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Abstract 

Parallel real-time embedded applications can be modelled as directed acyclic graphs (DAGs) whose nodes model 

subtasks and whose edges model precedence constraints among subtasks. Efficiently scheduling such parallel 

tasks can be challenging in itself, particularly in hard real-time systems where it must be ensured offline that the 

deadlines of the parallel applications will be met at run time. In this paper, we tackle the problem of scheduling 

DAG tasks on identical multiprocessor systems efficiently, in terms of processor utilisation. We propose a new 

algorithm that attempts to use dedicated processor clusters for high-utilisation tasks, as in federated scheduling, 
but is also capable of reclaiming the processing capacity lost to fragmentation, by splitting the execution of 

parallel tasks over different existing clusters, in a manner inspired by semi-partitioned C=D scheduling (originally 
devised for non-parallel tasks). In the experiments with synthetic DAG task sets, our Segmented-Flattened-and-

Split scheduling approach achieves a significantly higher scheduling success ratio than federated scheduling. 
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ABSTRACT

Parallel real-time embedded applications can be modelled as di-

rected acyclic graphs (DAGs) whose nodes model subtasks and

whose edges model precedence constraints among subtasks. E�-

ciently scheduling such parallel tasks can be challenging in itself,

particularly in hard real-time systems where it must be ensured

o�ine that the deadlines of the parallel applications will be met at

run time. In this paper, we tackle the problem of scheduling DAG

tasks on identical multiprocessor systems e�ciently, in terms of

processor utilisation. We propose a new algorithm that attempts

to use dedicated processor clusters for high-utilisation tasks, as in

federated scheduling, but is also capable of reclaiming the process-

ing capacity lost to fragmentation, by splitting the execution of

parallel tasks over di�erent existing clusters, in a manner inspired

by semi-partitioned C=D scheduling (originally devised for non-

parallel tasks). In the experiments with synthetic DAG task sets,

our Segmented-Flattened-and-Split scheduling approach achieves a

signi�cantly higher scheduling success ratio than federated sched-

uling.
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1 INTRODUCTION

Increasing demands for performance and energy e�ciency under-

lie the popularity of commercial-o�-the-shelf (COTS) multicore

systems-on-a-chip (SoCs). To best leverage the capabilities of such

platforms, task parallelisation is needed. This involves dividing

applications into subtasks that can run in parallel on di�erent cores.

In the general case though, such subtasks can have precedence
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constraints and dependencies. The Directed Acyclic Graph (DAG)

model represents subtasks as nodes and dependencies among them

as edges. DAG task scheduling is a complex problem, especially in

hard real-time systems, where it must be ensured o�ine that the

deadlines of the parallel applications will be met at run time.

Federated scheduling [18] is a generalisation/counterpart of par-

titioned scheduling for parallel tasks [3]. High-utilisation tasks

that are not schedulable on a single processor are each assigned a

dedicated cluster of processors, whereas tasks with utilisation not

exceeding 1 are scheduled as sequential (i.e., non-parallel) tasks on

remaining processors. This decomposes the scheduling problem

into multiple simpler scheduling problems and also comes with

proven performance guarantees, in the form of speed-up ratios [18].

However, it also su�ers from some ine�ciency due to fragmentation

at the cluster level.

To usefully reclaim the processing capacity lost to fragmenta-

tion, we propose an e�cient scheduling arrangement inspired by

semi-partitioned multiprocessor scheduling. Under our approach,

some parallel DAG tasks migrate, at carefully selected static o�-

sets relative to their release, from one cluster to another. This is

analogous to how (a few) tasks migrate between processors under

C=D [? ] – arguably, the best-performing low-scheduling-overhead

multiprocessor scheduling algorithm for non-parallel tasks [9, 23].

Next in this paper, Section 2 discusses related work on the sched-

uling of parallel tasks and on semi-partitioning. Section 3 introduces

the task model under consideration. Section 4, introduces the ba-

sic building blocks of our approach. Section 5 formulates the new

scheduling algorithm. Section 6 o�ers an experimental evaluation,

using synthetic workloads. Finally, Section 7 provides conclusions.

2 RELATED WORKS

Graham’s work [14] upper-bounds the makespan of a single DAG

scheduled over< identical processors, as a function of its overall

workload and the length of its longest path, obliviously to its topol-

ogy, as long as its scheduling is work-conserving and precedence

constraints are respected. However, in the more general problem,

there exist multiple such DAG tasks, with di�erent periods.

Some existing approaches for that problem (e.g., [4]) schedule

DAG subtasks directly using classical algorithms (e.g., EDF or �xed

priorities), while adapting the analysis and criteria to accommodate

the attributes of DAGs. Building on [4], Bonifaci et al. [8] and Li et

al. [17] examined the overall timing characteristics of DAG tasks

without delving into their internal structures, proving a resource

augmentation bound of 2 − 1/< for global EDF.
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Other approaches transform the DAG into a set of indepen-

dent sequential threads before scheduling. The task decomposition

method by Saifullah et al.[21] has a resource augmentation bound

of 4 and 5, under global EDF and partitioned deadline monotonic

scheduling, respectively. Lakshmanan et al.[16] examined real-time

fork-join task scheduling on multiprocessors within OpenMP and

introduced a sequential approach via a stretching algorithm to

optimise execution. The study analyzes best-case and worst-case

scenarios, leading to a preemptive �xed-priority scheduling algo-

rithm with a resource augmentation bound of 3.42. Qamhieh et

al.[19] proposed a stretching algorithm to transform DAGs into

independent sequential threads with o�sets and deadlines. Their

method executes fully-stretched master threads on dedicated pro-

cessors and uses the remaining processors to schedule independent

constrained-deadline threads, using either global EDF or global

Deadline Monotonic (GDM). Cao and Bian [11] later improved on

the assignment of internal o�sets and deadlines.

Jing Li et al. [18] introduced federated scheduling, which is an ex-

tension of partitioned scheduling for parallel tasks. Under federated

scheduling, DAG tasks with utilization above 1 execute on their

own dedicated clusters of processors; whereas, remaining lower-

utilisation DAG tasks are scheduled as sequential threads on the

remaining processors, using, e.g., partitioned or global scheduling,

and EDF or �xed priorities.

Baruah [2] proposed federated scheduling for constrained-deadline

sporadic tasks, with a speedup bound of (2−1/<). The extension [3]

to arbitrary deadline tasks has a speedup bound of (3 − 1/<). Us-

ing this strategy of federated scheduling and task decomposition,

Bhuiyan et al.[7] focused on creating an energy-e�cient schedul-

ing algorithm for DAG tasks. More recently, Fei Guan et al. [15]

proposed another variant of federated scheduling, speci�cally opti-

mised for DAG tasks whose deadlines exceed their period. It lever-

ages the observation that, for such tasks, it can sometimes be more

e�cient, in terms of processor usage, to use multiple smaller clus-

ters for a given DAG (i.e., interleaved jobs thereof) than one bigger

cluster (with enough processors to bring its response time below

the respective period).

Coming from a slighly di�erent motivation, Wasly and Pelliz-

zoni [26] proposed bundled gang scheduling. Gang tasks are parallel

tasks whose threads must be executed and preempted at the exact

same times as each other; bundled gang scheduling generalised

on this model by having the number of threads of the gang task

change, at di�erent �xed points in its execution. The authors also

suggest a technique for transforming a DAG task into an instance

of the bundled gang task model, so that it can be scheduled under

their approach. In the case of DAGs with a high internal degree of

parallelism, this can perform better than federated scheduling.

Conversely to Wasly’s model, which prescribes the parallel ex-

ecution of certain nodes (i.e., on di�erent processors), under the

model by Shi et al. [25], certain nodes must be executed on the same

processor as each other (i.e., not in parallel, by de�nition), for rea-

sons such as, e.g., cache locality. The authors provide schedulability

analysis for this model under a form of list scheduling.

In a very di�erent approach, Ahmed and Anderson [1] use

servers (one for every node of each DAG task), which are then

scheduled under global EDF. In particular, their scheduling arrange-

ment can be applied to systems where multiple instances (jobs) of

a given DAG task may simultaneously be present, possibly with an

upper bound on the number thereof.

3 SYSTEM MODEL

Consider a platform with< identical processors %1, . . . %< and a

set of independent sporadic DAG tasks g = {�1, . . . ,�=}. Each

DAG task �8 has an interarrival time )8 and a deadline �8 ≤ )8
and consists of =8 sequential subtasks ("nodes") with precedence

constraints, indicated by directed edges. Those nodes are denoted as

g8,1, . . . , g8,=8 and�8, 9 denotes theworst-case execution time (WCET)

of node g8, 9 . For each job of a DAG task, any node cannot start its

execution until all its predecessors (i.e., nodes pointing to it via

an edge) have completed theirs. At run time, di�erent nodes of a

given DAG task can execute in parallel with each other, as long as

this does not violate any precedence constraints; however, a node

cannot execute in parallel with itself on multiple processors. When

convenient, we may also assume an imaginary "source" node g8,0
with edges pointing to (true) nodes of �8 with no (other) incoming

edges. Likewise, it may be convenient to introduce an imaginary

"sink" node, to which all nodes without other outgoing edges point.

Those dummy nodes have a WCET of zero.

The volume (or workload) of�8 is denoted by,8 and corresponds

to the sum of its nodes’ WCETs, i.e.,,8 =
∑

g8,9 ∈�8
�8, 9 . A path’s

length is equal to the sum of the WCETs traversed by it. The length

of the longest path of �8 is denoted by !8 .

When an instance (job) of �8 arrives at time instant C , its source

node is immediately ready, and its other nodes become ready, as

soon as all their predecessors have completed. All nodes of the

current job of �8 must have completed by time C8 + �8 and its next

job can arrive at any time after C8+�8 , but not earlier. At any time, up

to = DAGs may be active (one from each DAG task in {�1, . . . ,�=})

and need to be scheduled on the< processors. Preemption of a node

and resumption of its execution on another processor is allowed.

The objective is for all DAG tasks to meet their deadlines.

Symbol Meaning

%1, . . . , %< the set of processors

g = {�1, . . . ,�=} the set of DAG tasks

)8 interarrival time of �8

�8 relative deadline of �8

!8 the length of the longest path of �8

,8 the total workload of �8

g8,1, . . . g8,=8 the set of nodes of �8

�8, 9 the WCET of node g8, 9

Table 1: Notation used to describe the scheduling problem;

not speci�c to our scheduling approach.

4 THE "BUILDING BLOCKS" OF OUR
APPROACH

In this section we introduce some techniques that serve as building

blocks for our DAG task scheduling approach. These are:

• The segmentation of a DAG task into disjoint sub-DAGs

(called parallel segments) that will be executed in a sequence.
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• The �attening of a segmented DAG task into a �xed (relative

to its arrival) schedule on a target number of processors.

• The splitting of a �attened schedule, inspired by C=D semi-

partitioning [10], over disjoint processor clusters.

In the next section, we will then explain how these techniques

�t together, to give rise to our multiprocessor real-time DAG task

scheduling approach.

4.1 Segmentation of DAG tasks

Grouping of a DAG task’s nodes into parallel segments (henceforth,

just "segments") and executing those segments in a sequence is akin

to introducing additional node precedence constraints to the DAG.

This aims to make its scheduling more manageable.

Let (8,1, . . . , (8,B8 denote the segments (B8 in total) of DAG�8 . For

any :∈{1,. . .,B8−1}, we enforce the rule that all nodes in (8,: must

have completed before the execution of any node in (8,:+1 can start.

Let b (g8, 9 ) denote the maximum distance (in terms of hops) from

the dummy source node of �8 to g8, 9 , over all paths.

g8, 9 ∈ (8,: ⇔ b (g8, 9 ) = : (1)

The formation of segments according to Equation 1 ensures that

(i) all the nodes belonging to the same segment may be executed in

parallel to each other, without the possibility of any precedence con-

straint violation and (ii) no precedence constraint can be violated if

the segments of a given DAG are executed in order of ascending

index. These properties are formalised by Lemma 4.1 below:

Lemma 4.1. Let a DAG task �8 be decomposed into B8 parallel

segments according to Equation 1. If, ∀: ∈ {1, . . . B8 − 1} no node in

(8,:+1 starts its execution before all nodes in (8,: have completed, then

no precedence constraint is violated. Additionally, after all nodes in

(8,: have completed, the nodes in (8,:+1 can be executed in parallel, or

concurrently to each other, without the possibility of any precedence

constraint violation arising as a result of that.

Proof. The proof is by induction. The �rst step (: = 1) trivially

holds, because the nodes in (8,1 are all eligible for execution as

soon as the DAG task arrives, and they can be executed, in paral-

lel or concurrently, without this possibly causing any precedence

constraint violation.

For the induction step let us assume that all nodes of some (8,:
(: ∈ {1, . . . B8 − 1}) have completed and no precedence constraint

violation has occured so far. We want to prove that the nodes of

(8,:+1 can then be executed, in parallel or concurrently to each other,

without this possibly causing any precedence constraint violation.

The fact that all nodes of (8,: have completed implies that the

nodes of all preceding segments, i.e., (8,1 to (8,:−1 have also com-

pleted, in that order – because no segment’s nodes becomes eli-

gible for execution until its predecessor segment’s nodes have all

completed, according to the enforced scheduling rule. Consider a

node g8, 9 ∈ (8,:+1. For any predecessor g8,ℓ of g8, 9 ), it holds that

b (g8,ℓ ) ≤ : ; this follows from the fact that b (g8, 9 ) = : + 1. This,

in turn, means that, for every predecessor g8,ℓ of g8, 9 it holds that

g8,ℓ ∈ {(8,1, . . . , (8,: }. Therefore all predecessors of all nodes in (8,:+1
have completed, when all nodes in (8,: have completed. Which

means that all nodes in (8,:+1 are eligible to start their execution,

at that time, and they can be can be executed, in parallel or con-

currently to each other, without the possibility of a precedence

constraint violation. □

4.2 Flattening of a DAG task

Consider a segment (8,: and a target number of processors<8 . Let

, ((8,: )
def
=

∑

g8,9 ∈(8,: �8, 9 .

Using McNaughton’s wraparound algorithm [20], it is possible to

generate a schedule for the nodes of (8,: over<8 processors, with a

length (makespan) of
, ((8,: )

<8
, as long as�8, 9 ≤

, ((8,: )
<8

, ∀g8, 9 ∈ (8,: .

Otherwise (i.e., if ∃g8, 9 ∈ (8,: : �8, 9 > , ((8,: )), the length of the

respective schedule cannot be less than maxg8,9 ∈(8,: �8, 9 , for the

simple reason that at least one of the nodes would have to be

executed in parallel with itself to make the schedule any shorter.

The pseudocode in Figure 1 outlines the generation of a schedule

for a segment (8,: , with time speci�ed relative to the start of its

execution. The �attened schedule for an entire DAG is obtained

by the concatenation of the respective �attened schedules for its

segments, in order of execution.

1. function flatten_segment((8,:, <′)

2. {//without loss of generality, over processors %1 to %<′

3. schedule=new Schedule();

4.
5. int Cmax = maxg8,9 ∈(8,: �8,9 ;

6. int W =
∑

g8,9 ∈(8,:
�8,9 ;

7.
8. if (W/<′ > Cmax)

9. schedule.length = ceil(W/<′);

10. else

11. schedule.length = Cmax;

12.
13. int O=0;

14. int p=1;

15.
16. for (g8,9 ∈ (8,:)
17. {start = O;

18. end = (O+�8,9 ) modulo schedule.length;

19.
20. if (end>start) // no wrap-around

21. {schedule.add_interval(g8,9 ,%?,start,end);//node, processor, start, end

22. O=end;

23. if (O==schedule.length) //corner case

24. {O=0;
25. p=p+1;

26. }
27. }
28. else

29. {schedule.add_interval(g8,9 , %?, start, schedule.length);

30. schedule.add_interval(g8,9 , %?+1, 0, end);

31. O=end;

32. p=p+1;

33. }
34. }
35.
36. return schedule;

37. }

Figure 1: Pseudocode: �attening of an individual segment

To better illustrate the segmentation and �attening processes,

consider the example of Figure 2, where a DAG�1 and its segmenta-

tion according to Equation 1 are shown. Figure 3 depicts a schedule

for that same DAG on 2 processors, obtained via �attening each of

its segments and concatenation of the respective schedules.
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Figure 2: A DAG task�1, with a deadline of 130, that consists

of 10 subtasks (nodes). Each node’s WCET is shown to its

upper left. The DAG is broken into 5 parallel segments, sepa-

rated by vertical gray dashed lines.

Figure 3: Flattening of the DAG of Fig. 2 over 2 processors.

The resulting makespan is 105.

The algorithm of Figure 1 can be used in a loop to �nd the

smallest feasible number of processors for a �attened DAG task,

and the corresponding schedule, as in Figure 4. Lines 2 to 6 in the

pseudocode of Figure 4 check if it is feasible to �atten the input

DAG. Observe that a segment’s schedule’s length is lower-bounded

by the greatest node WCET in the segment, irrespective of the

number of available processors.

1. function feasibly_max_flatten(�8)

2. {int LB=0;

3. for ((: ∈ segments_of(�8))

4. LB=LB+maxg8,9 ∈(8,: �8,9 ;

5. if (LB<=�8)

6. return FAILURE;

7.
8. int <′ = ceil(,8 / min(�8, )8)); //initialisation

9. while (true)

10. {schedule = new Schedule();

11. for ((8,: ∈ segments_of(�8))

12. schedule = schedule.append(flatten_segment((8,:, <′);

13. if (schedule.length <= �8)

14. return schedule;

15. else

16. <′ = <′+1;

17. }
18. }

Figure 4: Pseudocode for �attening aDAG task over the small-

est feasible number of processors

If the algorithm of Figure 4 fails, it is always worth considering

Graham’s bound [14] for the given DAG, as an alternative. The

Figure 5: Graham’s bound for themakespan of the aboveDAG

over 2 processors is 50+(100-50)/2=75. The length of the cor-

responding segmented-and-�attened schedule is 49+49=98.

latter upper-bounds the makespan of a DAG task, scheduled by any

work-conserving node scheduling algorithm on<′ processors as

"8 = !8 +

⌈

,8 − !8

<′

⌉

(2)

where !8 is the length of the DAG’s longest path,,8 is its volume.

In very rare cases, such as the example of Figure 5, the above bound

can be shorter than the corresponding �attened schedule.

It follows from Graham’s bound (see Theorem 2 in [18]) that

an upper bound for the smallest su�cient dedicated cluster size

for a constrained-deadline1 DAG task to be schedulable under any

work-conserving node scheduling algorithm is given by

<′
=

⌈

,8 − !8

�8 − !8

⌉

(3)

4.3 Splitting of a DAG task’s execution over
multiple clusters

Assigning heavy DAG tasks to dedicated clusters can lead to frag-

mentation, analogous to bin-packing fragmentation. The cumula-

tive unused processor capacity over all clusters may be substantial,

but not usable. To remedy this, we devise an arrangement inspired

by semi-partitioning – an e�cient solution to bin-packing fragmen-

tation in the multiprocessor scheduling of non-parallel tasks. We

speci�cally draw from C=D scheduling [10].

Encapsulation of a �attened schedule by a gang task: Con-

sider a cluster of<′
> 1 processors where some heavy DAG task�6

has already been assigned, to execute under its �attened schedule

with a makespan of"′. If a job by �6 arrives at time C , not all<′

processors will necessarily be continuously busy during the interval

[C, C +"′), as �attened schedules are not work-conserving in the

general case. Still, it is convenient, as we will argue, to encapsulate

the execution of�6 into a gang task with a WCET of�6 = "′ and a

degree of parallelism equal to<′. All parallel threads of a gang task

must be executed in lockstep, i.e., released/preempted/resumed at

the same time instants as each other. Enforcing such gang seman-

tics allows us to run additional, potentially interfering, workload

on the cluster without potential misalignment of the schedules

of �6 on the di�erent processors (leading, e.g., to potential viola-

tions of node precedence constraints or scheduling of the same

"wrapped-around" node on two processors simultaneously). Rather,

the �attened schedule of �6 , encapsulated by the gang task, can be

1That result was formulated for implicit-deadline DAG tasks, but it equally holds for
constrained-deadline DAGs.
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preempted, on all processors, for up to �6 −�6 time units in total,

with no detriment to the schedulability of �6 , in order to execute

other workload.

Reducing gang scheduling to uniprocessor scheduling:

Gang scheduling can be ine�cient, because it is inherently prone to

priority inversions (e.g. 2-D blocking). For example, a ready middle-

priority task may be unable to execute because it requires more

processors than those left unclaimed by higher-priority tasks; con-

versely, a lower-priority task with smaller degree of parallelism

may execute instead in its place. However, such priority inversion

cannot occur if all gang tasks have the same degree of parallelism,

equal to the number of available processors. The scheduling prob-

lem then becomes equivalent to uniprocessor scheduling, because,

at any instant, all the processors in a cluster will be executing the

same task as each other. In turn, this makes it easier to split the

execution of parallel DAG tasks over di�erent processor clusters,

analogously as to how the execution of non-parallel tasks is split

across di�erent processors in semi-partitioned scheduling.

Results from uniprocessor and semi-partitioned multipro-

cessors scheduling of non-parallel tasks

C=D [10] is based on partitioned EDF. It uses a uniprocessor EDF

scheduler on each processor but it splits the execution of some tasks

across multiple processors, in a carefully managed manner, when

those tasks cannot feasibly be assigned entirely to any processor.

The "pieces" of such split tasks are modelled as separate tasks,

partitioned to di�erent processors, and executing in a "pipelined"

manner. By reporting to the EDF scheduler, purely for scheduling

decision purposes, for each piece of a split task (except possibly

the last one), a deadline equal to its execution time budget on the

respective processor, it is ensured that such a zero-laxity piece

always executes at the highest priority, and is never preempted.

Hence the name "C=D". Subject to that, a split task’s execution

budget on a given processor is set, using sensitivity analysis, to the

maximum value that preserves the schedulability of other tasks on

that processor. Speci�cally:

Let �B denote the execution budget of a non-�nal piece of some

split task on processor %? , with �B = �B . Then, using the exact

schedulability test for uniprocessor EDF schedulability [6], �B can

be set to the maximum value that satis�es

dbf (gB , C) +
∑

g8 ∈Γ?

dbf (g8 , C) ≤ C,∀C > 0 (4)

where Γ? is the set of other tasks assigned to %? and the demand-

bound function of a periodic or sporadic task g8 is de�ned as

dbf (g8 , C)
def
= max

(

0,

⌊

C − �8

)8

⌋

+ 1

)

�8 (5)

The above sensitivity analysis problem can be enormously sped

up using the QPA technique [27, 28], but it can still have long

running time. Fortunately, if all tasks in Γ? have implicit deadlines,

Santos-Jr’s test, known from [22, Theorem 3] and [24, Theorem 3]

(and henceforth referred to as Augusto’s test), can be used instead. It

is a simpler, su�cient test that performs nearly as well in practice:

�B

)B
≤

1 −
∑

g8 ∈Γ?

*8

1 +

∑

g8 ∈Γ?

*8

⌊

ming8 ∈Γ?
)8

)B

⌋

(6)

where*8
def
=

�8
)8
.

Because uniprocessor EDF is a sustainable scheduling algorithm

[5], Augusto’s test can be made to also work, at the cost of some ad-

ditional pessimism, when some of the tasks in Γ? have constrained

deadlines, if the deadlines (�8 ) of such tasks are used in Inequal-

ity 6, in place of of their interarrival times. For which case, it can

be expressed as

�B

)B
≤

1 −
∑

g8 ∈Γ?

X8

1 +

∑

g8 ∈Γ?

X8

⌊

ming8 ∈Γ?
�8

)B

⌋

(7)

where X8
def
=

�8

min(�8 ,)8 )
.

Sensitivity analysis for the splitting of the execution of a

parallel DAG task

Consider a cluster&@ of<
′ processors, where a set Γ(&@) of DAG

tasks has already been assigned. Each parallel DAG task�8 ∈ Γ(&@)

can be modelled by a gang task g8 with:

• a degree of parallelism equal to<′;

• the same deadline (�8 ) and interrarival time ()8 )as �8 ; and

• a WCET�8 equal to the makespan"8 of the �attened sched-

ule for�8 on<
′ processors – or, if that �attened schedule was

infeasible, an upper bound on its makespan, if it were execut-

ing on<′ dedicated processors under any work-conserving

algorithm (as derived, e.g. by Equation 2).

Then, because all tasks have the same degree of parallelism

<′, matching the number of processors in &@ , the cluster &@ is

schedulable under gang EDF if and only if the equivalent non-gang

task system is schedulable under uniprocessor EDF.

Now consider a di�erent DAG task � 9 , encapsulated by a gang

task gB with the same degree of parallelism (<′), which is to be

scheduled on the same cluster at the highest priority. The tasks

in Γ(&@) are schedulable if and only if the following uniprocessor

task set is schedulable under EDF:

• gB
def
= (�B , �B = �B ,)B )

• g8
def
= (�8 , �8 ,)8 ), ∀8 : �8 ∈ Γ(&@)

Clearly the sensitivity analysis for C=D can be used to determine

the maximum value for �B such that the above system is feasible.

Example of split execution of a DAG on multiple clusters

Consider again the same DAG �1 as in Figure 2. There are 5

processors, and there already exist two clusters, &1 = (%1, %2) and

&2 = (%3, %4, %5), each already with a DAG assigned to them. The

�attened schedule of �1 on two processors has a length of 105

(Figure 3) but, according to sensitivity analysis, if �1 is assigned
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Figure 6: Illustration of semi-partitioned scheduling of a

DAG over two clusters that consist of a di�erent number of

processors.

to &1 at top priority, the threshold for feasibility is 60 time units.

We therefore encapsulate �1’s execution on &1 by a sporadic gang

task with a WCET of 60 and a deadline of 60. When that gang task

is scheduled (under EDF), the �rst 60 time units of the �attened

schedule (on two processors) of�1 are executed by its threads – see

top of Figure 6. What remains to execute from �1 after that point,

would need to be executed on&2 - however&2 has three processors,

so it would be wasteful to use the remaining �attened schedule for

�1 on two processors (crossed out in Figure 6) and have one of three

gang threads for �1 on &2 be idle. Instead, from the segmented

representation of�1, we subtract the amount execution that nodes

would have already received (i.e., in &1). The segmented represen-

tation of the "rump" DAG that remains is shown in the bottom left

of Figure 6). Nodes g1 to g4 and g6 (to be entirely executed in &1)

are entirely missing and only a portion (of the execution time) of g5
remains. The corresponding �attened schedule on three processors

for the rump segment sequence has a length of 35 time units. This

schedule is executed by three corresponding gang threads on &2

with a WCET of 35, that arrive on &2 as soon as �1’s execution

on &1 stops (i.e., 60 time units after the arrival of �1) (Figure 6),

bottom right). That gang EDF task has a relative deadline equal to

�1 − 60 = 130 − 60 = 70 and, in our example, it is feasible to assign

to &2.

5 THE COMPLETE ALGORITHM

In this section, we describe the complete algorithm, whose design

makes use of the building blocks described in Section 4. The algo-

rithm is presented in high-level pseudocode in Figure 7, to better

convey its �ow. It is also presented in more detailed pseucodode

(Figures 8 and 9) in order to more rigorously document its workings.

It performs two passes for DAG task assignment.

5.1 The two passes of the algorithm explained

First pass: The �rst pass of algorithm (lines 2–15 in Figure 7, and

Figure 8 in detail) is akin to federated scheduling, with a couple

of di�erences. The DAG tasks are considered in order, and for

1. //1st pass – akin to federated scheduling

2. for (every DAG �8)

3. {if (�8 is heavy)

4. {if possible,

5. assign �8 to a dedicated cluster as a gang task

that encapsulates a flattened schedule;

6. else

7. skip its assignment for now;

8. }

9. else //�8 is light

10. {if possible,

11. assign �8 as a single-threaded task using First-Fit on a

separate pool of processors ("bins") that expands as needed;

12. else

13. skip its assignment for now;

14. }

15. }

16. //2nd pass – inspired by C=D semi-partitioning

17. for (every DAG �8 that is still unassigned)

18. {if (�8 is heavy)

19. {if possible,

20. split �8 over already-formed clusters, as in Fig. 6

using C=D sensitivity analysis and flattened schedules;

21. else

22. return FAILURE;

23. }

24. else //�8 is light

25. {if possible,

26. split �8 over as a single threaded task over multiple bins

using C=D semi-partitioning;

27. else //if we run out of usable bins

28. {if possible,

29. try to further split �8 over existing clusters,

as parallel gang threads, analogously as with heavy DAGs;

30. else

31. return FAILURE;

32. }

33. }

34. }

35. //this line is reached only when all DAGs have been assigned

36. return SUCCESS

Figure 7: High-level pseudocode of the complete algorithm

each "heavy" DAG task (i.e., with utilisation above 1) the algorithm

attempts to assign it to a separate, newly formed cluster; whereas,

for "light" DAG tasks (i.e., with utilisation up to 1), it attempts to

assign them as sequential (i.e., non-parallel) tasks using First-Fit bin-

packing on other processors, scheduled under EDF. The di�erences

of this �rst pass with federated scheduling are the following:

• Whenever the algorithm cannot manage to feasibly assign a

DAG task (i.e., because there are not enough hitherto unused

processors to assign a light DAG task to/to form a new cluster

for a heavy DAG task), it does not declare failure. Instead, it

considers the next DAG task. The skipped DAG task will be

reconsidered in the second pass of the algorithm, using the

semi-partitioned assignment technique.

• Whenever a new cluster is formed (i.e, to assign a heavy DAG

task to), the size of the cluster under formation is determined,

by default, on the basis of the DAG in consideration being

scheduled according to a segmented and �attened sched-

ule (as described in Section 4.2). More speci�cally, the size

of the cluster is calculated according to the function feasi-

bly_max_�atten (see Figure 4). By comparison, federated

scheduling uses the bound of Equation 3, under the assump-

tion of work-conserving node scheduling. Our algorithm
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only uses Equation 3 for cluster sizing in the very rare cases

that it would lead to a smaller cluster than the bound for a

segmented and �attened schedule. In those rare cases, such

a DAG task is assigned as a gang task whose threads’ WCET

is given by Equation 2 and the node scheduling inside them

is work-conserving.

In principle, there exist several options for the order in which to

consider the DAG tasks for assignment. Without loss of generality,

in this paper (and in our experiments), we consider the DAGs in

order of non-increasing deadline. This is because this ordering

works well for C=D semi-partitioning, to which the second pass of

our algorithm is broadly analogous.

Second pass: In its second pass (lines 17-34 in Figure 7, and

Figure 9 in detail), the algorithm attempts to assign the DAG tasks

that were left unassigned during the �rst pass. The assignments (if

successful) of those DAG tasks are performed in a semi-partitioned

manner, meaning that their execution will be split across two or

more assignment targets (i.e., clusters or bins). The unassigned

DAGs are considered in the same order as in the �rst pas.

When attempting to assign a heavy DAG task, the algorithm

considers the existing clusters one by one as potential assignment

targets, assigning a "piece" of the execution of DAG task in each

cluster, until the DAG task is fully assigned. There exist various

options, for the order in which to consider the clusters. In this

paper (and in our experiments), it is by order of non-increasing

normalised gross utilisation, which we de�ne as the total density

of all gang tasks assigned to the cluster (encapsulating gang tasks

or pieces thereof) divided by the cluster size. This mirrors the

"fullest-to-emptiest" processor ordering that usually works well for

semi-partitioned assignments under C=D.

When attempting to assign a light DAG task in semi-partitioned

manner, the algorithm �rst considers the (already populated) bins

as potential assignment targets, whereupon, the DAG task under

assignment is scheduled as a single-threaded task (i.e., with its nodes

executed sequentially). This arrangement amounts, essentially, to

the original C=D algorithm, for non-parallel tasks. However, if we

run out of bins to consider (which can also happen halfway through

the splitting of a DAG task), then the algorithm also considers the

existing clusters as potential assignment targets. When a piece of a

light DAG task is assigned to a given cluster, it is scheduled there

as a parallel task, as in the case of heavy DAG tasks. That is, as a

gang task with the same degree of parallelism as the target cluster,

encapsulating the corresponding segmented and �attened schedule.

In our experiments, bins are considered in order of non-increasing

utilisation, and clusters are considered (if necessary) in order of

non-increasing normalised gross utilisation.

The algorithm declares failure if some DAG task cannot be feasi-

bly split. Otherwise, once all DAG tasks have been assigned, success

is declared.

5.2 Additional discussion

Some details, in the interests of accurately documenting our algo-

rithm, as con�gured for our experiments:

For the purposes of sensitivity analysis, the exact dbf-based

analysis (Equation 4) can be employed. However, in our experi-

ments in this paper, we opt instead for the slightly pessimistic but

low-complexity analysis of Augusto, as restated for constrained

deadlines (Equation 7), in order to run the experiments quickly.

Whenever a DAG task is split according to C=D semantics, the

clusters where its zero-laxity pieces (i.e., all pieces except possibly

the last one) are assigned are not considered any more as potential

assignment targets of additional DAG task pieces (lines 58 and 76

in Figure 9, resp. for heavy and light DAG tasks). This is because

any uniprocessor system with two or more zero-laxity tasks cannot

be feasible; the argument extends to a processor cluster with gang

tasks with a degree of parallelism equal to the cluster size. Although

they might theoretically still be feasible assignment targets for non-

zero-laxity �nal pieces of DAG tasks, in practice there is little to be

gained, so we forego this option in the interests of simplicity.

In line 54 of Figure 9, there is a check of whether the response

time of a heavy DAG task �8 being split has, by that point in its

schedule, exceeded its deadline of �8 . In the original, non-parallel,

C=D scheduling algorithm there is no need for such check every

time a zero-laxity piece is instantiated, because the fact that such

pieces always execute at the highest-priority, su�ering no interfer-

ence, su�ces to rule out deadline violations. However, with parallel

tasks, even without interference, deadline violations while splitting

may result from insu�cient parallelisation in the semi-partitioned

schedule. For example, consider a DAG task consisting of 3 parallel

nodes, all with a WCET of 20, with the DAG task’s deadline being

20 + n . If, upon splitting this DAG task, we keep assigning its pieces

to clusters of just two processors, eventually its deadline will be

violated before its semi-partitioned schedule is completed. For light

DAG tasks, there is no such check, because (as with non-parallel

C=D) even without any parallel execution, such tasks can always

meet their deadlines, in the absence of interference.

1. int q=0; //counts clusters

2. int r=0; //counts populated bins

3. int M_empty=m; //counts empty processors

4.
5. //first pass: assignments without splitting

6. for (int i=1 to n) //DAGs indexed in order of non-increasing )8
7. {if (*8 >1) //heavy DAG

8. {int <′=cluster_size_requirements(�8);

9. if (<′<=M_empty)

10. {q=q+1;

11. cluster &@=new cluster(<′);

12. assign(�8, &@); //as a gang task

13. M_empty=M_empty-<′;

14. }

15. //else, leave for 2nd pass, to try and assign with splitting

16. }

17. else //*8<=1; light DAG

18. {boolean ff=assign_first_fit(�8, 11 to 1A ); //density-based test

19. if (ff==TRUE) //success

20. break;

21. else if (M_empty>0)

22. {r=r+1;

23. 1A =new bin(); //a bin is a single-processor cluster

24. assign(�8, 1A ); //as single-threaded task

25. M_empty=M_empty-1;

26. }

27. //else leave for 2nd pass, to try and assign with splitting

28. }

29. }

Figure 8: Detailed pseudocode - 1st pass of the algorithm
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30. //second pass: assignments with splitting 63. else //*8<=1; �8 is light

31. for (int i=1 to n, where �8 is still unassigned) 64. {int C=,8;

32. {list OQ = list of (&1,. . ., &@) with &@.closed!=TRUE, 65. int D=�8;

ordered by non-increasing normalised gross density; 66. b=Ob.next();

33. list Ob = list of (11, ..., 1A ) with 1@.closed!=TRUE, 67. while (TRUE))

ordered by non-increasing density; 68. {if (b!=NULL) //if eligible bins exist

34. if (*8>1) //�8 is heavy 69. {if (uniprocessor_EDF_schedulable(Γ1∪ task(C, D, )8)))
35. {DAG G=�8; 70. {assign(FS, Q);

36. int D=�8; 71. break; //�8 entirely assigned

37. int split_schedule_length=0; 72. }

38. while (TRUE) 73. //splitting ensues

39. {Q=OQ.next(); 74. int piece_C = C_equals_D_sensitivity_analysis(Q);

40. if (Q==NULL) //run out of clusters 75. assign(�8, b, piece_C); //C=D=piece_C; T=)8
41. return FAILURE; 76. b.closed = TRUE; //no more assignments there;

42. schedule FS=new schedule(); 77. C = C-piece_C;

43. int <′=Q.number_of_processors(); 78. D = D-piece_C;

44. for (segment (: in G, in order of ascending k) 79. }

45. FS.append(flatten_segment((:), <′); 80. else //try to assign as parallel task on some cluster;

46. //try to avoid further splitting of 2nd, 3rd etc piece 81. {Analogously as with heavy DAGs over lines 35–62;

47. if (uniprocessor_EDF_schedulable(Γ�∪task(FS.length, D, )8))) 82. }

48. {assign(FS, Q); 83. }

49. break; //�8 entirely assigned 84. }

50. } 85. }

51. //splitting ensues; new zero-laxity piece formed below 86. //This line is only reached if all the DAGs have been assigned.

52. int piece_C = C_equals_D_sensitivity_analysis(Q); 87. return SUCCESS;

53. split_schedule_length=split_schedule_length+piece_C;

54. if (split_schedule_length>=�8) //deadline reached w/o completion?

55. return FAILURE;

56. piece_FS=FS.interval(0, piece_C); //first piece_C time units of FS

57. assign(piece_FS, Q); //with deadline=piece_C and period )8
58. Q.closed = TRUE; //no more assignments there;

59. G = leftover_DAG(G,piece_C); //rump DAG remaining after removal

. //of execution in piece_FS

60. D = D-piece_C; //rump DAG’s deadline; the period is )8
61. }

62. }

Figure 9: Detailed pseudocode - 2nd pass of the algorithm

5.3 Conceptual comparisons with other work

Conceptually, there are some analogies between our approach and

the bundled gang scheduling approach byWasly and Pellizzoni [26],

but also signi�cant di�erences.

The segments into which our approach breaks up a DAG are

broadly analogous to Wasly’s "bundles", in that, regardless of the

algorithm for forming segments and bundles, in both cases they are

populated by nodes that can (in our approach) or should (in Wasly’s

approach) be executed in parallel to each other. Another similar-

ity is that, under both approaches, the degree of parallelism with

which a task is scheduled may vary at di�erent points during its

execution. However, whereas, under bundled gang scheduling, each

node in a bundle gets its own dedicated thread, under Segmented-

Flattened-and-Split scheduling this is typically not the case. Instead,

McNaughton’s algorithm is used, to match the number of threads to

the number of processors in the target cluster. Another di�erence

is that the degree of parallelism (thread count), under bundled gang

scheduling, is (only) modi�ed at the bundle boundaries; whereas,

under our approach, the parallel schedule can be split at arbitrary

points and resumed, possibly with a di�erent degree of parallelism,

on a di�erent cluster. The migration points in the schedule can then

be selected according to sensitivity analysis, in order to utilise as

much as possible of a given cluster’s available processing capacity.

Both our approach and that of Wasly and Pellizzoni make use

of the gang scheduling abstraction in their formulations. However,

in our case, the underlying scheduling analysis, as in C=D semi-

partitioning, is that for uniprocessor EDF. This is because, on each

cluster, all DAG tasks assigned there (either in their entirety or as

pieces of DAG tasks that are split) have the same number of threads,

that matches the size of the cluster. This simpli�es the analysis,

eliminates the possibility of 2D-blocking, and also allows for in-

dependently testing for the feasibility of each cluster. Conversely,

Wasly and Pellizzoni genuinely use a gang scheduling policy, and

this carries on to their analysis.

In any case, it is important to stress that Wasly and Pellizzoni’s

scheduling algorithm design was primarily motivated by parallel

applications for which it is of utmost importance for certain sub-

tasks (nodes) to be executed in lockstep, or else severe performance

penalties can arise, e.g., due to the need for synchronisation. In such

a context, their design choices make good sense, and, e.g., the use

of McNaughton’s wraparound algorithm would have been counter-

productive. In contrast, our work makes no such assumption about

the application; we merely consider the DAG task deadlines and

the precedence constraints among nodes and try to optimise our

algorithm for scheduling performance under those constraints. This

is important context for the scope of any comparison.

6 EVALUATION

In this section, we provide evaluation results for our proposed

scheduling algorithm using randomly generated synthetic DAG
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tasksets. By applying the respective schedulability tests to the syn-

thetic workloads, we compare our proposed scheduling algorithm

with federated scheduling [18] in terms of scheduling success ratio.

6.1 Experimental setup

For our experiments, we created synthetic workloads using the

random DAG generator [12] by Xiaotian Dai from the University of

York. The random DAG task set generation process has two parts.

First, the "macroscopic" attributes of each DAG task in the set, i.e.,

its utilisation, its interarrival time and its deadline, are generated.

Subsequently, the tool randomly generates, for each DAG task, a

number of nodes and edges among (some of) them.

For the �rst part, the generator uses the UUnifast-Discardmethod

[13]. It requires two inputs: the total utilisation of the DAG task set

to be generated and the number of DAG tasks within it. Based on

those, it randomly generates uniformly distributed utilisations for

the di�erent DAG tasks. Once the utilisation (*8 ) of each DAG task

is determined, its interarrival time ()8 ) is randomly chosen from

a prede�ned list of possible period values; the defaults for those,

also used in our experiments are: 100, 200, 500, 1000, 2000 and 5000.

From the utilisation and the interarrival time of each DAG task, its

workload is then computed as,8 = )8 ·*8 . In our experiments, we

considered implicit-deadline DAG tasks, so the deadline of each

DAG task is equal to its interarrival time.

Once the above attributes are de�ned for each DAG, for the

second part of the DAG task generation process, the internal struc-

ture of each DAG is progressively generated in layers. A layer of

a DAG is de�ned as the collection of nodes that share the same

minimum hop distance from the source node, over all paths. (Note

that this is di�erent to our de�nition of a segment, in Section 4.1,

which is based on a node’s maximum hop distance from the source

node, over all paths.) The total number of layers in a DAG is ran-

domly chosen from 4 to 10. The number of generated nodes in each

layer is uniformly distributed from 2 to 5. The DAG generation

tool randomly adds edges between nodes; we went with the de-

fault settings/probabilities for that [29]. The already determined

workload,8 of each DAG is then distributed randomly amongst

the nodes generated. We slightly modi�ed the code to ensure that

"dummy" source and sink nodes, with a WCET of 0 are added to

the generated DAG, for our convenience.

Our experiments considered platforms with< = 8 or 16 identical

processors, and, in each case, with = = 10 or 20 DAG tasks per DAG

task set. In the plots, the horizontal axis (* ) represents the DAG task

set’s normalised utilisation, i.e., the fraction of the platform capacity

that the DAG task set utilisation amounts to. For example, for a

platform with 8 processors, a data point with* = 85% represents

DAG task sets that have a utilisation of 8 ·0.85 = 6.8. For every value

of* from 5% to 100%, with a step size of 5%, we generated 100 DAG

task sets for each experiment/combination of< and =. The vertical

axis represents the fraction of task sets of a given utilisation that

were found schedulable by the respective test. Table 2 summarises

the combinations of parameters in our experiments.
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Figure 10: Evaluation Results: Segmented-Flattened-and-

Split vs. Federated Scheduling for 10 DAGs in a task set
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Figure 11: Evaluation Results: Segmented-Flattened-and-

Split vs. Federated Scheduling for 20 DAGs in a task set

< number of processors {8, 16}

= number of DAG tasks per set {10, 20}

* normalised DAG task set utilisation 5% to 100%, in 5% steps

Table 2: Parameter combinations used in the experiments.

6.2 Results

Figure 10 shows the comparison between our Segmented-Flattened-

and-Split scheduling approach (denoted "SFS" in the �gure) and

Federated Scheduling approach (denoted by "FS"), when there are

10 DAGs in each DAG task set. For each DAG task set, we apply the

schedulability test for Segmented-Flattened-and-Split scheduling

and for Federated Scheduling to determine its schedulability under

each approach. In our experiments, Federated Scheduling uses First-

Fit bin-packing for light tasks, in conjunction with a utilisation-

based test on each processor, which is exact, because the DAG tasks

are implicit-deadline.

Our Segmented-Flattened-and-Split scheduling provides a higher

acceptance ratio than Federated Scheduling, both for< = 8 and for

< = 16 processors. The maximum vertical distance between the

acceptance ratio curves of the two approaches is 46% and 59%, for

8 and 16 processors respectively, as shown in Figure 10.

One can also see that the acceptance ratio of both scheduling al-

gorithms in these experiments decreases signi�cantly as the number
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of processors increases. The reason is that increasing the number of

cores while keeping both the normalised utilisation of the DAG task

set and the number of DAG tasks in it �xed, during the synthetic

workload generation process, leads to an increase in the average

DAG task utilisation. This, in turn, makes the number of heavy

DAG tasks in the generated DAG task set much higher on average.

To illustrate, when the normalised utilisation is 70% the average

DAG task utilisation in Figure 10 is 0.7 · 8/10 = 0.56 when< = 8

and 0.7 · 16/10 = 1.12 when< = 16. However, the average number

of heavy DAG tasks per DAG task set is 1.72 (out of 10) when< = 8

and 5.84 when< = 16 – a supralinear increase. And it is precisely

those DAG tasks that are hard to schedule e�ciently, in terms of

utilisation of processing capacity, compared to light DAG tasks for

which e�cient classic algorithms for non-parallel tasks can be used.

As seen in Figure 10, Segmented-Flattened-and-Split scheduling is

considerably less sensitive to a higher fraction of heavy DAG tasks,

than Federated Scheduling. This is the combined e�ect of both the

use of �attened schedules and the semi-partitioning.

Figure 11 shows the results of the experiments when the number

of DAGs in each DAG task set is increased to 20. Our algorithm

once again consistently outperforms Federated Scheduling and the

same observations apply. The maximum vertical distance between

the acceptance ratio curves is 49%, both for 8 and for 16 processors.

Again, for the reasons explained earlier, both algorithms perform

worse when the number of processors is higher, all other things

remaining equal.

7 CONCLUSION

In this paper, we proposed a new algorithm (Segmented-Flattened-

and-Split scheduling) for e�ciently scheduling parallel DAG tasks

on identical multiprocessors. The building blocks of our algorithm

include the (i) segmentation of DAG into disjoint sub-DAGs which

can be executed in sequence. Then, (ii) �attening the segmented

DAG using McNaughton’s wraparound rule. Finally, (iii) splitting

o� a �attened schedule, inspired by C=D semi partitioning, over

disjoint processor clusters.

Our algorithm assigns DAG tasks in two passes. The �rst pass

is analogous to federated scheduling with a couple of di�erences,

namely that cluster size requirements are determined on the basis

of a �attened schedule and that, whenever a DAG task cannot be

assigned, it is skipped, in order to be considered in the second pass.

In the second pass, a technique inspired by C=D semi-partitioning is

used, to split the execution of unassigned DAG tasks onto di�erent

existing clusters, of potentially di�erent sizes.

In our experiments with synthetic DAG task sets, we compared

the scheduling performance of the proposed algorithm, in terms

of acceptance ratio, with that of federated scheduling. The results

show a consistently signi�cant performance advantage. We ex-

pect that, e.g, with further re�nement of the DAG task assignment

heuristics (i.e., the order in which tasks and clusters are being

considered) and with the use of exact EDF schedulability analysis,

the performance potential of our approach can be even greater,

and would like to explore that in future work. We also intend to

adapt Segmented-Flattened-and-Split scheduling for the case of

heterogeneous multiprocessor scheduling with unrelated processor

types.
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