

Exploring Graph Neural Networks for Joint

Cruise Control and Task Offloading in UAV-

enabled Mobile Edge Computing

Conference Paper

*CISTER Research Centre

CISTER-TR-230403

2023/06/20

Kai Li*

Wei Ni

Xin Yuan

Alam Noor*

Abbas Jamalipour

Conference Paper CISTER-TR-230403 Exploring Graph Neural Networks for Joint Cruise Control ...

© 2023 CISTER Research Center
www.cister-labs.pt

1

Exploring Graph Neural Networks for Joint Cruise Control and Task Offloading in

UAV-enabled Mobile Edge Computing

Kai Li*, Wei Ni, Xin Yuan, Alam Noor*, Abbas Jamalipour

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: kai@isep.ipp.pt, Wei.Ni@data61.csiro.au, xin.yuan@data61.csiro.au, alamn@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Unmanned aerial vehicles (UAVs) have been increasingly considered as aerial servers in mobile edge computing

(MEC) to assist mission-critical computation tasks of edge ground nodes. The tasks are buffered at the ground

node, while the task offloading is scheduled by the UAV. When one ground node in MEC is scheduled to offload its

tasks, other unselected ground nodes' tasks could expire and be cancelled. To maximize the offloaded tasks to

the UAV, this paper proposes a new joint optimization of cruise control and task offloading scheduling, which

synthetically takes into account the computation capacity and battery energy of the ground nodes, and the speed

limit of the UAV. Given a large and unknown network state and action space, a new deep reinforcement learning

(DRL) framework based on graph neural networks (GNN) is developed to train online the continuous cruise control

of the UAV and the task offloading schedule. Particularly, GNN explores feature correlations of network states to

supervise the action training of the UAV in DRL. We implement the proposed GNN-DRL framework on Google

Tensorflow. Extensive numerical results show that GNN-DRL improves the task offloading rate by 43%, compared

to the DRL solution without GNN.

Exploring Graph Neural Networks for Joint
Cruise Control and Task Offloading in
UAV-enabled Mobile Edge Computing

Kai Li∗, Wei Ni†, Xin Yuan†, Alam Noor∗, and Abbas Jamalipour‡
∗CISTER, Porto, Portugal

Email: kaili@ieee.org, alamn@isep.ipp.pt
†CSIRO, Sydney, Australia

Email: {wei.ni,xin.yuan}@data61.csiro.au
‡School of Electrical and Information Engineering, The University of Sydney, Australia

Email: a.jamalipour@ieee.org

Abstract—Unmanned aerial vehicles (UAVs) have been
increasingly considered as aerial servers in mobile edge
computing (MEC) to assist mission-critical computation tasks
of edge ground nodes. The tasks are buffered at the ground
node, while the task offloading is scheduled by the UAV.
When one ground node in MEC is scheduled to offload
its tasks, other unselected ground nodes’ tasks could expire
and be cancelled. To maximize the offloaded tasks to the
UAV, this paper proposes a new joint optimization of cruise
control and task offloading scheduling, which synthetically
takes into account the computation capacity and battery
energy of the ground nodes, and the speed limit of the
UAV. Given a large and unknown network state and action
space, a new deep reinforcement learning (DRL) framework
based on graph neural networks (GNN) is developed to train
online the continuous cruise control of the UAV and the
task offloading schedule. Particularly, GNN explores feature
correlations of network states to supervise the action training
of the UAV in DRL. We implement the proposed GNN-DRL
framework on Google Tensorflow. Extensive numerical results
show that GNN-DRL improves the task offloading rate by
43%, compared to the DRL solution without GNN.

Index Terms—Unmanned aerial vehicle, Mobile edge com-
puting, Graph neural network, Deep reinforcement learning,
Task offloading rate

I. INTRODUCTION

Mobile devices operate increasingly in human-
unfriendly, harsh areas, such as remote farmlands, or rural
vineyards, where computation-intensive operations, e.g.,
monitoring crops and water-efficient irrigation control,
are carried out [1], [2]. Since conventional terrestrial
communication networks are distributed sparsely, reliable
connections for mobile edge computing (MEC) systems
are difficult to be guaranteed. Thanks to high mobility, low
cost, and on-demand deployment, unmanned aerial vehicles
(UAVs) can be used to expand the cloud computing service
coverage in the UAV-enabled MEC system [3]. In Figure 1,
the UAV as an aerial edge server patrols along its flight
trajectory over the target area [4]. The edge nodes in MEC
systems can handle lightweight tasks that require small
computing resources, but for big and complex tasks that

exceed the edge node’s computing capabilities, the tasks
need to be buffered in a task container and offloaded to
the UAV, which is equipped with more powerful CPUs and
GPUs. This is necessary due to the edge node’s limited
computing capability and local resources. Moreover,
dividing an atomic task into sub-tasks that are partially
processed on different devices can lead to inconsistencies,
as the sub-tasks rely on shared data or resources. This
results in incomplete operations or incorrect outcomes,
undermining the fundamental principles of atomicity and
integrity. Therefore, by buffering the tasks, the edge nodes
can avoid overloading their resources and ensure that the
tasks are processed efficiently and integrally by the UAV,
reducing the overall processing time and system latency.
The tasks in the container can be offloaded when the UAV
is around and schedules the edge node. A line-of-sight
(LoS) communication link between the UAV and the
edge node improves the channel quality and enables a
high-speed task offloading rate at the edge node [5].

When the UAV schedules an edge node to offload its
tasks, the buffered tasks of the other unselected edge nodes
can expire and be cancelled due to the task container
overflow. This gives rise to a large number of dropped
computation tasks [6]. Moreover, offloading a task from a
scheduled edge node can experience a poor channel quality
since the UAV’s movement results in time-varying channel
dynamics [7]. The offloading errors, in turn, overflow the
task container of the unscheduled edge nodes. In practice,
occupancy of the task container and channel conditions
between the UAV and the edge node are unknown to the
UAV. Hence, scheduling the task offloading online in the
presence of the joint cruise control (i.e., speed and heading)
is crucial to maximizing the task offloading rate of the edge
nodes.

It is difficult for a UAV to optimize its cruise control
and task offloading scheduling when the solution space is
large and the current network states are unknown. The UAV
needs to learn a thorough understanding of the environment

Fig. 1: The UAV, as an aerial MEC server, patrols over
the target area along its flight trajectory. When the UAV is
around, the edge nodes offload their computation tasks to
the UAV for processing.

and the time-varying factors that affect its actions in order
to make effective decisions. In this paper, we propose a
graph neural network (GNN)-assisted deep reinforcement
learning (GNN-DRL) framework to maximize the number
of computation tasks offloaded to the UAV, subject to
the computation capacity and battery energy of multiple
edge nodes, and the speed limit of the UAV. Network
states consist of the buffered tasks in the container, battery
levels, and channel qualities between the edge nodes and
the UAV. Since multiple edge nodes are deployed in the
same target field, the network state can be affected by
the same environmental conditions. For example, the edge
nodes close to each other may experience similar channel
quality or energy harvesting, which leads to a correlated
battery status, the channel quality variation, and the number
of generated tasks. The GNN-DRL carried out at the UAV
aims to explore the hidden representations resulting from
the network feature correlation, which can be used to
supervise the training of UAV’s actions in terms of the
flight speed, heading, and the offloading schedule of the
edge nodes. To validate the proposed GNN-assisted DRL
framework, we implement GNN-DRL in Python 3.9 based
on Google Tensorflow. A Linux workstation with 64-bit
Ubuntu 18.04 is used as the hardware platform. Numerical
results show that the GNN-DRL significantly improves the
task offloading rate while effectively controlling the flight
cruise to process the computation tasks.

The key contributions of this paper are summarized as
follows:
• In the context of UAV-enabled MEC systems, we

develop the task offloading scheduling optimization
to maximize the rate of task offloading that is can-
celled or fails due to offloading errors. This is done
by carefully controlling the optimal flight speed and
heading for the UAV and selecting the edge nodes,
taking into account factors such as the buffered tasks
in the container, battery levels, and channel qualities.

• The proposed GNN-DRL framework is designed to
tackle the task offloading scheduling optimization
in UAV-enabled MEC systems. The training of the
UAV’s real-time continuous actions is supervised by
the GNN [8], allowing the UAV to explore the hidden
representations of the network based on feature corre-
lations. This helps the UAV to make better decisions
about its speed and heading in order to maximize the
task offloading rate. The use of GNN-DRL allows
the UAV to effectively navigate the large solution
space and make optimal decisions even in the face
of uncertainty about the current network conditions.

This paper is organized as follows. Section II presents
the literature on the GNN and DRL solutions in UAV-
enabled MEC. In Section III, the system model of the UAV-
enabled MEC is formulated. In Section IV, we investigate
the proposed GNN-DRL framework to jointly optimize the
cruise control and task offloading. The implementation and
performance of the GNN-DRL are presented in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

Graph neural networks (GNNs) construct a graph consist-
ing of vertices (i.e., network states) linked by edges (repre-
senting dependencies) [9]. In GNNs, hidden representations
of vertices are passed iteratively between adjacent vertices.
These hidden representations are propagated throughout the
graph using multiple iterations until a fixed vertex is found.
The final hidden representation is then used to predict future
network states with respect to vertices. Therefore, GNNs
can be used to exploit the topological dependencies of
resource-constrained edge devices for efficient inference.
Given an unknown MEC environment, DRL can be used
to design the trajectory of a UAV to serve edge nodes [9].
According to the quality of service requirements of ground
equipment, the energy efficiency of the UAV can be im-
proved. In [10], deep Q-network (DQN) and DRL were
exploited to learn the offloading task ratio and the UAV
trajectory to reduce the energy consumption of the UAV and
the edge nodes. In wireless powered sensor networks [11],
[12], deep deterministic policy gradient (DDPG)-based or
DQN-based strategies were studied to schedule the UAV’s
trajectory and resource allocation to minimize the buffer
overflow of the sensors.

The existing literature uses DRL to shorten the mission
time or improve the energy efficiency of the UAV, such
as [9]–[11], where the correlation of network states in MEC
is not considered. In some studies, DRL combined with
GNN has been used to design task offloading policies for
the MEC systems. For example, in [13], a communication
framework based on DRL was studied to offload tasks to
a static server, where the MEC is modeled as an acyclic
graph, and the offloading policy is modeled by graph state
migration. The framework combines the GNN with actor-
critic networks to train offloading policies without labels,
where the task offloading policies are adapted to improving

the service coverage and energy efficiency. However, this
work considers a fixed number of offloaded tasks while the
GNN is trained without the mobility optimization.

Different from the existing literature, this paper investi-
gates a new challenge in UAV-enabled MEC, where poor
cruise control of the UAV results in an unsuccessful task
offloading of the selected edge node while the tasks in the
buffer at unselected edge nodes are outdated and canceled.
In addition, a new GNN-DRL structure is developed, where
the GNN extracts the correlated features of the network
states to supervise the training of the UAV’s actions.

III. SYSTEM MODEL

In this section, we present the system model of the UAV-
enabled MEC system. Table I lists the notations used in this
paper.

As shown in Figure 1, N edge nodes can offload com-
puting tasks to the UAV edge server. Each edge node i can
partially offload its computation load through a wireless
link [14]. The UAV is equipped with a portable edge server,
and patrols over the target field, while the edge nodes
can be scheduled to offload the task. The battery level of
node i ∈ [1, N] at time t is ei(t). Given the limited edge
node’s battery capacity, ei(t) ≤ E, where E (in Joules)
is the battery capacity of the edge node. The tasks that
are buffered at the task container of the edge node are
offloaded to the UAV following the first-come-first-serve
discipline. In particular, edge node i can generate mi(t)
tasks at t, where mi(t) ≤M and M is the size of the task
container. The newly generated tasks have to be dropped if
mi(t) > M , i.e., the overflows at the task container.

The position of the UAV at time t can be denoted
by (xt, yt, z), where the UAV maintains its altitude at z
meters [15]. For safety considerations, the instantaneous
flight speed of the UAV, denoted by vt, has to be no
larger than the maximum speed Vmax [16]. Thus, we have
vt ≤ Vmax. Let Wt denote the time when the UAV
moves from (xt, yt, z) to (xt+1, yt+1, z). Given the speed
difference v̂t = vt+1 − vt, the acceleration at (xt, yt, z) is

v̂t/Wt = (vt+1 − vt)/Wt, (1)

where

0 ≤ v̂t/Wt ≤ Vmax/Wt. (2)

Let eUAV
t denote the battery level of the UAV at time t.

Suppose that the UAV can harvest energy to recharge its
battery. The harvested energy at time t can be [17]

êUAV
t = asolarbsolarc exp

(−κ
cos asolart

(1− 2.2556

× 10−5z)5.2561
)
, (3)

where c ∈ (0, 1) and asolar denote the charging efficiency
and size of the solar panel, respectively [18]. bsolar is the
constant power intensity of the solar beams. κ > 0 is the

TABLE I: Notation and definition

Notation Definition
N number of edge nodes
ei(t) battery level of node i at t
mi(t) tasks generated at node i
M size of the task container
E battery capacity of the edge node
vt instantaneous flight speed of the UAV
Vmax the maximum allowable speed of the UAV
eUAV
t battery level of the UAV
êUAV
t harvested energy of the UAV
eUAV
t

′ propulsion energy consumption of the UAV
hi(t) channel gain between edge node i and the UAV
pi(t) number of tasks of node i being offloaded to the

UAV till time t
Sα network state
ASα action carried out by the UAV at Sα
G(V, E;w) a graph built with V , E , and w
ηkG graph generation loss
fkV hidden state of V
R{Sβ |SG

α , ASG
α
} reward of the DRL training

Li
SG
α
(t) a regression model of the offloaded tasks

sum atmospheric extinction. asolart denotes the solar zenith
angle at time t. z is the altitude of the UAV.

The propulsion energy of the UAV is

eUAV
t

′
=P0

(
1 +

3v2t
ω2
t

)
+ P ′0

(√
1 +

v4t
4v40
− v2t

2v20

)1/2
+

1

2
ξdragρairξrotorξ

′
rotorv

3
t , (4)

where P0 and P ′0 are two constants [19]. ωt is the tip speed
of the rotor blade. v0 is the mean rotor induced velocity in
hover. ξdrag and ξrotor denote the fuselage drag ratio and
rotor solidity, respectively. ρair and ξ′rotor denote the air
density and rotor disc area, respectively. Thus, we have

eUAV
t + êUAV

t − eUAV
t

′ ≥ eUAV
0 , (5)

where eUAV
0 is the minimum safe battery level of the UAV.

IV. GNN-ASSISTED DEEP REINFORCEMENT LEARNING

In this section, we develop the GNN-assisted DRL,
where GNN extracts network state features and hidden
connections to supervise the training of the UAV’s actions.

A. Feature correlation with the graph
The network state, denoted by Sα, consists of the battery

levels of the edge nodes and the UAV at time t, i.e., ei(t)
and eUAV

t , the number of generated tasks at the edge node
mi(t), the channel gain hi(t), the location of the UAV, and
the number of tasks of node i being offloaded to the UAV
till time t, i.e., pi(t). Therefore, we have

Sα = {ei,mi, hi, pi, e
UAV, (x, y, z)}, ∀i ∈ [1, N]. (6)

The UAV takes actions along the trajectory to control
its heading and speed, while scheduling the edge nodes to
offload their computation tasks. The action is given by

ASα =
{(
x(Sβ), y(Sβ), z

)
, vSα , iSα

}
, (7)

where (x(Sβ), y(Sβ), z) is the next location of the UAV.
vSα is the speed of the UAV at the state Sα. iSα indicates
the selected edge node at state Sα.

A graph G(V, E ;w) can be used to describe the corre-
lation between the network states. Specifically, a vertex V
indicates one network state Sα and the vertex correlation
is encoded by an edge E . VG represents the vertex space,
and the weights of the edges are denoted as w. We denote
K as the total number of layers in G(V, E ;w). At the k-th
layer, a learnable vector of the weights of V’s edges is wkV ,
where wkV ⊂ w. Thus, the hidden state of the vertex V is

fkV = Φk
(
fk−1V ⊕ agtk

(
{fk−1V′,E : (V,V ′) ∈ Ek}Ek∈RE

)
;wkV

)
,

(8)

where ⊕ represents the embedding summation operation;
Φk(·) is a nonlinear activation function (e.g., tanh(·) or
ReLU(·)); fV , fE and fV′ are the representations of the
vertex V , edge E , and neighbors of V , respectively; Ek
collects the edges at the k-th layer; RE denotes the hidden
state dimension; and agtk(·) is the aggregation function at
the k-th layer, which maps the neighborhood information
from different relations into a vector, e.g., mean aggregation
and attention aggregation. fkV can be initialized by f0V = V .

Based on (8), we can obtain the graph generation loss,
as given by,

ηkG =
∑
V∈VG

− log(Φk(tanh(fkV))), (9)

where tanh(·) is a multilayer perceptron. The input of tanh
at the k-th layer is the node embedding at the previous layer.
The output is a scalar which is then fed into a nonlinear
activation function Φk(·).

B. The GNN-DRL algorithm

Since the proposed GNN-DRL algorithm aims to max-
imize the task offloading rate, the reward of the DRL
training, denoted by R{Sβ |SGα , ASG

α
}, is formulated as the

number of offloaded tasks to the UAV, as given by

R{Sβ |SGα , ASG
α
} = min

∀i
SG
α
∈[1,N]

Li
SG
α

(SGα), (10)

where SGα denotes the network state trained by the GNN.
An episode defines a sequence of interactions between the
UAV and the training environment. During an episode, the
action ASG

α
is carried out by the UAV and the network state

transits from SGα to Sβ , providing a reward R{Sβ |SGα , ASG
α
}

to the UAV. GNN aims to supervise the training of the
UAV’s actions in DRL, i.e., ASα in (7). a regression model
can map the SNR to the number of computation tasks
successfully collected by the UAV edge server. Li

SG
α

is a
regression model of the offloaded tasks, as given by

Li
SG
α

(t) = (1− 1

2
e
β1−β0Hi

SG
α

(t)
)8(2f−l), (11)

where β0 and β1 are two constants in the regression model.
β0 controls the shape of the regression curve and β1 induces

Algorithm 1 GNN-DRL for joint cruise control and task
offloading

1: 1. Input: G(V, E ;w), VG , Sα, ASα , tlearning,Mreplay.
2: for episode 1 to ep do
3: for Vertex V ∈ VG do
4: for k = 1 to K do
5: fkV ← Eq. (8). ηkG ← Eq. (9).
6: ηkG is minimized.
7: end for
8: end for
9: < SGα , Sβ , ASα , R{Sβ |SGα , ASα} > is stored in

Mreplay.
10: Minibatches in Mreplay are randomly sampled.
11: SGα → the critic neural network, and the state-value

function → V (SGα).
12: The critic ← R{Sβ |SGα , ASG

α
}.

13: A(SGα , ASG
α

) is updated by (13).
14: SGα and Sβ → the actor neural network.
15: (12) updates the policy gradient OΓ(ϑ), and A∗SG

α
=

arg min Γcloss is carried out by the UAV in the
environment.

16: end for

horizontal shifts of the curve. f and l denote the frame size
and preamble size of a computation task offloaded to the
UAV, respectively. We have f > l, as a frame must be
longer than the preamble.

Algorithm 1 presents the proposed GNN-DRL that is
carried out at the UAV for joint cruise control and schedul-
ing the task offloading. Specifically, Sα is observed by the
UAV and mapped to V in G(V, E ;w). The actor neural
network approximates cruise control and task offloading
rules, and prioritizes data streams at the network state. The
actor neural network can be updated by the policy gradient,
i.e.,

OΓ(ϑ) = Eϑ[Oϑ log π{Sβ |SGα , ASG
α

;ϑ}A(SGα , ASG
α

)],
(12)

where A(SGα , ASG
α

) denotes the advantage function. The
advantage function measures the difference between the
action-value function Q{Sβ |SGα , ASG

α
} and the state-value

function V (SGα) [20]. The advantage function can be esti-
mated by the temporal difference (TD) error, as given by

A(SGα ,ASG
α

) = Q{Sβ |SGα , ASG
α
} − V (SGα)

≈ R{Sβ |SGα , ASG
α
}+ µV (Sβ |SGα , ASG

α
)− V (SGα),

(13)

where µ is a discount value (0 < µ < 1).
The complexity of the proposed GNN-DRL algorithm

can be given as O(VGRE tlearningKMreplay), which can
be performed at most of commercialized UAVs that are
equipped with powerful onboard computation and data
processing units.

V. PERFORMANCE EVALUATION

The proposed GNN-DRL is implemented in Python 3.9
with Google Tensorflow, setting up on a Linux workstation
with 64-bit Ubuntu 18.04. N edge nodes are randomly
deployed in a target field with a size of 1000× 1000 meters.
Initially, the location of the UAV is set to (600, 500) m.
Vmax is 15 m/s, and E of the edge node is 800 Joules.
In addition, we compare the task offloading rate achieved
by the proposed GNN-DRL framework with a DRL-based
trajectory planning strategy without GNN in [21].

Figure 2 shows that the task offloading rate of the
proposed GNN-DRL framework gradually grows with the
growing number of training episodes. This is because the
GNN module extracts the feature correlation of the network
states and predicts the hidden network states, enriching the
training environment of the DRL module. Hence, the action
of the UAV is sufficiently trained by more state observations
Sα with the growing number of episodes. This leads to the
fast convergence of the proposed GNN-DRL framework,
where the task offloading rate converges within about 150
episodes. Given 100 nodes and that 10% of the edge nodes
generate new tasks in each time step (i.e., ∆m(t) = 0.1),
the task offloading rate drops from 96% to 81%. This is due
to the limited cruising speed of the UAV. Consequently, the
edge nodes far away from the UAV may not be served in
time.

Figure 3 shows the task offloading rate in terms of
different network scalability. We compare the proposed
GNN-DRL framework with the DQN-based trajectory plan-
ning strategy [21] and the communication-aware trajectory
planning (CATP) heuristic [22]. The task offloading rate
generally decreases with the number of edge nodes. When
N = 600, GNN-DRL outperforms the DQN and CATP
solutions by about 43% and 62%, respectively. This is
because the traditional DRL solution barely explores the
hidden states, resulting in insufficient action training. The
CATP heuristic hardly adapts the cruise control of the
UAV to the unknown network state dynamics. Different
from the DRL and CATP solutions, the proposed GNN-
DRL framework extracts the features of the network state
observation, and the hidden states are predicted to guide
the actions in DRL to be sufficiently trained. Furthermore,
GNN-DRL trains the actions of the UAV in a continuous
domain, which optimally controls the real-time flight speed
and heading of the UAV.

Figure 4 presents the flight trajectories of the UAV
controlled by the proposed GNN-DRL framework, given
the different learning iterations. Specifically, Figures 4(a)
and 4(b) show the flight trajectories of the UAV when the
training iterations of the GNN-DRL increase from 1500 to
3000. It is well-known that increasing the training iterations
can sufficiently train GNN and DRL. Figure 4 validates that
the GNN-DRL framework is able to effectively learn how
to control the UAV’s speed and heading, as well as how
to allocate tasks for offloading, in order to maximize the

Episodes
0 50 100 150 200 250 300 350

T
as
k
offl

oa
d
in
g
ra
te

(%
)

0
10
20
30
40
50
60
70
80
90
100

N = 100, Iters = 1500, ∆m(t) = 0.2
N = 100, Iters = 1500, ∆m(t) = 0.1

Fig. 2: Task offloading rate in terms of the training episodes.

Number of edge nodes
100 200 300 400 500 600

T
as
k
offl

oa
d
in
g
ra
te

(%
)

0
10
20
30
40
50
60
70
80
90
100

GNN-DRL
DQN
CATP

Fig. 3: The task offloading rate versus the number of edge
nodes N , where M = 100. Each error bar is calculated with
the standard deviation over 10 experiments.

task offloading rate. The use of GNN-DRL allows the UAV
to adapt to changing network conditions and make optimal
decisions in real-time.

In Table II, we measure the runtime of the GNN-DRL
and the DQN. It can be observed that GNN-DRL is about
6.8 ∼ 8.5 ms faster than DQN. This is because DQN-based
strategy trains the action with a random process for the
action exploration, which takes extra time. In contrast, the
GNN-DRL predicts the future network states for training
the UAV’s actions in DRL at each episode, saving time on
the random action exploration.

VI. CONCLUSION

In this paper, a new joint optimization of the UAV’s
cruise control and task offloading allocation was proposed
to maximize the number of offloaded computation tasks.
Since the optimization contains a large solution space while
the instantaneous network states are unknown to the UAV,
a new GNN-based DRL (GNN-DRL) was developed to
take advantage of the GNN to supervise the training of
UAV’s actions in DRL, which explores the hidden network
states according to the network feature correlation. The pro-
posed GNN-DRL framework was implemented on Google
Tensorflow. Numerical studies showed that the GNN-DRL
significantly enhances the task offloading rate in the UAV-
enabled MEC system while effectively controlling the flight
cruise to process the computation tasks.

x-coordinate (m)
0 200 400 600 800 1000

y-
co
or
d
in
at
e
(m

)

0

200

400

600

800

1000

Ground devices
Flight trajectory

(a) N = 100 and training iterations = 1500.

x-coordinate (m)
0 200 400 600 800 1000

y-
co
or
d
in
at
e
(m

)

0

200

400

600

800

1000

Ground devices
Flight trajectory

(b) N = 100 and training iterations = 3000.

Fig. 4: Flight trajectories of the UAV, which is controlled by
the proposed GNN-DRL framework given different training
iterations.

TABLE II: Runtime of the GNN-DRL and DQN (ms).

ep DQN GNN-DRL
50 13.7 6.9
100 13.1 5.8
150 14.2 5.7
200 13.4 5.1
250 13.9 5.7
300 13.2 5.6
350 14.1 5.5

ACKNOWLEDGEMENTS

This work was supported by the CISTER Research
Unit (UIDP/UIDB/04234/2020) and by project ADANET
(PTDC/EEI-COM/3362/2021), financed by National Funds
through FCT/MCTES (Portuguese Foundation for Science
and Technology); also by National Funds through the
FCT, under CMU Portugal partnership, within project
CMU/TIC/0022/2019 (CRUAV).

REFERENCES

[1] Y. Wang, Y. Niu, H. Wu, S. Mao, B. Ai, Z. Zhong, and N. Wang,
“Scheduling of uav-assisted millimeter wave communications for
high-speed railway,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 8, pp. 8756–8767, 2022.

[2] K. Li, W. Ni, X. Wang, R. P. Liu, S. S. Kanhere, and S. Jha, “Energy-
efficient cooperative relaying for unmanned aerial vehicles,” IEEE
Transactions on Mobile Computing, vol. 15, no. 6, pp. 1377–1386,
2015.

[3] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, “UAV-assisted
multi-access edge computing: Technologies and challenges,” IEEE
Internet of Things Magazine, vol. 4, no. 4, pp. 12–17, 2021.

[4] H. Kurunathan, H. Huang, K. Li, W. Ni, and E. Hossain, “Machine
learning-aided operations and communications of unmanned aerial
vehicles: A contemporary survey,” arXiv preprint arXiv:2211.04324,
2022.

[5] K. Li, W. Ni, E. Tovar, and A. Jamalipour, “Online velocity control
and data capture of drones for the internet of things: An onboard
deep reinforcement learning approach,” IEEE Vehicular Technology
Magazine, vol. 16, no. 1, pp. 49–56, 2020.

[6] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling
in edge computing: A survey,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 4, pp. 2131–2165, 2021.

[7] B. P. L. Lau, B. J. Y. Ong, L. K. Y. Loh, R. Liu, C. Yuen,
G. S. Soh, and U.-X. Tan, “Multi-AGV’s temporal memory-based
RRT exploration in unknown environment,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 9256–9263, 2022.

[8] J. Suárez-Varela, P. Almasan, M. Ferriol-Galmés, K. Rusek, F. Geyer,
X. Cheng, X. Shi, S. Xiao, F. Scarselli, A. Cabellos-Aparicio et al.,
“Graph neural networks for communication networks: Context, use
cases and opportunities,” IEEE Network, 2022.

[9] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning
for UAV-mounted mobile edge computing with deep reinforcement
learning,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5723–5728, 2020.

[10] L. Zhang, Z.-Y. Zhang, L. Min, C. Tang, H.-Y. Zhang, Y.-H. Wang,
and P. Cai, “Task offloading and trajectory control for UAV-assisted
mobile edge computing using deep reinforcement learning,” IEEE
Access, vol. 9, pp. 53 708–53 719, 2021.

[11] K. Li, W. Ni, and F. Dressler, “LSTM-characterized deep reinforce-
ment learning for continuous flight control and resource allocation
in UAV-assisted sensor network,” IEEE Internet of Things Journal,
2021.

[12] K. Li, W. Ni, E. Tovar, and A. Jamalipour, “On-board deep q-network
for UAV-assisted online power transfer and data collection,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12 215–
12 226, 2019.

[13] Z. Sun, Y. Mo, and C. Yu, “Graph reinforcement learning based
task offloading for multi-access edge computing,” IEEE Internet of
Things Journal, 2021.

[14] J. Zheng, K. Li, N. Mhaisen, W. Ni, E. Tovar, and M. Guizani,
“Exploring deep reinforcement learning-assisted federated learning
for online resource allocation in privacy-preserving edgeiot,” IEEE
Internet of Things Journal, 2022.

[15] K. Li, R. C. Voicu, S. S. Kanhere, W. Ni, and E. Tovar, “Energy
efficient legitimate wireless surveillance of UAV communications,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp.
2283–2293, 2019.

[16] Y. Emami, B. Wei, K. Li, W. Ni, and E. Tovar, “Joint communication
scheduling and velocity control in multi-UAV-assisted sensor net-
works: A deep reinforcement learning approach,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 10, pp. 10 986–10 998, 2021.

[17] H. Huang, A. V. Savkin, and W. Ni, “Energy-efficient 3D navigation
of a solar-powered UAV for secure communication in the presence
of eavesdroppers and no-fly zones,” Energies, vol. 13, no. 6, p. 1445,
2020.

[18] S. Hu, W. Ni, X. Wang, and A. Jamalipour, “Disguised tailing and
video surveillance with solar-powered fixed-wing unmanned aerial
vehicle,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5,
pp. 5507–5518, 2022.

[19] Y. Ma, Y. Niu, Z. Han, B. Ai, K. Li, Z. Zhong, and N. Wang, “Robust
transmission scheduling for UAV-assisted millimeter-wave train-
ground communication system,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 11, pp. 11 741–11 755, 2022.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine
learning. PMLR, 2016, pp. 1928–1937.

[21] H. Kurunathan, K. Li, W. Ni, E. Tovar, and F. Dressler, “Deep
reinforcement learning for persistent cruise control in UAV-aided
data collection,” in IEEE Conference on Local Computer Networks
(LCN). IEEE, 2021, pp. 347–350.

[22] A. Mardani, M. Chiaberge, and P. Giaccone, “Communication-aware
UAV path planning,” IEEE Access, vol. 7, pp. 52 609–52 621, 2019.

