

Monitoring large scale IEEE
802.15.4/ZigBee based Wireless Sensor
Networks

Technical Report

CISTER-TR-131101

Version:

Date: 11-01-2013

Stefano Tennina

Olfa Gaddour

Fernando Royo

Anis Koubaa

Mario Alves

Technical Report CISTER-TR-131101 Monitoring large scale IEEE 802.15.4/ZigBee based

 Wireless Sensor Networks

© CISTER Research Unit
www.cister.isep.ipp.pt

1

Monitoring large scale IEEE 802.15.4/ZigBee based Wireless Sensor Networks
Stefano Tennina, Olfa Gaddour, Fernando Royo, Anis Koubaa, Mario Alves

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
Monitoring of large scale Wireless Sensor Networks is a fundamental task to track the network behavior and
measure its perfor- mance in real-world deployments. ZigBee is a standard protocol that operates on top of IEEE
802.15.4 PHY and MAC layers, and represents a very prominent technology for WSNs as it is gaining more and
more interest by the research community. Designing a Monitoring tool for IEEE 802.15.4/Zigbee becomes of a
paramount importance and many commercial products have been proposed. However, similar commercially
available products for monitoring and testing ZigBee based WSNs suffer from being either a proprietary solution
not flexible to adapt to different protocol stacks or simply too expensive, typically require special sniff- ing
hardware and not suitable for large scale WSNs. In this paper, we present Z-Monitor, a free and extensible
monitoring tool and protocol analyzer solution to control and debug IEEE 802.15.4/ZigBee-compliant WSNs. In
addition, we detail our experience in deploying Z-Monitor in several testbeds ranging from small to medium to
large scale, where the network is monitored by multiple sniffing points, and the architecture of the tool is able to
present a global picture of the network as if only one sniffing point is able to collect the whole packets. Finally, we
show how Z-Monitor is able to measure network performance in real world deployments.

Monitoring large scale IEEE 802.15.4/ZigBee

based Wireless Sensor Networks

Stefano Tennina1, Olfa Gaddour2, Fernando Royo1,4,
Anis Koubâa3, Mario Alves1

1 CISTER/INESC-TEC Research Unit, ISEP/IPP, Portugal.
2 CES Laboratory, National School of Engineers of Sfax, Sfax, Tunisia

3 COINS Research Group, Prince Sultan University, Saudi Arabia.
4 Universidad de Castilla-La Mancha, Spain.

sotna@isep.ipp.pt, olfa.gaddour@coins-lab.org, froyo@dsi.uclm.es,

akoubaa@coins-lab.org, mjf@isep.ipp.pt

Abstract. Monitoring of large scale Wireless Sensor Networks is a fun-
damental task to track the network behavior and measure its perfor-
mance in real-world deployments. ZigBee is a standard protocol that
operates on top of IEEE 802.15.4 PHY and MAC layers, and repre-
sents a very prominent technology for WSNs as it is gaining more and
more interest by the research community. Designing a Monitoring tool
for IEEE 802.15.4/Zigbee becomes of a paramount importance and many
commercial products have been proposed. However, similar commercially-
available products for monitoring and testing ZigBee based WSNs su↵er
from being either a proprietary solution not flexible to adapt to di↵erent
protocol stacks or simply too expensive, typically require special sni↵-
ing hardware and not suitable for large scale WSNs. In this paper, we
present Z-Monitor, a free and extensible monitoring tool and protocol
analyzer solution to control and debug IEEE 802.15.4/ZigBee-compliant
WSNs. In addition, we detail our experience in deploying Z-Monitor in
several testbeds ranging from small to medium to large scale, where the
network is monitored by multiple sni�ng points, and the architecture
of the tool is able to present a global picture of the network as if only
one sni�ng point is able to collect the whole packets. Finally, we show
how Z-Monitor is able to measure network performance in real world
deployments.

Keywords: Wireless sensor networks, protocol analyzer, distributed sni↵-
ing

1 Introduction and Motivation

Low Power Wireless Personal Area Networks (LoWPANs) are IEEE 802.15.4 [1]
compliant networks, which are becoming increasingly important because of their
essential role in Cyber-Physical Systems. LoWPANs are characterized by low-
cost, low data rate, infrastructure-less connectivity and suitability to a wide
range of applications, making them an essential component of the ubiquitous

computing paradigm. In order to ensure that the LoWPANs are operating at the
desired performance level and quantitatively demonstrate to the end-user that
their requirements are met, it is essential to provide network and system admin-
istrators with tools for monitoring and protocol analysis. Network Monitoring
is, in fact, the key to enable: (i) executing performance analysis, (ii) tracking
the network behavior, (iii) support to network programmers in debugging their
codes, and (iv) performing network management operations. Indeed, there exist
solutions for LoWPAN monitoring, but they su↵er from several limitations, such
as their high cost (hundreds of dollars in several cases), their requirement for
additional special hardware or their proprietary nature, which makes them not
suitable to user customizations.

LoWPANs are typically composed of devices that conform to the IEEE 802.15.4-
2003 standard. While the IEEE 802.15.4 standard specifies the Physical and
Medium Access Control (MAC) layers and underlying services for LoWPANs,
upper layers like Network and Application layers are defined by other standards,
like ZigBee and 6LoWPANs.

Despite the fact that ZigBee and 6LoWPAN/RPL are arguably the most
important WSN technologies today, very little is available on network monitoring
and debugging of these networks. There exist some commercial products for
LoWPAN monitoring, but mostly, these are packet sni↵ers that require special
hardware and are quite expensive. To the best of our knowledge, no free and
dedicated solution is available to provide network monitoring and debugging
that provides full support of IEEE 802.15.4-based protocol family.

Z-Monitor [2] is the result of our motivation to provide a free application for
LoWPAN monitoring and control with the following goals:

– Providing a LoWPAN protocol analysis tool, which can be used without any
special sni↵er hardware, free to use, modular, and extensible.

– Supporting ZigBee and 6LoWPAN protocols’ packets decoding.
– Providing statistical tools for network tra�c analysis for enabling network

performance evaluation.
– Providing a user-friendly interactive GUI, which does not only display packet

information to the end-user, but also can be used to easily control the net-
work and monitor its behavior.

– In new version, providing distributed sni�ng point capability, to monitor
big networks using several sni�ng points.

– Can run on several operating systems i.e., Windows and Linux.

The rest of this paper is as follows. Section 2 overviews the most relevant
research e↵orts and commercial products, and presents the contributions of Z-
Monitor as compared to these e↵orts. In Section 3, we present the software
design of Z-Monitor with its standalone and distributed sni�ng versions, and
describe its main software components. Section 4 demonstrates the e↵ectiveness
of Z-Monitor through experiments in several testbeds, including a large scale
and dense demonstrator covering three floors of a Scientific Park building. Fi-
nally, Section 5 closes the paper with discussions about ongoing work and future
extensions.

2 Related Work

Several packet analyzer tools have been proposed to sni↵ and monitor the IEEE 802.15.4-
based networks. In what follows, we present some of the most relevant products
that are either free or were proposed for commercial purposes.

Ubiqua protocol analyzer The Ubiqua tool5 is a real time analyzer that captures
and analyses IEEE 802.15.4 over-the-air packets. It has several features including
a graphical representation of the network topology with logical network links
between nodes, inspecting the network tra�c, exploring the available networks
and nodes and their attributes. However, it is relatively expensive.

SmartRF Packet Sni↵er The CC2420 packet sni↵er6 captures, filters and de-
codes IEEE 802.15.4 MAC packets, and displays them in a convenient way.
Frames may be filtered based on frame type and addressing information. Data
may be stored to a binary file format. Data frames, beacon frames, command
frames and acknowledgement frames are decoded separately, and each field for
each frame is decoded and displayed separately on screen. This tool only consid-
ers the Physical, MAC and network layers of the IEEE 802.15.4/ZigBee protocol
stack. However, it does not present any analysis of the application layer data and
does not provide any means for monitoring and controlling large-scale multi-hop
networks.

ZENA The ZENA tool7 is a free wireless network analyzer that graphically
displays wireless network tra�c following the IEEE 802.15.4 specification on
the 2.4 GHz band. The ZENA analyzer supports the ZigBee, MiWi and MiWi
P2P protocols. In conjunction with the hardware packet sni↵er, the software
can analyze network tra�c and graphically display decoded packets. It can also
display a graphical representation of the network topology and the messages
as they flow through the network. This information can then be saved and/or
exported for further analysis. However, it doesn’t support the analysis of many
LoWPAN protocols such as 6LoWPAN and RPL.

Wireshark Wireshark8 is a free and open-source packet analyzer tool. It is used
largely for network troubleshooting, analysis, software and communications pro-
tocol development, and education. It provides a user-friendly interface with stor-
ing and filtering features. Wireshark supports capturing packets in both from
live network and from a saved capture file. The capture file format is libpcap
format like that in “tcpdump”. It supports various kinds of operating systems.
However, it does not detect automatically the USB interface of some WSN plat-
forms to capture data. In addition, it cannot display the graphical topology
representation of the network.

5 www.ubilogix.com/products/ubiqua
6 www.ti.com
7 www.microchip.com
8 www.wireshark.org

In the following table, we summarize the features of the available tools and we
compare them with our tool Z-Monitor. As shown in the figure, Z-Monitor has
several advantages. For instance, with the latest version, it is the only tool that
supports multiple sni�ng points.

Table 1: Comparison of the main features of the available sni�ng tools.
Special

hardware
needed?

Cost
Supported
protocols

Support to
distributed

sniffing

GUI topology
visualization

Ubiqua protocol
analyzer

Yes, specifically
designed

High cost
(999$)

ZigBee,
802.15.4

No No

SmartRF
Packet Sniffer

Yes, specifically
designed

Low cost (50$)
ZigBee,
802.15.4

No No

Zena
Yes, specifically

designed
Free

ZigBee,
802.15.4, MiWi

No Yes

Wireshark

Yes, some
devices

widespread
Free

ZigBee,
802.15.4,

6LoWPAN,
RPL

No No

Z-Monitor

Yes, several
devices

widespread
Free

ZigBee,
802.15.4,

6LoWPAN,
RPL

Yes Yes

3 Z-Monitor Design and Features

In this Section, we present the software architecture of Z-Monitor and its main
features. We first present the stadalone mode. Then, we present the design of
the distributed sni�ng version.

3.1 Standalone Mode

The software design objective of Z-Monitor is to provide an open source, extensi-
ble, modular and user-friendly solution for LoWPAN monitoring. Z-Monitor al-
lows for monitoring of IEEE 802.15.4-based networks and for analyzing the net-
work behavior through statistical data analysis. Z-Monitor relies on a particular
sensor node acting as a passive sni↵er that captures network tra�c and redirects
it to a user-friendly Graphical User Interface (GUI). The fundamental advan-
tage of Z-Monitor as compared to commercially available products reviewed in
Section 2 is its independency to any special hardware.

To meet the aforementioned objectives, a component-based approach has
been used to design Z-Monitor. The block diagram of the main components is
shown in Figure 1.

Sniffer
Component

Buffering
Component

Parsing
Component

Data Manipulation
Component

Z-Monitor Software Architecture

Sniffer Sniffer
Hardware Storage

Component

Figure 1: The Block Diagram of Z-Monitor

Figure 2: The UML Diagram of Z-Monitor

On the hardware side, the sni↵er hardware is simply an IEEE 802.15.4-
compliant sensor mote, which passively captures the network tra�c. Each re-
ceived packet is redirected to the serial interface through which the sni↵er is
attached to forward that packet to the software sni�ng threads. The sni↵er
hardware that we have used is a TelosB9 mote which implements the packetsnif-
fer application available under TinyOS10. The packetsni↵er application switches
the USB port into promiscuous mode and subsequently sni↵s all packets that
come along. Z-Monitor collects packets arriving from the USB port, stores them
in a bu↵er, performs parsing and packet decoding and finally displays parsed
frames and outputs network statistics.

On the software side, five main software components, implemented through
various Java classes, have been defined, and the respective simplified UML dia-
gram is presented in Figure 2.

In the following, we present the di↵erent software components of Z-Monitor.

– Sni↵er Component. It reads data from the source specified by the configu-
ration panel, i.e., the mote, and process it to be interpreted into a logical

9 www.memsic.com
10 https://github.com/tinyos/tinyos-main/tree/master/apps/tests/tkn154/packetsni↵er

format. The Java class Zsni↵er receives the packets from the packetsni↵er
and redirect them to the bu↵ering component.

– Bu↵ering Component. It stores the incoming bit-stream of data int the
volatile memory to avoid packet loss. The Java class Zbu↵er handle this
operation. For the sake of independence from the network protocols, at this
level Zsni↵er simply store the raw bit-stream.

– Storage Component. It allows for the permanent storage of the incoming
packets for later o↵-line analysis. The Java class Zstorage is instantiated into
two distinct modules ZfileStorage and ZdatabaseStorage which implements
both file-storage and database-storage options.

– Parser Component. It is the hearth of Z-Monitor. The Java class Zparser
implements the parsing functionalities of the bit-streams, i.e., recognition of
the meaning of each field of the packets, and for that it uses several distinct
modules, one for each supported protocol.

– Data Manipulation Component. The role of this last component is to dis-
play the packets fields and compute useful statistics. Several display options
are available, such as a plain view, in which the fields of each packet are
displayed in a row (as shown in Figure 3) along with a timeline showing the
packets sequence, and a layered view, similar to WireShark display, in which
a packet is displayed layer by layer (i.e., Physical Layer, then MAC Layer,
then Network Layer, . . .). The statistics that Z-Monitor provides include the
total and average number of packets and average packet size.

Figure 3: Z-Monitor Frame Decoding

3.2 Distributed Sni�ng Mode

In its latest version, Z-Monitor has the feature of distributed sni�ng in order to
monitor larger networks, i.e., those where only one sni↵er is not able to record

Figure 4: Distributed Z-Monitorarchitecture.

the whole tra�c. Basically, by exploiting the possibility of the standalone version
to access a remote database, and by using two extra IDs as keys for the database
(an ID for the network and one for the user), a client-server architecture has been
implemented as shown in Figure 4. More in detail, multiple standalone versions
of Z-Monitor (which are named as provider, in this case) collect local pictures
of the network and send the data through wireless or wired links (e.g., WLAN)
to a global Z-Server, which contains the database. Consequently, a remote user
running a Z-Monitor Client can monitor the full network in real-time by accessing
the Z-Server and continuously refreshing the new data from the database. In
other words, from a single Z-Monitor station, the user feels the perception of
having a sni↵er able to monitor the whole network, regardless of its geographical
scale.

Nevertheless, since multiple sni�ng points often share common areas of the
network, they might sni↵ the same portions of the network tra�c and report
duplicated packets to the Z-Server. Therefore, in order to avoid this phenomena,
an accurate synchronization among the sni↵ers is needed. To do so, packets are
saved in Z-Server with a timestamp, other than the above mentioned network
and user IDs. Consequently, although the tool maintains all the functionality
described in the standalone mode, some new characteristics have been imple-
mented, in order to support the distributed sni�ng. These new elements are:

– The Z-Server, as a local or remote server machine, hosting the database
where packets are stored and reachable from the Z-Monitor Providers over
a wired or wireless communication channel (e.g., WLAN).

– The Z-Monitor Client, as a local or remote client machine, which present the
full network status and statistics to the final user by accessing the Z-Server.

– Synchronization between Z-Monitor Providers for accurately timestamp the
packets in order to avoid duplicates and to keep the correct sequence of
packets from the di↵erent sni↵ers. We opted for using the Network Time
Protocol (NTP) [3] to achieve the required synchronization.

– Distributed duplicated packets avoidance, to ensure that they don’t appear
in the database. To do so, every Z-Monitor Provider checks in the database if
the incoming packet is already present. If not, it will store it in the database,
elsewhere it will simply discard it.

To enable the di↵erent operation modes of Z-Monitor, we also implemented
a boot up choice where the user can select which mode to run, when launching
the execution of Z-Monitor. In particular:

– Standalone version: The standalone version is the traditional mode, where
a node acts as a sni↵er showing the local captured and analyzed packets.

– Provider version: Same as standalone, but forced to save packets into a
local or remote Z-Server.

– Client version: without any special hardware attached to the Z-Monitor,
the user connects to the Z-Server and analyses the tra�c of the interested
network in real-time or by looking at the past recent history stored in the
database.

4 Experimental Study

In this section, by focusing on the ZigBee protocol, we present an experimental
study that shows how to perform monitoring and performance evaluation using
Z-Monitor. The objectives of the experimental study are manifold:

– To demonstrate the capabilities of Z-Monitor for network monitoring.
– To show how Z-Monitor is useful in evaluating the performance of IEEE 802.15.4-

based WSNs.
– To present the collection of network statistics using Z-Monitor.
– To demonstrate the distributed sni�ng feature of Z-Monitor, by collecting

medium and large scale networks with multiple sni�ng points.

4.1 Standalone Mode

The network topology scenario used in this section is as follows, A WSN con-
tains a total of 12 TelosB motes, which consist in one sni↵er mote (running
the packetsni↵er TinyOS application), and 11 network nodes. As network, we
considered a Cluster-Tree topology composed of one ZigBee Coordinator, three
ZigBee routers and seven End Devices.

TelosB motes were deployed within a single broadcast domain. Therefore, we
will present results from a single-hop network testbed. The transmission power
of nodes was set to -25 dBm which is the minimal available transmission power,

Figure 5: ZigBee Protocol Analysis using Z-Monitor

and the frequency channel was set to 26. We have considered the available open-
source implementations of ZigBee protocol namely, the TinyOS Cluster Tree
IEEE 802.15.4/ZigBee implementation [4]. The Beacon Order was set to BO=8
leading to a Beacon Interval of BI=3.97 seconds and the Superframe order was
set to SO=4. The rest of the network parameters are: (i) maximum depth Lm = 3
hops; (ii) maximum children routers per parent Rm = 4 and (iii) maximum
children nodes per parent Cm = 6.

In this study, we measure the network convergence time metric of each node,
which is the duration a node spends to join the LoWPAN network. To do so,
said that all 10 motes (routers and end-devices) wake up at the same time, as
soon as a node associates with a parent node, it sends a specific data packet.
With Z-Monitor the time when such data packets are sent is recorded and is
considered as the joining time of that node.

Figure 5 shows a Z-Monitor screenshot while such a network were running.
It is clear from the screenshot that the ZigBee packets are correctly parsed and
all the packet types (Beacon, Acknowledgement, Data frames) are supported.

Figure 6 shows the joining time of each node captured by Z-Monitor.
It is clear from the figure that the first ZigBee router joins the network after

three beacons (12 seconds) which is expected. In addition, the joining time grows
linearly with the ZigBee network size. This is because ZigBee end-devices cannot
join the network before the joining of their parents (the routers).

4.2 Distributed Sni�ng Mode

In order to validate the new version and measure its performance, we have de-
ployed di↵erent WSN testbeds. We have deployed large scale networks with
multiple sni�ng points placed in di↵erent geographical locations (of the same
WSN). In what follows, we present the experiment that we conducted in order
to test the distributed sni�ng version of Z-Monitor.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Jo
in

in
g

Ti
m

e
(s

)

Node number

Figure 6: Convergence time of ZigBee WPAN (10 nodes)

Z-Server

Logger
Packet sent

event
+

NTP Server Sniffer Sniffer Sniffer
 1 2 3

Packet
Sender

Z-Server

Public NTP Server
hora.ora.es

Sniffer Sniffer Sniffer
 1 2 3

Packet
Sender

Logger
Packet sent

event

Figure 7: Topology used for the NTP accuracy synchronization experiment. NTP
server is located (a) on the same LAN; (b) over Internet.

4.2.1 Evaluation synchronization of multiple sni�ng point The syn-
chronization has been obtained thanks to NTP, this decision has been taken
according to the results of the following experiments, where the main objective
is to shown the accuracy time synchronization, obtained using this protocol when
the server is located in local network or when this server is located remotely. For
these tests we use three di↵erent sni↵ers, each one of them connected to di↵erent
PCs (see Figure 7a). These PCs are Z-Monitor Providers, and each one of them
is configured to use as time reference a NTP server, connected to the same LAN.

Once the packet sender starts to send beacons packets, these beacons are
received by the di↵erent sni↵ers and sent to Z-Server, but also the NTP Server
is recording the event Beacon.sendDone in order to get a reference time between
the sni↵ers and the packet sender. Each package in the database is accompanied
by the sni↵er id and the timestamp set by the sni↵er according to the NTP
protocol.

Figure 8: Results, in terms of o↵set, for the same beacon in the three sni↵ers,
when NTP server is located (a) on the same LAN; (b) over Internet.

We run the test for about 30 minutes, getting a total of 1500 beacons and
analyze the o↵set of the same beacon in each of the three sni↵ers, comparing
the reference time stored by the NTP Server, when the event Beacon.sendDone

is truly dispatched, and the timestamp stored by each of the sni↵ers, when they
received such a packet. Figure 8a shows the time o↵set for each sni↵er. The range
of such o↵set is around [0.2–5.2] ms.

For the second test, the same assumptions holds, but now a free remote NTP
server has been used11 (see Figure 7b to clarify) Running the test as before we
got an o↵set ranging in [0.6–17] ms (Figure 8b).

Since an o↵set less than 20 ms is often acceptable and enable to distinguish
duplicated packets in low data rate WSNs, these results confirm that our so-
lution is working. Next sections will further demonstrate how the distributed
sni↵ers approach e↵ectively allowed to monitor several networks and derive key
performance.

4.2.2 Evaluation over a cluster-tree network The objective of this section
is to show the performance of Z-Monitor obtained over a cluster-tree network
deployed in the I3ASensorBed [5]. The network topology is shown in Figure 9,
where the position of each node and sni↵er is evidenced.

The network is configured according to the following parameters: (i) maxi-
mum number of children for a parent (Cm) set to 9; (ii) maximum depth (Lm)
set to 3 hops; (iii) maximum number of child routers for a parent (Rm) set to
4; (iv) beacon order (BO) set to 10; and (v) superframe order (SO) set to 5.
Note that the beacon order is computed by the Time Division Cluster Scheduling
algorithm to avoid intra-clusters collisions [6].

The goal of this section is to show the experiment scenario and the perfor-
mance obtained by the distributed sni↵ers. The network works as described next.
(i) The coordinator starts sending beacons immediately after its switch on. It
receives association requests from the nodes and negotiate the beacon start re-
quests from Routers. It is installed on node 30 of Figure 9. (ii) Each Router
waits until the reception of beacons from its pre-assigned parent to start the
association process, then it initiates the negotiation with the Coordinator to get
a windows for its superframe. When it succeeds with the negotiation, it starts
transmitting beacons and at run time it forwards data from the children to the

11
hora.roa.es, available over Internet

Figure 9: Topology used for the experiment and sni↵er location. The six sni↵ers
are marked as stars, the coordinator is the light blue circles, the six routers are
green circles and the six end devices are brown circles.

parent. (iii) Each End Device waits to receive beacons from its pre-assigned
parent and starts the association with it. When it joins the network, it starts
sending periodic data packets to the parent to be forwarded to the Coordinator.
(iv) In six sni�ng points the distinct instances of Z-Monitor Provider are con-
figured to feed data packets into the common remote database. The experiment
lasts for about 15 minutes.

Analyzing the amount of packets saved in Z-Server, we can conclude some
points related to the basic functionality expected from the tool.

– No duplicated packets are present at the end of the experiment in the data
base. This confirms that the duplicated packet avoidance technique is work-
ing fine.

– There are packets stored from all the sni↵ers, i.e., there are beacons saved
from di↵erent sni↵ers. This denotes that the synchronization NTP-based is
accurate enough and the system is fair, i.e., there isn’t any sni↵er working
as a privileged one, due to synchronization issues.

Figure 10a shows the total amount of packets stored by each sni↵er.
The number of beacons saved for every node acting as Router or Coordinator

in the network is shown in Figure 10b. Obviously, it depends on the chronological
order of association to the parent node.

Finally, the synchronization and the time accuracy can be evaluated checking
the inter-arrival time for the beacons and the o↵sets of the Routers’ beacons with
respect to each parent, i.e., the respect to the scheduling fixed by the TDCS
algorithm. Figure 11a shows that more than 99% of the beacons are sent within

Figure 10: (a) Packets received by each sni↵er; (b) Beacons per node.

Deviations from Router beacon to its parent beacon

Time (sec)

Fr
eq

ue
nc

y

−0.4 −0.2 0.0 0.2

0
20

40
60

80

Figure 11: (a) Deviation from the programmed Beacon Interval. BO = 10 implies
a beacon interval of around 15 seconds; (b) Deviation from the programmed start
time of all the routers.

an error of ±0.1 seconds with respect to the intended time. Figure 11b shows
that there is a slight deviation of the start time with respect to the scheduling
in the implementation, mainly due to the fact that the resolution of the timers
in the TelosB platform is not fully compliant with the IEEE 802.15.4 standard.

Overall, these results validate the implementation of the distributed sni↵ers,
in the sense that the system allows system designers and network administrators
to have a global picture of the network behaviour, without being a single sni↵er
able to capture all the packets. Since all packets are correctly stored in the data
base, i.e., in the right sequence and without duplicated packets, users can easily
access the data base to have a full picture of the network and add more statistical
tools to further show the network insights.

A Large Scale Test Case Similar results of the controlled deployment described
above have been obtained in a larger scale deployment in the frame of the EM-

Figure 12: Location of EMMON final review at SANJOTEC Business and Tech-
nology Park in Sao Joao da Madeira (PT) [9].

MON project [7, 8]. EMMON is an FP7 Artemis European project, whose con-
sortium was composed by 9 institutions (both from academia and industry) from
6 EU Countries. The aim of the project, which ended in 2012, was to demon-
strate tools and methodologies for large scale and dense real-time networked
embedded systems.

For the final review, the consortium has deployed 400 TelosB nodes over 3
floors of an o�ce building to show the performance of the EMMON network
architecture (Figure 12) to monitor environmental parameters, such as humidity
and temperature.

The network was divided into several patches, each one running on a di↵er-
ent IEEE 802.15.4 frequency channel to keep the collision probability low. Each
patch includes a gateway, i.e., a notebook equipped with a TelosB to commu-
nicate with the WSN and connected to the WLAN through the access points
available in the building premises. Monitoring data were reported from the sen-
sor nodes to a central server station, placed in a room on the second floor of the
building, through such gateways. The server was reachable by external clients
through a public IP address. Other than the multi-hop and multi-tiers hierar-
chical networking architecture, the project encompassed several aspects, such as
the design and implementation of an e�cient and distributed middleware for
data handling and service providing, and the implementation of a user friendly
interface on the server to allow clients to interact with the network on a query-
based mechanism. Overall, the EMMON project included all aspects related to
the full system design and implementation.

On the networking side, Z-Monitor was used to collect statistics and assess
the performance of such a large scale and very dense WSN-based system. In
particular, 6 sni↵ers were running several days on each floor to report on the
activities of the deployed nodes. These nodes were organized into 4 patches of 100
nodes each. The communication protocol implemented was the ZigBee Cluster
Tree, rooted at the gateway and composed by 12 to 15 clusters. By referring to

Figure 13: (a) Beacon Deviation measured in the real world and large scale de-
ployment; (b) Network formation time in the large scale deployment.

the same symbols defined above, the network was configured according to the
following parameters: (i) Lm = 3 hops; (ii) Rm = 4; (iii) Cm = 15; (iv) BO =
10, which means a beacon interval BI of roughly 15 seconds; (v) SO = 5.

Figure 13a and Figure 13b show the performance of this deployment and ba-
sically confirm the results described above in the smaller scale scenario. More in
details, Figure 13a demonstrated that the beacons sent by each local coordinator
(i.e., the gateways or the routers) show a deviation from the theoretical value by
less than 0.5 ms. Figure 13b reports on the network formation time, i.e., when
a node associates with the parent in the ZigBee Cluster Tree mode. This figure
demonstrates that for allowing such large network deployment to run smoothly
the network formation time was quite high, but in line with the expectations.
In particular, it is worth to note that over 90% of the nodes for each patch were
able to join the network in less than 10 minutes.

5 Conclusions and Future Works

In this paper, we have presented Z-Monitor, a WPANs monitoring and proto-
col analysis framework. We have demonstrated the capabilities of Z-Monitor to
monitor the behavior and evaluate the performance of COTS WPANs technolo-
gies, namely IEEE 802.15.4 and ZigBee protocols. We have successfully moni-
tored distributed networks in two real scenarios: a laboratory environment at
I3ASensorBed [5] and a multi floor building at San Jotec [9] in the frame of
the EMMON project [7]. Thus, we have proved the new distributed features of
Z-Monitor.

We are currently working towards extending Z-Monitor to support more ad-
vanced features including (i) extending parsing component to support new
COTS protocols implementations, such as TinyRPL [10], (ii) integrating ad-
vanced filtering and statistical analysis features, and (iii) improving the topol-
ogy view interface.

Overall, we believe that Z-Monitor provides a convenient solution for re-
searchers and students for developing, debugging and deploying wireless sensor
network applications based on LoWPANs. This is also confirmed by the fact
that Z-Monitor is being already used by several Universities and research cen-
ters around the world, as we have witnessed more than 500 downloads since its
release.

Acknowledgments

This work was funded by (i) Al-Imam Mohamed bin Saud Islamic Univer-
sity (IMAMU), (Riyadh, Saudi Arabia) within the R-Track project under the
grant 8-INF-2008 of the National Plan for Sciences and Technology (NPST);
(ii) partially supported by Portugal National Funds through FCT (Portuguese
Foundation for Science and Technology) and by ERDF (European Regional
Development Fund) through COMPETE (Operational Programme “Thematic
Factors of Competitiveness”), within the MASQOTS project, ref. FCOMP-01-
0124-FEDER-014922; and (iii) jointly supported by the MINECO and European
Commission (FEDER funds) under the project TIN2012-38341-C04-04. We also
thank Nada Al-Elaiwi, Hanan Al-Soli, Rihab Chaari, Ahmed Dkhil and Mossab
Alsania for programming earlier versions of Z-Monitor.

References

1. IEEE 802.15.4 Standard, Part 15.4: Wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate wireless personal area networks
(LR-WPANs), IEEE-SA Standards Board.

2. Z-Monitor: A Monitoring Tool for IEEE 802.15.4 WPANs (2011).
URL http://www.z-monitor.org

3. D. Mills et al., Network time protocol version 4: Protocol and algorithms specifi-
cation. URL https://tools.ietf.org/html/rfc5905

4. Open-ZB open-source toolset for the IEEE 802.15.4/ZigBee protocols.
URL http://www.open-zb.net

5. M. O. Antonio et al., I3asensorbed: a testbed for wireless sensor networks, in:
Technical Report DIAB-11-12-1, Departamento de Sistemas Informticos. UCLM,
2011.

6. S. Tennina et al., The dark side of demmon: what is behind the scene in engineering
large-scale wireless sensor networks, MSWiM ’11, ACM, New York, NY, USA, 2011,
pp. 41–50.

7. Emmon - embedded monitoring, www.artemis-emmon.eu (May 2012).
URL www.artemis-emmon.eu/

8. S. Tennina et al., Emmon: A wsn system architecture for large scale
and dense real-time embedded monitoring, IFIP EUC2011 pp. 150 –157.
doi:10.1109/EUC.2011.32.

9. D. Almeida, EMMON open day 2012 at sanjotec, EMMON Open Day 2012 event
in SANJOTEC Business and Technology Park in Sao Joao da Madeira, Portugal
(June 2012). URL www.youtube.com/watch?v=OZE7o8CVIdA

10. J. G. Ko et al., Evaluating the Performance of RPL and 6LoWPAN in TinyOS,
IPSN.

