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Abstract 

Gliomas are the largest prevalent and destructive of brain tumors and have crucial parts for the diagnosing and 
treating of MRI brain tumors during segmentation using computerized methods. Recently, U-Net architecture has 
achieved impressive brain tumor segmentation, but this role remains challenging due to the differing severity and 
appearance of gliomas. Therefore, we proposed a novel encoder-decoder architecture called Multi Inception 
Residual Attention U-Net (MIRAU-Net) in this work. It integrates residual, inception modules with attention gates 
into U-Net to further enhance brain tumor segmentation performance. Encoderdecoder is connected in this 
architecture through Inception Residual pathways to decrease the distance between their maps of features. We 
use the weight crossentropy and generalized Dice (GDL) with focal Tversky loss functions to resolve the class 
imbalance problem. The evaluation performance of MIRAU-Net checked with Brats 2019 and obtained mean dice 
similarities of 0.885 for the whole tumor, 0.879 for the core area, and 0.818 for the enhancement tumor. 
Experiment results reveal that the suggested MIRAU-Net beats its baselines and provides better efficiency than 
recent techniques for brain tumor segmentation. 
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Abstract

Gliomas are the largest prevalent and destructive of brain tumors and have cru-

cial parts for the diagnosing and treating of MRI brain tumors during segmen-

tation using computerized methods. Recently, U-Net architecture has achieved

impressive achievement in brain tumor segmentation, but this role remains chal-

lenging due to the differing severity and appearance of gliomas. Therefore, in

this work, we proposed a novel encoder-decoder architecture called Multi Incep-

tion Residual Attention U-Net (MIRAU-Net). It integrates residual inception

modules with attention gates into U-Net to further enhance brain tumor seg-

mentation performance. Encoder-decoder is both connected in this architecture

through Inception Residual pathways to decrease the distance between their

maps of features. We use the weight cross-entropy and generalized Dice (GDL)

with focal Tversky loss functions to resolve the class imbalance problem. The

evaluation performance of MIRAU-Net checked with Brats 2019 and obtained

mean dice similarities of 0.885 for the whole tumor, 0.879 for the core area,

and 0.818 for the enhancement tumor. Experiment results reveal that the sug-

gested MIRAU-Net beats its baselines and provides better efficiency than recent

techniques for brain tumor segmentation.
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Preprint submitted to Journal of November 22, 2021



Inception, Residual Module, Attention Gate

1. Introduction

Gliomas are the most prominent brain tumors in adults caused by the glial

cells [1]. The average occurrence of gliomas is about 190k annually world-

wide [2]. It has two types with high-grade (HG) and low-grade (LG) glioma.

HG glioma tumors are malignant and eventually grow and requiring surgery5

where the projected patient lifespan is two years or less and similarly a few

years follow LG glioma (LGG) tumors. Magnetic resonance imaging (MRI) is

a common non-invasive imaging technology that generates brain images of high

quality without injury and artifacts from the skull for brain tumor screening

and tracking. Gliomas are very difficult to recognize with handcrafted segmen-10

tation due to differences in brain tumor scale, shape, and function, but it is also

time-intensive and tedious to segment manually. Automated segmentation can

lead to a more accurate and more straightforward diagnosis and treatment. Au-

tomatic image segmentation approaches using deep learning methods [3] have

recently made significant strides. Havaei et al.[4] applied multi-pathway CNNs15

into brain tumor segment regions. Also, two training steps were used to resolve

the imbalanced input data class due to the size of image patches; however, their

methods suffer from high computational cost and low performance. Shen et

al.[5] built a boundary-aware a fully convolutional network (FCN) to improve

tumor boundary and extracted from MRI scans contextual information with20

low computational efficiency. Based on this architecture, a fully convolutional

network named U-Net was proposed by Ronneberger et al. [6] which imple-

mented a completely convolutionary symmetrical network called U-Net for the

segmentation of medical images. These networks are typically a down-sampling

subnetwork that collects the high-level image functionality and an up-sampling25

subnet that reconstructs the pixel segmentation from these high-level features.

However, at the beginning of the network, the contextual knowledge of the en-

coder function is inadequate, resulting in low output for the pixel identification
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when paired with the corresponding high-grade decoder feature map. There are

many variants of U-Net, such as combinations with modules like ResNet [7],30

DenseNet [8]. Integrating Inception modules in a U-Net architecture has also

been recently proposed for brain tumor segmentation. Cahall et al. [9] intro-

duced a new framework building on U-Net architecture and Inception module

to segment glioma sub-regions and to segment intra-tumoral structures, which

produced a positive impact only on the whole tumor while not affecting tumor35

core and enhancing tumor. While resolving such challenges, attention mech-

anisms have been shown to capture long-term dependencies and essential re-

sponses in computer vision. Many attempts to enhance image recognition and

image segmentation efficiency have been carried out with the attention module.

Wang et al. [10] create a residual attentiveness network that generates attention40

features from multiple modules, adjusting to deeper layers and enhancing clas-

sification accuracy effectively. Hu et al. [11] suggested a Squeeze and Excitation

(SE) block attention module based on the channel relationship and dynamically

recalibrating the function to improve feature expression. Zhang et al. [12] sug-

gested AGResU-Net combines residual modules and attention gates with U-Net45

architecture. However, their methodology loses a significant quantity of back-

ground information and local details across different slices. It is noted that

brain tumors have diverse shapes and sizes, which contribute to small tumors in

the brain tumor segmentation. Taking into consideration the attention modules

can increase the U-Net segmentation efficiency of small-scale tumors. We intend50

to explore the efficiency of an attention gate, efficient inception, and residual

modules; for the brain tumor segmentation, we propose a novel Multi Inception

Residual Attention U-Net model (MIRAU-Net). Experiments on brain tumor

segmentation benchmark demonstrate that our MIRAU-Net can obtain compa-

rable segmentation accuracy. This paper summarizes the major contributions55

as follows:

(1) We suggest an end-to-end MIRAU-Net model for the segmentation of

the brain tumor.Figure 1 displays the MIRAU-Net architecture that extracts

substantially more features to gain and restore information about the locations
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of brain tumors, which enhances segmentation efficiency.60

(2) MIRAU-Net combines Inception-residual modules and attention mod-

ules with U-Net architecture. Encoder and decoder sub-networks are linked in

MIRAU-Net by Inception-Res paths to deeper and extend the proposed network.

The re-modeled skip paths of the architecture with gate signal are forwarded to

the attention gate attempt to Improve the capacity of expression and feature65

extraction and decrease the gap between the encoder and decoder sub-networks.

(3) A new multi-loss function is introduced, combining weight Loss, Gener-

alized Dice Loss, and Focal Tversky Loss to mitigate the class imbalance.

(4) Experimental results on the Brats 2019 dataset for brain tumor seg-

mentation illuminate that our model 2D Multi Inception Residual Attention70

U-Net (MIRAU-Net) is efficient and performs favorably against state-of-the-art

methods.

Following this introduction, the detail of the suggested architecture is pro-

vided in Section 2. In Section 3, the experimental results and discussion are

seen. In the end, Section 4 offers a conclusion and future work.75

2. Methods

The detailed methodology of MIRAU-Net for brain tumor segmentation is

given in this section. Then we provide a brief introduction to the multi-loss

function adopted in MIRAU-Net.80

2.1. Multi Inception-Residual Attention U-Net (MIRAU-Net)

The U-Net network is more capable of feature representation, so more con-

textual knowledge is collected based on the U-Net. A novel end-to-end fully con-

nected network is proposed that incorporates the Inception-Res module with an85

attention gate unit into the U-Net module. Fig.1 illustrates the architecture of

the proposed Multi Inception Residual Attention U-Net, known as MIRAU-Net.
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We are deeper into the U-Net by replacing the sequence of two convolutional

layers in both encoder and decoder layers in the original U-Net model with

the proposed Inception-Res block; also, we introduce re-modeled skip pathways,90

namely Inception-Res skip connection. We provide adequate spatial information

and the positioning of low-level feature maps using attention gates to increase

segmentation accuracy for small-scale tumors during the up-sampling process.

2.1.1. Inception-Residual U-Net

The medical image objects have varying sizes. A network must also be able to95

identify entities on different scales to enhance segmentation efficiency. Szegedy

[13] introduced the architecture of Inception-Res blocks, which using variable

kernel size convolutionary layers to extract features from different image scales.

We update the U-Net architecture with a modified Inception-Residual module to

improve network representation functionality and segmentation efficiency. The100

modified Inception-Res module is proposed to be used in each block shown in

Fig 2 includes multiple sets of 1×1 convolutions, 3×1 convolutions, and 1x3

convolutions. The output filters generated from the convolution layers in the

first branch 1x1 concatenated with convolution layers in the second branch

1x1,1x3,3x1 then this output added with the convolution layers in the third105

branch 1x1. Compared with the original Inception–Res module first, Batch

normalization (BN) layers after every convolutional layer in the architecture

are added to prevent vanishing of gradient problems in MIRU-Net, which is

adopted. Secondly, 1x1 convolutions applied on the identity feature map to

preserve a similar relationship between the base U-Net number of filters and110

our suggested model, and PReLU activation [14] rather than ReLU activation

in the baseline U-Net[6].

2.1.2. Re-designed skip Path

In the original U-Net, the encoder feature maps are received straight from

the decoder. So in the MIRAU-Net, we made some modifications in skip connec-115

tion called Inception-Res Path between encoder and decoder. Dataflow passes
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Figure 1: The architecture of the MIRAU-Net model.

through the chain of convolutional layers using inception residual connections

methodology, concatenates with gating signal, and then forwards the output to

the attention gate. The Inception-Res Path is illustrated in Fig. 3. We pre-

sumed the strength of the semantic distance between maps of the encoder and120

the decoder is likely to decrease. Therefore the convolutional blocks adopted
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Figure 2: The modified Inception-Res module.

respectively along the four inception-Res paths. Besides the number of function

maps in encoder-decoder, the blocks of the four Inception-Res paths comprise

of multiple of 32 up to 256 filters, respectively. The details of Inception-Res

paths are listed in Table 1.125

2.1.3. Attention gate

Research has shown that a deep learning model that is trained with the at-

tention gate increases network performance [10]. In Fig 4, attention gate device

is illuminated and the output of AG xoutput is an element-wise multiplication of

input feature-maps xl, and attention coefficients α. In this figure,xl andgi are130

Input feature map of layer l and gating signal, respectively the basic formula of
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Table 1: Inception-Res paths details

Path Layers Number of filters

Conv2D(1,1) 32

Conv2D(1,3) 32

Inception-Res Path1 Conv2D(3,1) 32

Conv2D(1,1) 32

Conv2D(1,1) 32

Conv2D(1,1) 64

Conv2D(1,3) 64

Inception-Res Path2 Conv2D(3,1) 64

Conv2D(1,1) 64

Conv2D(1,1) 64

Conv2D(1,1) 128

Conv2D(1,3) 128

Inception-Res Path3 Conv2D(3,1) 128

Conv2D(1,1) 128

Conv2D(1,1) 128

Conv2D(1,1) 256

Conv2D(1,3) 256

Inception-Res Path4 Conv2D(3,1) 256

Conv2D(1,1) 256

Conv2D(1,1) 256

which is as follows:

xoutput = xl.αi (1)

To obtain the gating coefficient we use additive attention [15]. Though

computationally more costly, it has proved experimentally more efficient than

multiplying attention .135

αi = σ2(ψ
T (σ1(W

T
x xl +WT

g gi + bg)) + bψ) (2)
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Figure 3: Inception-Res Path.

Figure 4: The basic block diagram of additive attention gate.

σ1is sometimes selected as rectified linear function σ1(xli,c) = max(0, xli,c)where

i and c represent spatially, and channel dimensions, respectively, and σ2 corre-

sponds to the Sigmoid activation function σ2(xli,c) =
1

1+exp(−xli,c
) . Wx, Wgand

ψ are linear transformations, while bg and bψ are bias terms.
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2.2. Multi Loss Function140

The efficiency of the segmentation model depends on the loss function option,

not only on the architecture of the network, especially when dealing with an

extremely imbalanced problem. Therefore, it becomes more difficult to choose

a suitable loss function. We utilize weight cross-entropy loss[16], a Generalized

Dice loss (GDL)[17], and focal tversky loss[18] to fix unbalance label class. In145

this study, we utilize a multi loss function, defined in Equation (3):

MultiLoss = GDL+WCE + FocalTverskyLoss (3)

2.2.1. Generalized Dice Loss (GDL):

Suggested in Equation (3) as a multi-class segmentation estimating method

which deal with label unbalance for medical images data:

GDL = 1− 2

(

L∑

i

wi
∑

i

gik pik)

L∑

i

wi
∑

i

( gik + pik)

(4)

Where L represents the total number of labels, k is the size of a batch,150

wi is the weight of the label ith label. As suggested in[17], we have defined

wi =
1∑

k
gik

. pik and gik which represent the value of the ( ith, kth) pixel of

the binary ground truth image and binary segmented image .

2.2.2. Weighted cross-entropy (WCE):155

The cross-entropy loss is chosen for the segmentation task, that accelerates

learning at the beginning of the training,as seen in Equation 4:

WCE =
−1

k

∑
k

L∑

i

Wigiklog(pik) (5)

2.2.3. Focal Tversky Loss:

Tversky index (TI) is a Dices coefficient generalization. TI adds weight to

FP (false positives) and FN (false negatives), it can be defined as follows:160
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TI =
TP + ǫ

TP + αFN + (1− α)FP + ǫ
(6)

FTL = (1− TI)γ (7)

Where γ varies between 1, and 3. Theǫ provides numerical stability to avoid

division by zero. In our experiments, we observe that the highest performance,

when γ = 1.3 ,and α=0.7.

3. Experimental Results165

In this section, we briefly explained data pre-processing and experimental

results of the proposed MIRAU-Net with the comparison of the previous novel

research work.

3.1. Datasets

In this study, Brats 2019 brain tumor MRI dataset used for the performance170

evaluation. The Brats 2019 dataset contains 335 patients, 259 HGG cases, and

76 cases of LGG. At the same time, 125 patients are present in the validation

Brats 2019 dataset. Each case contains volumes of FLAIR, T1, T1, and T2. The

dataset is co-registered, re-sampled, and skull stripped to 1 mm3. There are

four corresponding regions on the label: healthy, necrosis and non-enhancing,175

edema, and enhancing tumor where the whole tumor (WT) region includes all

intratumor regions, i.e., necrosis non-enhancing tumor, edema, and enhancing

tumor, Tumor core (TC) region that incorporates non-enhancing tumor necrosis

and enhancing tumor (ET) region.

3.2. Experiment Details180

For pre-processing, each slice is normalized with the mean and standard de-

viation of this slice. 2D patches during the training of 128x128x4 are randomly

sampled to minimize processing time. All experiments are performed using the

Keras framework with the TensorFlow backend [19]. Parametric Rectified Lin-

ear Unit (PReLU) function is used as an activation function. For 30 epochs,185
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we trained the model because validation loss did not change afterward. Eval-

uation results of BraTS2019 training and validation datasets are disseminated

on the challenge leaderboard Web site. Our final results can be found in the

leaderboard section of these challenges under the heading “Attention Inception

Residual”.190

3.3. Evaluation metrics

In this study, we adopt used Dice score [20] and Hausdorff Distance [21]for

WT, ET, and TC for evaluation of the segmentation results in the MIRAU-Net

model. The Dice similarity score measures the overlap rate between P1 and T1

as follows:195

DSC(P1, T1) =
2|P1 ∩ T1|

|P1|+ |T1|
(8)

Where P1 and T1 denote the output segmentation, and label of ground-

truth, respectively. The Hausdorff distance between the two surfaces of A and

B is shown in the following Eq.

HD(A,B) = max(h(A,B), h(B,A)) (9)

h(A,B) = maxa∈A{min b∈B{d(a, b)}} (10)

Where d(a,b) represents the Euclidean distance between a and b.200

3.4. Experiment Results

3.4.1. Evaluation Results on BraTS2019 Training Dataset

We take in this experiment 184 samples from the Brats 2019 training dataset

using 80 percent of this dataset (147 subjects) for training and the remaining

20 percent (37 subjects) validation. The evaluation results of the proposed205

MIRAU-Net on the Brats 2019 training dataset are presented in Table2. Quan-

titatively the proposed network achieves Dice scores of 0.885 for the whole tu-

mor, 0.879 for core tumor, and 0.818 enhancing tumor. Also, the mean, standard

deviation, median, and 25th and 75th percentile of each metric are shown in

the table. The segmentation efficiency of our training dataset algorithm can210
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be evaluated by DSC, Hausdorff distance, which is measured using the online

evaluation system on the leaderboard Brats 2019 online website4. Also, in Ta-

ble 3 we compare our MIRAU-Net with other typical brain tumor segmentation

approaches from the literature to evaluate its performance.

Table 2: Dice and Hausdorff measurements on Brats 2019 Training Dataset

Dice Hausdorff distance

Whole Core Enhancing Whole Core Enhancing

Mean 0.888 0.876 0.819 7.02 7.2 5.2

Std.Dev. 0.083 0.124 0.164 12.11 14.96 12.5

Median 0.91 0.918 0.91 3.7 3 2

25 quantile 0.87 0.86 0.78 2.4 2 1.4

75quantile 0.938 0.94 0.90 6.3 5.04 3.16

Table 3: Comparison of segmentation results on the Brats 2019 Training Dataset with typical

methods

Methods DSC Hausdorff95

Whole Core Enhancing Whole Core Enhancing

Abouelenien et al.[22] 0.852 0.812 0.741 8.25 3.3 3.3

Kermi et al.[23] 0.867 0.798 0.717 8.7 6.4 4.7

K. Hu et al.[24] 0.882 0.748 0.717 12.6 9.6 5.6

Baid et al. [25] 0.878 0.82 0.748 12.9 11 7.2

Frey et al.[26] 0.896 0.80 0.787 8.17 8.24 6.0

MIRAU-Net(our) 0.885 0.879 0.818 7.02 7.2 5.2

In the comparison presented in Table 3, MIRAU-Net exceeds other top en-215

tries in the core tumor and enhancing in the DSC value and is just less than

the approach introduced by Frey et al. [26] on the whole tumor. Frey et al.

[26] proposed a framework using a convolutional neural network. Compared

4https://www.cbica.upenn.edu/BraTS19/lboardTraining.html
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with Abouelenien et al.[22] and Baid et al. [25] methods, our MIRAU-Net

model achieves enhanced segmentation efficiency. K. Hu et al. [24] apply multi-220

cascaded convolutional neural networks. However, our MIRAU-Net achieved

0.3% on the whole tumor, 13.1% on the core tumor, and 10.1% enhancing tumor

gains over [27]. In comparison with the proposed brain tumor segmentation net-

work in [23], Our MIRAU-Net surpasses this network in the whole tumor, core

tumor, and tumor enhancement by a large margin of 1.8%,8.1%, and 10.1%. By225

comparing the Hausdorff95 distance, our MIRAU-Net achieves the Hausdorff95

distance value of 7.00, 7.2, and 5.2, respectively, on the whole tumor, core tumor,

and enhancing tumor segmentation. Mainly, it gains the optimal Hausdorff95

metric on complete tumor segmentation. However, the best distance value on

core tumor and enhancing tumor are respectively obtained by Abouelenien et230

al. [22]. In general, Our MIRAU-Net model attains competitive performance

and outperforms other state-of-the-art methodologies. The comparisons also

indicate the effectiveness and the quality of our networks.

3.4.2. Evaluation Results on Brats 2019 Validation Dataset

We use 66 validation cases dataset for validation to take part in the Brats235

2019 competition. The segmentation efficiency of our algorithm (MIRAU-Net)

was calculated by using the online evaluation system for DSC and Hausdorff

distance in the challenge leaderboard Web site5. Our results are available in

the leaderboard section of these challenges under the title “Attention Inception

Residual.“ The experimental results are shown in Table 4. Quantitatively, Dice240

scores are 0.866, 0.858, and 0.808 for the whole tumor, core tumor, and enhanc-

ing tumor, respectively. The table also displays the mean, standard deviation,

median, and 25th and 75th percentile of each metric. Table 5 demonstrates

comparative results with other traditional approaches.

MIRAU-Net achieves very competitive efficiency relative to other state-of-245

the-art brain tumor segmentation approaches. MIRAU-Net achieves DSC values

5https://www.cbica.upenn.edu/BraTS19/lboardValidation.html
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Table 4: Evaluation results on Brats 2019 Validation Dataset

Dice Hausdorff distance

Whole Core Enhancing Whole Core Enhancing

Mean 0.866 0.858 0.808 9.5 11.2 8.01

Std.Dev. 0.108 0.130 0.144 17.8 19.5 18.8

Median 0.90 0.901 0.85 4.1 4.3 2.3

25 quantile 0.86 0.858 0.78 3 2.05 1.4

75quantile 0.928 0.934 0.89 5.9 8.8 3.9

Table 5: Compared segmentation results with typical methods on Brats 2019 validation

Dataset.

Methods DSC Hausdorff95

Whole Core Enhancing Whole Core Enhancing

Chen et al.[28] 0.894 0.831 0.749 - - -

Islam et al.[29] 0.876 0.761 0.689 9.8 12.36 12.94

Hu et al.[30] 0.81 0.69 0.55 24.2 31.5 64.4

Chandra et al. [31] 0.83 0.73 0.618 20.45 26.48 24.93

Li et al.[32] 0.89 0.733 0.726 - - -

Baid et al. .[25] 0.878 0.826 0.748 12.9 11.2 7.3

MIRAU-Net(our) 0.866 0.858 0.808 9.5 11.2 8.01

of 86.6%, 85.8%, and 80.8% on the whole tumor, core tumor, and enhancing

tumor, respectively. Specifically, our approach achieves the best values DSC of

the core tumor, enhancing tumor and Hausdorff95 of the whole tumor region.

The method proposed by Chen et al. [28] achieved slightly higher on complete250

tumor segmentation. Their approach proposed separable 3D U-Net architecture,

but their models cannot achieve good segmentation results for each view. Our

MIRAU-Net achieves better segmentation performance on DSC and Hausdorff95

compared with some recent approaches by Islam et al. [29] and Hu et al .[30].

Fig 5 shows the results of three HGG tumor samples and five LGG tumor255

15



Table 6: Compared segmentation results with baselines on BraTS 2019 Validation Dataset

Methods Whole Core Enhancing

U-Net 0.864 0.746 0.694

AGU-Net(our) 0.865 0.83 0.79

MIRAU-Net (our) 0.866 0.858 0.808

samples. In these figures, columns one to three display Flair, ground truth, and

our MIRAU-Net segmentation, respectively. Where intratumor areas can be

distinguished by color code: yellow for enhancing tumor, green for edema and

necrotic, and red for non-enhancing. Fig. 5 indicates that the size, shape, lo-

cation, and intensity of tumors in these eight samples are different and enhance260

the segmentation performance for small tumor regions. Generally, the proposed

segmentation architecture results are comparable to those acquired by the ex-

perts (GT). Figure.6 shows the results for Dice and Hausdorff in validation data.

The boxplots show the minimum, median, maximum, lower, and upper quartile.

Points outside of the interquartile are referred to as outliers. From the boxplots,265

it was evident that our algorithm achieves considerably high segmentation ac-

curacy in most cases. Fig. 7 Represents bar plots of the average DSC scores for

the BraTS 2019 validation dataset for the three tumor regions. In this experi-

ment, MIRAU-Net achieves superior segmentation efficiency in the three tumor

regions relative to its baseline U-Net. In Table 6, MIRAU-Net achieves superior270

segmentation performance than its baseline U-Net for the three tumor regions.

Meanwhile, AGU-Net outperforms U-Net by 0.1%for whole tumor, 8.4% for

core tumor, and 9.6% for enhancing tumor respectively. Which is due to the

effectiveness of multi Inception-residual with attention gates in improving brain

tumor segmentation. Also Table .6 shows an increase in both Dice scores and275

Hausdorff95 distances the improvements due to the use of multi loss functions.
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Figure 5: Samples of results of the BraTS 2019 training dataset segmentation. Flair image,

Ground Truth, and MIRAU-Net respectively from left to right. Each color describes the class

of tumor: red—necrosis and non-enhancing, green—edema, and yellow—enhancing tumor.

4. Conclusion

In this article, we suggested a new MIRAU-Net model for an automated

method for brain tumor segmentation. First, we embedded the residual incep-

tion module and attention gate into U-Net in each block to enhance brain tumor280

segmentation performance. Then sub-networks encoder and decoder with con-

nected by multi-inception residual pathways. A new multi-loss function is also

introduced to reduce class imbalance by integrating the weight cross-entropy

loss, Generalized Dice Loss, and Focal Tversky loss functions. The MIRAU-

17



Figure 6: Boxplots of DSC and Hausdorff from validation data BraTS’2019. The ’x’ signifies

the mean score,”◦ ” shows outliers.

Net architecture provides more excellent performance, especially for the seg-285

mentation of small-scale brain tumors. The suggested methodology was evalu-

ated using the Brats’2019 dataset online. The experiment results showed that

MIRAU-Net surpassed the U-Net and other typical brain tumor segmentation

approaches by a large margin. So we will expand our MIRAU-Net in the future

to 3D to improve segmentation performance. Besides, for further evaluation, we290

will extend our model to other medical segmentation image tasks.
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Figure 7: The DSC score Comparison for the BraTS 2019 validation dataset.

Table 7: Evaluation of different combinations of losses in MIRAU-Net, measured in terms of

Dice scores and Hausdorff95 distances (mm)

Loss Dice Score Hausdorff95 distance

Whole Core Enhancing Whole Core Enhancing

Lweightcrossentropy 0.80 0.828 0.857 9.6 11.9 9.7

Lweightcrossentropy+LGDL 0.801 0.844 0.865 8.6 11.0 9.5

Lweightcrossentropy+LGDL+LFocalTverskyloss 0.808 0.858 0.866 8.01 11.2 9.5
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