour. Therefore, in [12], the
authors tackled the problem of minimising the blackout time
by proposing a partial blocking and a non-blocking approach
for state transfer.

Nevertheless, none of these works focus on the mobility
mechanism itself. A mobility framework should also enable
the runtime relocation of services in response to
reconfiguration/update events (e.g., the system might
reconfigure itself due to the disappearance of a node
involved in a computation). As an example, consider running
a video game on a mobile device that offloads parts of its
computations to neighbour nodes. Reconfiguration in such a
cooperative execution might be required if one of the nodes,
curre services, is no longer
capable of outputting the required QoS. In such case, the
service should be migrated to another node. Ideally, such
change should be executed seamlessly, i.e. the game delays

On the Use of Code Mobility Mechanisms in
Real-time Systems

Luís Lino Ferreira, Luís Nogueira
{llf, lmn}@isep.ipp.pt

CISTER/ISEP - Polytechnic Institute of Porto
Porto, Portugal

should (preferably) be unnoticeable. Examples of works that
tackle the specific problems stated above are [4] and [1]. The
former allows the determination of a distributed
configuration that maximises the
QoS preferences among a set of allowed QoS levels. The
latter tries to fulfil the same goals, but each service is only
allowed to specify a single QoS level.

B. Contribution and paper structure

Service mobility in a distributed execution environment is
a complex operation that evolves through several phases,
including sending the code and state to the destination node
and rebinding connections between services. Additionally,
resources must be explicitly reserved on the destination
node, prior to the start of the mobility process. Due to its
complexity, we propose that a Mobility Management
framework (represented in Figure 1 by Mx) should control
mobility of services between nodes of a distributed system.
This paper focuses on the model and timing analysis for a
generic code mobility mechanism for distributed soft real-
time applications. The proposed model is generic enough,
helping the system designer to define the most appropriate
parameters for the mobility management modules and to
determine the feasibility of the timing constrains imposed on
applications, including mobility/reconfiguration events.

The remainder of the paper is organised as follows.
Section II defines the generic model for the distributed
applications and for the mobility mechanism. Section III
discusses and analyses the code mobility phases and their
timings. The main consequence of the mobility mechanism
is the introduction of a bounded inaccessibility period during
which the service being moved is not available. The
proposed analysis allows computing the adequate resources
required by the mobility framework to guarantee the
timeliness of the application. Finally, Section IV discusses
the model provided in the paper and presents some
conclusions.

II. SYSTEM MODEL

A. Module components

This work applies to soft real-time applications composed
by a set of interconnected services, each supplying some
service, either in the same local node, but particularly when
services are distributed among several nodes. The model
considers the system to be composed of a set of N nodes
{H1, ..., HN} and a set of M services {S1 SM}. Services
are interconnected through links. lx,y characterises a
connection between services Sx and Sy, (Figure 1). Each
service and each link has a set of real-time requirements that
are out of the scope of this paper (a detailed discussion can
be found in [4]).

Each node runs a Mobility Management module Mx,
where x is the index of the node. Each module Mx can be

connected to other Mobility Management modules My
through a network connection, lmx,my.

As depicted in Figure 1, an operation mS5 represents
the mobility of service S5 between nodes H3 and H4. In such
case, H3 is denoted as the source node and H4 is denoted as
the destination node. Link 6,5 represents the connection that
has to be established after the mobility operation is
completed (rebinding). Consequently, connection l6,5 will
have to be safely deleted prior to 6,5 becomes operational.
By safely, we mean that no messages should be lost or
delivered to wrong nodes. This operation implies offloading
the code of S5, its data state, and rebinding its connections,
all within timing constraints.

Figure 1 System Model

B. Resource management
resources can be

modelled as a set of isolated servers, either related to the
CPU [3] or network [2] scheduling. Each of these servers is
characterised by its maximum reserved capacity (Qi) that can
be used during a period (Ti); at the end of this period the
capacity is replenished. Other CPU schedulers can also be
used, like the Capacity Sharing and Stealing scheduler (CSS)
proposed in [13]. For the network scheduling, any
scheduling algorithm with similar characteristics can also be
used, like the ones based on the Flexible Time-Triggered
approach [14].

Based on these guarantees, it is possible to determine
 average response time using the formulations

proposed in [3]:

(1)

where C
avg

i represents the average execution time of task
T and F C(x) is the cumulative distribution function (c.d.f.) of
the execution time. In the remainder of the paper, we
will use the notation R(Qi, Ti, F C

i()) to represent Equation
(1).

C . Mobility Management F ramework

We assume the existence of a modular Mobility
Management framework in each node, similar to the one
proposed in [9].

These mobility management modules have CPU and

S1

S2

S3

S4

S6

S5

S'5

H2 H3

H1 l1,6

mS5

l6,5

l1,2

l2,3 l2,4

l6,1
6,5

M1 M4

M2 M3

H4

networking servers assigned to them, guaranteeing the
timing requirements of its operations. Servers associated
with the CPU offer a capacity of C F over a period TF.
Network resources are split between two channels, one for
bulky data transfer and another for the exchange of short
control messages. The first has a capacity of Bdata and a
period of Tdata while the second has a capacity of Bctrl and a
period of Tctrl. The main advantage of using these two
channels is that we can guarantee small response time for
control messages, but for larger data transfer we are able to
make the transfer with small overhead.

D .

In the proposed model, services are able to split their
internal state into different State Items, representing different
variables, different objects or combinations of both. It is up
to the service to define how state items are configured. The
state of a service is thus a set of state items defined
exclusively by the service, where a State Item (SI

Si
p) is only

associated to a service Si and defined as a tuple:

ID

Si
p univocally identifies this State Item and B

Si
p is the

bandwidth required for the transfer of this state item. Some
state items are created during the service initialisation and
are not changed subsequently, while others are updated
regularly when service calls are executed. Therefore, state
items are divided in two groups: one that can be migrated
during the normal operation of the service (Static Sate Items)
and another that can only be migrated if there are no ongoing
service calls (Dynamic State Items).

 Based on the model exposed in this section, Section III
shows how it is possible to devise a timing model for a
generic mobility mechanism.

III. CODE MOBILITY TIMING MODEL
Service mobility can be split in two main phases:

Preparatory and Blackout phases. During the Preparatory
phase, the migrating service continues operational in the
source node. This phase is further divided into three
subphases: mobility decision, code shipping, and initial state

transfer. During the Blackout phase, the service is totally
inaccessible to others. It includes the subphases: state

transfer, connections rebinding, and service restart. Some of
the subphases are executed serially while others can be
executed in parallel. Figure 2 depicts a timeline containing
an example of a mobility procedure. A detailed description
and analysis of each step is given in the following
subsections. In this analysis, for the sake of simplicity, we
assume that no other service mobility operation occurs
during the complete procedure and that a higher-level
resource control framework assures such control.

Figure 2 Mobility-related timings

A. Preparatory Phase

1) Decision process

The start of service mobility (mobility triggering event)
results from a decision by the application (currently using
the service) or by request from an external entity (the user,
another application or specific framework). As an example,
in Figure 2, the triggering event is received from another
node.

State changes can also trigger service mobility whenever a
user requests the execution of an application that can only be
admitted into the system if the system is reconfigured by
migrating some services of previously admitted applications
to neighbour nodes. As an example, consider that a user
decides to play an mp3 file in its mobile device, having to
migrate part of a local application to a neighbour notebook.

Note that migration can only be allowed if there is a
feasible system configuration that allows the service to
continue operating within its required QoS levels.
Algorithms such as those provided by the Prism [1] or
CooperatES [4] frameworks take a high-level approach,
finding a solution for the distribution of the application
services between nodes in a way that maximises a global
utility function and, simultaneously, guarantees enough
resources (CPU, network, memory, etc) for every admitted
service. While the former assumes just one possible QoS
level to the application, the latter assumes that each service
can work with multiple QoS levels, each one with a different
utility value to the overall system. Additionally, the
algorithms proposed in [4] are capable of generating a
system configuration in a bounded amount of time. These
algorithms are able to use a global view of the system state
or can simply use a partial view of the system, e.g. if the
node computing a decision only has access to a limited
number of nodes.
We should point out that the algorithms proposed in [1] and
[2] do not take into account the cost introduced by systems
reconfiguration and particularly code mobility.

2) Code shipping

After finding a new distributed solution, the source node
informs the destination node of the QoS requirements for the
service being migrated. The destination node can then make
all necessary local confirmations on the feasibility of

tdp

Preparatory Phase(tprep)

Dec. IState

tist tcode

Mobility triggering
event

Code Quisc. FState

tqui tfst

Rbind

tstart

Start

Blackout Phase(tblk)
t

tme

Dest.

Other
host

Source

receiving the service: security, scheduling, memory
requirements, etc.

Then, the service code is coded (e.g. for data serialisation)
for transmission on the source node, shipped through the
network, and decoded on the destination node (e.g. by using
a deserialisation method).

The bandwidth required to transfer the code is equal to
code, a constant, since the code size is not expected to vary

during transit. Therefore, the average time required for the
transmission of code (tcode) can be calculated by:

F C
code,S() and F C

code,D() are the c.d.f. of the execution time
required by the framework, on the source and destination
nodes, respectively.

3) Initial state transfer

We assume that a set of Static State Items (e.g.
configuration data) can be transferred prior to the quiescence
of the service on the source node. After the transfer of the
state items, the destination node acknowledges its reception.
Consequently, the delay associated with the initial state
transfer is given by:

(3)

where F C
ist,N() is the c.d.f. for the required bandwidth,

F C
ist,S() and F C

ist,D() are the c.d.f. of the CPU processing time,
on the source and destination node, respectively.

4) Total delay of the Preparatory phase

The time required for the Preparatory phase is given by:

 (4)

where tme is the time that elapses from the event that
triggered the mobility of a service until being received by the
node responsible to determine a new system configuration. It
is assumed that the new system configuration is computed in
a bounded time tdp [4].

It is important to note that, depending on the scenario,
some of these timings can be equal to zero. As an example,
assume the case where it is the user that decides to migrate
its application from its mobile device to its TV, then tme is
equal to zero..

Most importantly, during this phase the service continues
totally operational, but the characterisation of this delay is
required in order to determine the dynamics of the mobility
procedure.

B. Blackout Phase

1) Quiescence achieving

Usually, in reconfiguration operations, the service to be

updated has to be in a safe state called quiescence [7]. In this
state, the service being migrated: i) is not currently engaged
in a transaction; ii) will not initiate a new transaction; iii) is
not servicing a transaction; and iv) no transaction has or will
be initiated by other services that require service from this
service. At the same time, all services connected with the
migrating service must go into a passive state, which
requires the fulfilling of condition i) and ii).

One initial solution to achieve quiescence has been
proposed in [7], while a less demanding solution, called
tranquillity was later proposed in [8]. Achieving quiescence
requires the completion of pending requests by the service
being migrated and the knowledge of all other services that
might issue new requests. These other services must evolve
into a passive state in which they cannot evoke the service
being migrated, although they can evoke other services
available in the system. The time needed to achieve
quiescence can be determined through a timing analysis of
the mechanisms proposed in [7] or [8]. This calculation, out
of the scope of this paper, is assumed to be known and equal
to tq.

We argue that achieving quiescence is not a necessary
condition for the mobility of services in a distributed system,
as shown by the implementation described in [9], if the
service calls are stored by the mobility management and
delivered to the destination node only after the completion of
the mobility procedure.

2) F inal state transfer

Several different approaches can be considered for state
transfer: i) transfer all state in a single bundle [10]; ii)
propagate only the operations done on state items [5]; iii)
separate the state space into several groups of items, each
transferred with its own periodicity [6] or iv) retransmit the
state whenever it changes [12]. The mobility model here
considered adapts to these approaches.

The final state transfer is the subphase that mostly
influences the latencies of a service migration, due to its
duration and due to the service being in a quiescent state (it
involves the transfer of Dynamic State Items which can only
maintain consistency if the service is not operational).

The set of state items that can only be transferred after
achieving quiescence require a bandwidth of F C

fst,N() and
CPU processing requirements of F C

fst,S() and F C
fst,D(),

respectively on the source and destination nodes.
CPU processing is required for the preparation of the data

to be sent and the required processing time to decode the
data on the destination node. Therefore, the final state
transfer duration (tfst) can be calculated, similarly to the case
of tist, as follows:

(5)

(2)

3) Connections rebinding

In the migration process, connections between services
need to be changed according to the new location of the
migrating service.

This procedure can be performed in parallel with the final

state transfer and it involves the exchange of messages
between 2 or more nodes: the source, destination and, if any,
other nodes whose services connect to the service being
migrated. It mainly requires the exchange of messages
containing the location of the new end points, which requires
a bandwidth of Si

reb. Therefore, if service Si has ncon
Si

connections with other nodes, the total bandwidth required
to rebind all connections (reb) is ncon

Si
×

Si
reb. The time

required internally by each service to change the connection
end point addresses is considered negligible.

The exchanged messages can also be used to withdraw all
connected services from the passive state. Therefore, the
rebinding time (trbind) is given by:

 (6)

Since the number of exchanged message can be high, but
with a small payload, its transmission is performed by the
communication server assigned for control messages.

4) Service restart
The final subphase, which starts at the end of both the

connection rebinding and final state transfer subphases, is
responsible for the restart of the service on the destination
node. All code and state must already be on the destination
node and all necessary operations for the installation of the
service (if required) have been completed. After being
started, the service re-establishes its internal state using the
state items previously transferred and enters full operation.
This operation is performed by the service using its
scheduling budget (C

D
Si, T

D
Si), and therefore the time

required for service restart is given by:

 (7)

where F C
fst,D() is the p.d.f. of the CPU requirements for

service restart on the destination node.

5) Total delay of the Blackout phase

During this phase, all transactions involving the migrating
service are stopped, thus leading to a blackout period (tblk).
On a real-time system this time is particularly important
since it influences the timeliness of the distributed
application. Therefore, the total duration of the Blackout
phase is given by:

 (8)

Since the final state transfer and the rebinding of
connections can be executed in parallel, then we use the
function to determine the maximum of
both subphases.

As discussed previously, the Quiescence Achieving
subphase might be eliminated if the system is supported by
adequate mobility management facilities. The rebinding
process is based on a simple exchange of messages and on
the reconfiguration of transmission and receptions ports. The
service restart is an operation with a small overhead. But, the
final transfer subphase delay varies with the size of the data
being transferred. Particularly, when the state size is high,
strategies like the ones proposed in [12] can be used in order
to reduce tfst. Such strategies enable the implementation of
partial blocking and non-blocking approach on service calls
for a migrating service.

IV. MOBILITY FRAMEWORK ARCHITECTURE AND
IMPLEMENTATION

A Mobility Framework, which enables the mobility of
services on the Android Operating system, has been
developed. The framework will be used to demonstrate the
use of the proposed model on real scenarios.

The framework is implemented as an Android service,
which takes care of service migration, to and from another
node, at the same time it interacts with the operating system
Resource Manager in order to determine if the QoS
requirements of the service can be supported.

The Android operating system is used both due to its open
source nature to its innovative architecture. Although its use
to support real-time applications is still debatable [15] it
nevertheless provides a suitable architecture for quality of
service-aware applications in ubiquitous, embedded systems
[16].

The core services provided by the framework are the:
Discovery Manager, Package Manager, State Manager and
Execution Manager. Additionally, the framework also relies
on a QoS Manager module that is responsible for assuring
that QoS requirements of each service can be met.

The Discovery Manager module is designed to discover
neighbour devices on a local network and advertise the host
device capabilities.

The advertise messages contain information about the
applications and services installed, their associated intents
interfaces and QoS requirements. Originally, Android intents
provide the means for the reutilization of functionalities
implemented by other application installed in the same
device.

Therefore, the Discovery Manager provides a standard
mechanism, for each node, to obtain information about
installed services and about the availability of resources in
neighbour devices. It also keeps track of node and service
disconnections from the network.

The Package Manager is used to install, uninstall and
transfer the code of Android services, which are contained in
APKs files. This module is also responsible for the
interaction with the QoS Manager in order to request

specific QoS levels for the service being handled. Therefore,
its is the responsibility of the QoS Manager to accept or
reject service installations, particularly if the QoS required
level cannot be guaranteed.

The State Manager handles both the initial and final state
transfer operations in a flexible way, based on the state items
paradigm.

The Execution Manager allows launching services on a
host device or on a remote node through the exchange of
Android intents that allow the programming of transparent
applications (in relation to the distribution). In this
implementation an intent resolution procedure, based on the
data collected by the Discovery Manager, determines if the
intent can be run locally or if it must be redirected to the
node, where the service is running.

The QoS Manager administers the system resources,
either locally, on a node, or in a distributed environment. It
also encapsulates the functionalities of high level QoS
control frameworks, like the one defined in [4].
Consequently, this module can interact with our framework
conveying orders for the deployment of services in the
distributed system.

V. CONCLUSIONS AND FUTURE WORK
This paper proposed a generic model for code mobility in

soft real-time systems, where applications are constituted by
interconnected distributed services.

The main consequence of mobility to the running
application is that it might result on a temporary degradation
on the provided quality of service, due to the consequent
blackout period. We state that it is up to the application
programmer to determine the amount of degradation that can
be supported by the application.

As such, this work gives the system designer the
necessary tools to perform a statistical timing analysis on the
execution of the mobility mechanisms and to determine the
most appropriate parameters of the mobility framework
modules, either in relation to the local (CPU) or to network
resources.

The proposed model divides the mobility mechanism in
two phases, thus allowing a reduction on the time during
which a service is inaccessible (the Preparatory phase is not
considered). This work can leverage future research in the
field of code mobility and service update in distributed real-
time systems. The proposed analysis can support the
development and evaluation of suitable mobility
mechanisms. Future work will focus on the use of the state
items paradigm to propose new state transfer algorithms.

ACKNOWLEDGEMENTS
This work was supported by the ENCOURAGE project,

funded by National Funds through the FCT - Portuguese
Foundation for Science and Technology, as well as by the

ARTEMIS Joint Undertaking, under grant agreement n°
269354.

REFERENCES
[1] S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N.

Medvidovic, M. Mikic-Rakic, G. Sukhatme, "An Architecture-Driven
Software Mobility Framework," Journal of Systems and Software,
Vol. 83 Issue 6, June, 2010, pp 972-989.

[2] -time System Design using
CBS-based End-to-
conference on Parallel and Distributed Systems, pp. 355 360, 2002.

[3] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard
realtime systems Proceedings of the 19th IEEE Real-Time
Systems Symposium, Madrid, Spain, 1998, p. 4.

[4] L. Nogueira and L. Pinho, "Time-bounded Distributed QoS-Aware
Service Configuration in Heterogeneous Cooperative Environments",
in Journal of Parallel and Distributed Computing, Vol. 69, Issue 6,
June 2009, pp. 491-507.

[5] D. Bourges-Waldegg, Y. Duponchel, M. Graf and M. Moser, "The
fluid computing middleware: bringing application fluidity to the
mobile Internet", in Proc. of the 2005 Symposium on Applications and
the Internet, pp. 54- 63, 2005.

[6] -driven migration and
in

International Journal of Autonomous and Adaptive Communications
Systems, Vol. 3, No. 1, pp. 33-22, 2010.

[7] J. Kramer and
in IEEE Trans. on Software

Engineering, Vol. 16, Issue 11 (Nov. 1990), pp. 1293-1306.
[8] Y. Vandewoude, P. Ebraert, Y. Berbers and T.

in Proc. of the 22nd IEEE Int.
Conf. on Software Maintenance, Washington, DC, (Sep. , 2006), pp.
73-82.

[9] J. Gonçalves, L. Ferreira, L. Pinho and G
on a QoS-Aware Service- in
Proc. of the 8th IEEE International Conference on Embedded and
Ubiquitous Computing (EUC 2010), Hong Kong, December 2010, to
be published.

[10] M. ALRahmawy, A
on the RTSJ, in Proc. of the 5th international Workshop on Java
Technologies For Real-Time and Embedded Systems (Vienna,
Austria, Sep. 2007), vol. 231. ACM, New York, NY, pp. 155-164.

[11] B. K. Choi, S. Rho, R. Bettati, "Fast software component migration
for applications survivability in distributed real-time systems," in
Proc. of the 7th Object-Oriented Real-Time Distributed Computing,
Vienna, Austria, May 2004, pp.269-276.

[12] S. Rho, R. Bettati, "Fast software component migration for
applications survivability in distributed real-time systems," in Proc. of
the 7th Object-Oriented Real-Time Distributed Computing, Vienna,
Austria, May 2004, pp.269-276.

[13] E. Schneider -Time
Sof , PhD
Thesis, Université Louis Pasteur Strasbourg, 2004.

[14] Nogueira, L., Pinho, L., "A Capacity Sharing and Stealing Strategy for
Open Real-time Systems", Published in Journal of Systems
Architecture, Volume 56, Issues 4-6, April-June 2010, pp. 163-179.

[15] P. Pedreiras, P. Gai, L. Almeida, G. Buttazzo, -ethernet: A
flexible real-time communication protocol that supports dynamic QoS
management on ethernet-
Industrial Informatics, vol. 1, no. 3, p. 162-172, August 2005.

[16] Maia, C., Nogueira, L., Pinho,
Embedded Real-
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT 2010), Brussels, Belgium, 2010, pp. 63-70.

[17]
itted for publication on the 8th

International Workshop on Java Technologies for Real-time and
Embedded Systems - JTRES 2010.

