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Abstract 

Arrhythmia is caused by improper and irregular sinus rhythm or heartbeats. In order to diagnose cardiac arrhyth- 
mia, electrocardiogram (ECG) beat classification and analysis is very necessary. The efficiency and accuracy of any 
classification model highly depends on selecting the most relevant features. The aim of this study is to classify 
different arrhythmic beats with a reduced set of relevant-only ECG features. To optimize the ECG feature selection 
process and increase the classification accuracy, a Mahalanobis-Taguchi System (MTS) based classifica- tion and 
analysis scheme is proposed. MTS is a multi-dimensional pattern recognition system which dynamically selects 
important features for further analysis. Arrhythmia can occur at any time and thus requires proper and continuous 
monitoring of the patient to reduce sudden heart attacks. The proposed MTS- based classification scheme is 
integrated with a Wireless Body Area Network (WBAN) for pervasive monitoring. The proposed scheme is analyzed 
and compared with a state-of-the-art scheme in terms of sensitivity, specificity, and accuracy. The results show 
that the proposed scheme performs significantly better than the other scheme by achieving high sensitivity, 
specificity, and classification accuracy for different arrhythmic heartbeats i.e., Left Bundle Branch Block (LBBB), 
Premature Ventricular Contraction (PVC), Right Bundle Branch Block (RBBB), and Atrial Premature Contraction 
(APC). 
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Abstract—Arrhythmia is caused by improper and irregular
sinus rhythm or heartbeats. In order to diagnose cardiac arrhyth-
mia, electrocardiogram (ECG) beat classification and analysis is
very necessary. The efficiency and accuracy of any classification
model highly depends on selecting the most relevant features.
The aim of this study is to classify different arrhythmic beats
with a reduced set of relevant-only ECG features. To optimize
the ECG feature selection process and increase the classification
accuracy, a Mahalanobis-Taguchi System (MTS) based classifica-
tion and analysis scheme is proposed. MTS is a multi-dimensional
pattern recognition system which dynamically selects important
features for further analysis. Arrhythmia can occur at any time
and thus requires proper and continuous monitoring of the
patient to reduce sudden heart attacks. The proposed MTS-
based classification scheme is integrated with a Wireless Body
Area Network (WBAN) for pervasive monitoring. The proposed
scheme is analyzed and compared with a state-of-the-art scheme
in terms of sensitivity, specificity, and accuracy. The results
show that the proposed scheme performs significantly better
than the other scheme by achieving high sensitivity, specificity,
and classification accuracy for different arrhythmic heartbeats
i.e., Left Bundle Branch Block (LBBB), Premature Ventricular
Contraction (PVC), Right Bundle Branch Block (RBBB), and
Atrial Premature Contraction (APC).

I. INTRODUCTION

An electrocardiogram (ECG) is used to record the electrical
activity and muscular function of the heart so that heartbeat
irregularities, also known as arrhythmia, can be diagnosed.
Some types of arrhythmia may be life-threatening and need to
be detected earlier. Detection of life-threatening arrhythmia is
challenging because an arrhythmic beat can occur infrequently
and the deviation of such beat pattern is very minute. Contin-
uous monitoring of the ECG signal is necessary because an
arrhythmia can occur at a random location and time. Similarly,
another challenge is the optimization of the arrhythmia detec-
tion process to reduce the unnecessary computation burden.

Much of the literature is dedicated to the detection of
arrhythmia and cardiac abnormalities. In this context, [1] uses
morphological and time-frequency domain analysis for car-
diac arrhythmia detection. Similarly, a hidden Markov model
(HMM) is used in [2] to automatically detect and analyze the
ECG data. Neural network based classification schemes are
used in [3] and [4] to classify and detect cardiac arrhythmia
in an ECG. Another scheme which uses a neural network

and a type-2 fuzzy c-means clustering (T2FCM) algorithm
for the analysis and classification of ECG arrhythmia is
presented in [5]. Similarly, a supervised neural network-based
algorithm is used in [6] to classify ECG records between
normal and ischemic beats. These schemes all use clustering
techniques to classify normal and abnormal ECG beats. A
cluster analysis scheme is presented in [7], which is based
on simple Mahalanobis distance [8] to automatically classify
cardiac arrhythmia.

In the above discussion, all of the neural network-based
schemes suffer from convergence to local and global minima.
Therefore, these schemes are very expensive to use in contin-
uous health monitoring systems. Furthermore, most of these
schemes are supervised, which means that manual labelling is
required for classification. Therefore, these schemes cannot be
used in live health monitoring systems as human involvement
is not practical in such cases. The cluster analysis scheme
discussed above uses static features, which reduce the energy
efficiency and performance of the overall system. In other
words, once features are selected, they will always be used
for each and every case or record of the ECG arrhythmia
database during the detection process. It is possible that some
features might not work as efficiently for a particular record as
it worked for some other record. This approach increases the
chances of useless features in the analysis process, which adds
burden on the whole detection mechanism. For example, if a
particular record requires only a few features to detect cardiac
abnormality, then there is no need to use useless features in
the detection process for that particular record.

The Mahanalobis-Taghuchi System (MTS) [9] is a diagno-
sis and predictive method for analyzing patterns in multivariate
cases that can be used in a range of applications including
the recognition of liver diseases. In [10], MTS is used for
the detection and classification of breast cancer data with nine
attributes. The experiments showed that MTS performed better
than the neural network based technique used on the same
dataset. In [11], MTS is combined with Multifractal analysis
scheme to predict the condition of a chemical industry com-
plex system. Multifractal analysis is used to extract nonlinear
features from the complex data, and then MTS is applied to
classify important features of the multi-variable environment.

This paper presents an MTS-based cardiac arrhythmia

978-1-4799-5952-5/15/$31.00 ©2015 IEEE



Fig. 1: The Overall Architecture of Arrhythmia Detection System

classification and detection system using continuous and ubiq-
uitous monitoring in a Wireless Body Area Network (WBAN)
environment. The proposed work uses dynamically selected
features for arrhythmia detection and classification. In other
words, the feature utilization varies from record to record,
so if the requirements of detection and classification can be
fulfilled for a particular record using minimum features, then
the scheme uses only those features which are best suited for
that particular record. This behavior of the proposed scheme
makes it very efficient and robust for cardiac arrhythmia
detection. Since the ECG signal is non-stationary in nature, the
arrhythmia can occur at any time with irregular intervals. To
handle this uncertainty of arrhythmia occurrence, the WBAN-
based architecture is proposed. The integration of WBAN will
make the detection scheme ubiquitous and continuous [12-16],
which will help in correctly locating the occurrence of cardiac
arrhythmia. The end-to-end communication process [17] of
continuous monitoring for cardiac arrhythmia detection using
a WBAN environment is shown in Fig. 1. A comparison of the
proposed scheme with the cluster analysis scheme [7] shows
that the proposed scheme outperforms the cluster analysis
scheme in terms of sensitivity, specificity, and accuracy for
each of the five beats classifications. To the best of our
knowledge, the proposed work uses MTS for the first time
for the arrhythmia detection problem.

The remainder of the paper is organized as follows: Section
II elaborates the proposed work. Section III presents the results
and analysis, and section IV concludes the paper.

II. PROPOSEDWORK

The Mahalanobis-Taguchi System (MTS) consists of the
Taguchi method and Mahalanobis Distance (MD) method,
where the Taguchi method is used to find optimal system
parameters, and Mahalanobis Distance measures the statistical
distance between a point and the reference dataset. The details
of the MTS algorithm are available in [18]. The overall system
description is presented below.

Fig. 2: PQRST Wave of ECG Heartbeats

Fig. 3: Normal, LBBB, PVC, RBBB, and APC Heartbeat Patterns

A. ECG Data Collection

The ECG data used for the experiments was collected
from the MIT-BIH Arrhythmia database [19]. This database
contains ECG records for 48 unique individuals. Each record
is 30 minutes long. In most cases, the upper signal is a
modified limb lead II (MLII), which is available for most
of the data records collected for our experiments. For every
person, 650,000 records were found where the time difference
between each record was 0.00277778 (∼ 0.003s) seconds. Out
of the 48 records available in MIT-BIH arrhythmia database,
43 records were used for our experiments. The other 5 records
(i.e., Record ID 201, 219, 102, 104, 107) demonstrated internal
inconsistencies. Therefore, these records were excluded from
our experiments.

B. RR Interval and QRS Detection

By using the Waveform Database (WFDB) software pack-
age [20], the R to R wave (RR) interval for each person is
extracted from his/her data records. After obtaining the RR
intervals and R peak nodes, the QRS complex is identified
using single-channel QRS detector WQRS [21]. This algorithm
is based on length transformation unlike other available QRS
detection methods, which are based on slope detection. By
using WQRS, the temporal location of the assumed QRS
candidate is determined [22]. An example of P, Q, R, S, and
T node positions is shown in Fig. 2.

C. ECG Attribute Selection

Different arrhythmia have different characteristics and na-
tures. An arrhythmic beat can differ from Normal or other
types of beats in terms of a significantly different range
of attribute values. In comparison with NORM (Normal)
beats, the QRS interval, QRS area, R-amplitude, QRS-ratio,
etc. are higher in Premature Ventricular Contraction (PVC)
arrhythmic beats, whereas RR-ratio and RR-interval values are
significantly lower. Similarly, in the case of Atrial Premature
Contraction (APC), the RR-interval and RR-ratio are lower
(not as much lower as PVC) in comparison to Normal beats.
There is a significant difference in the QRS area, QRS duration,
and R-amplitude in APC and PVC types of arrhythmia. QRS
duration is also higher in Left Bundle Branch Block (LBBB)



TABLE I: ECG FEATURE DESCRIPTION IDENTIFIED AS INITIAL FEATURES

Attribute

Number

Attribute

Symbol

Description of

Attribute
Units

A RR-int
Duration gap between two

consecutive R peaks
ms

B RRa/b

The ratio of RR interval

of previous

beat (RRa) with current beat (RRb)

....

C RRavg(a,c)-b
Difference between average of

RRa and RRc from RRb
ms

D QRS-dur
The time duration between Q and

R nodes of QRS complex
ms

E QRS a/b

Ratio of QRSa (QRS previous)

duration and QRSb

(QRS current) duration

....

F RR-ratio
Ratio of RR interval with average

RR interval
....

G QRS-ratio
Ratio of QRS duration

with average QRS interval
....

H R-amp
The amplitude value

of R peak
mV

I QRS-area QRS complex area mV * ms

and Right Bundle Branch Block (RBBB) than in Normal beats,
but this attribute difference is significantly more pronounced in
the case of LBBB than it is in RBBB. Hence, RR interval, QRS
duration, R-amplitude, QRS-area, RR-ratio with respect to
Average RR interval of all records, and QRS ratio with respect
to average QRS interval are chosen as initial attributes. The
last two attributes are calculated by dividing the main attribute
value of corresponding beats with the average beat value of the
entire dataset. The preceding ratios of RR interval and QRS
duration are also chosen as initial features. Let us assume the
RR interval of the current beat (b) is RRb, the RR interval of
the immediately preceding beat (a) is RRa , and the preceding
ratio of current beat b, RRa/b = (RRa / RRb). In the same way,
the preceding ratio of QRS duration is calculated. These two
attributes are important for the detection of sudden changes
in the beat sequence. Another feature, based on RR interval
differences, is taken as an initial attribute in our proposed
system. This feature can compare the RR interval with the
average value of the preceding and following interval values.
This feature is symbolized as RRavg(a,c)−b. Let b be the current
beat and a, c be the previous and next beats, respectively, then
RRavg(a,c)−b = (RRa + RRc)/2 - RRb. In a sequence of the

same type of ECG beat, the value of RRavg(a,c)−b should be
very near to 0; irregular beats will cause the value to differ from
0. Hence, this feature, which is based on RR interval, can also
differentiate arrhythmic beats. Fig. 3 shows the pattern of the
above-mentioned five classes. Hence, in our proposed system,
a total of 9 attributes are selected based on their importance in
arrhythmia detection. The 9 attributes are mentioned in Table
I.

D. Arrhythmic Heartbeat Detection

The proposed system deals with arrhythmic beat identi-
fication using ECG data in a ubiquitous environment. ECG
signals will be collected by the ECG sensors attached to the
upper part of the patient’s body. Some sample data that contain
different arrhythmic and normal conditions are essential for
creating the training dataset. MTS is used on both the training
and testing datasets. For experimental purposes, the arrhythmia
dataset available at MIT-BIH [19] was used. This dataset is 30
minutes long divided into 5 minutes of training data and 25
minutes of testing data.

TABLE II: L12 ORTHOGONAL ARRAY AND GAIN CALCULATED FROM SN

RATIO

Run# Attributes

A B C D E F G H I

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 2 2 2 2 2 2

3 1 1 2 2 2 1 1 1 2 2 2

4 1 2 1 2 2 1 2 2 1 2 2

5 1 2 2 1 2 2 1 2 1 1 1

6 1 2 2 2 1 2 2 1 2 1 1

7 2 1 2 2 1 1 2 2 1 1 1

8 2 1 2 1 2 2 2 1 1 2 2

9 2 1 1 2 2 2 1 2 2 1 1

10 2 2 2 1 1 1 1 2 2 2 2

11 2 2 1 2 1 2 1 1 1 2 2

12 2 2 1 1 2 1 2 1 2 1 1

Gain 25.52 15.36 12.03 12.21 8.05 9.98 9.96 5.66 7.50

E. Construction of Full Model MTS Measurement Scale

For constructing a full model MTS measurement scale
(MS), Normal data needs to be collected from the training
dataset. In case if there is no Normal data in the training
sample, other annotated data are used as reference data. The
Normal (healthy) dataset is standardized by using mean and
standard deviation of each corresponding attribute. The cor-
relation matrix and inverse correlation is calculated using the
reference data. Abnormal attributes of a particular arrhythmia
type (e.g. PVC) are considered to validate the full MTS model.
The Normal (reference) and Abnormal data are collectively
referred to as the training dataset. By using the mean and
standard deviation of the Normal (reference) sample, MD is
calculated for the entire training dataset (Normal and Abnor-
mal together).

As an example, for construction of the full MTS model
of person number 119 in the MIT-BIH Dataset, a total of 326
sample beats (246 Normal and 80 Abnormal) were used. These
samples were standardized using the mean and standard devi-
ation of the Normal data. MD was calculated for the dataset
using the Normal dataset as a reference. The MDs related to
Abnormal observations were larger than MDs corresponding
to the Normal sample. This scenario defines the concept of a
“good” measurement scale.

F. Important Variables Identification

Once the full model for the MTS measurement scale is
built, the dataset needs to be filtered so that irrelevant variables
are sorted out and only relevant variables remain. By using
Orthogonal Array (OA) and SN ratios, which measure the
significance of each data attribute, the most important variables
are selected. In our proposed system, a total of 9 features
were initially selected. With an OA L12 and level 2 (211),
we evaluate each row to decide whether the attribute should
be included or excluded. Each attribute is represented in a
column. The last two columns of OA (grey shaded) in Table
II cannot be used as only 9 attributes are available for the
initial construction of the system.

Table II shows the attributes in columns, whereas the
combination of including and excluding attributes as runs are
presented in each row. Using L12 OA, abnormal test data (PVC
sample before 5 minutes in the case of person 119) are used
to calculate the SN ratio. The SN ratio, which measures the



accuracy of any measurement scale, is calculated using the
MDs of each run as shown in equation (1).

SNq = −10log

[

1

p

p
∑

j=1

1

MDj

]

, (1)

where j=1,2,. . . ,p and p is the number of abnormalities

SNq represents the SN ratio of qth run of the OA. The
average SN ratios for level 1 (when level 1 characteristics are
included as a variable) and level 2 (when level 2 characteristics
are included as a variable) are calculated for each characteris-
tic. The Gain in SN ratio for each characteristic is calculated
as follows:

Gain = (Average SN Ratio)Level1 − (Average

SN Ratio)Level2 (2)

Each gain value is assigned against the attribute. The
most positive valued attributes A (RR-int), B (RRa/b), D
(RRavg((a,c)−b)), and C (QRS-dur) are selected (for person
119), and lesser valued attributes are discarded. The selected
set of relevant attributes is not fixed for all other persons. The
number of selected attributes may vary from person to person.
In our experiments, the number of most relevant attributes
ranged from three to five.

G. Construction of Reduced Model of MTS Scale

The normal sample of training data with a reduced set of
attributes is used to construct MS. In the case of person number
119, only four attributes (A, B, C and D), which are determined
from the previous step as most relevant, are used for further
processing.

H. Future Diagnosis with Relevant Variables

For future diagnosis, the most relevant attributes are used
to calculate the MD for each testing beat. If the calculated
MD for each beat is less than a threshold, then the entry
will be included in the normal cluster, otherwise the particular
entry will be treated as abnormal. The labelling of each
cluster depends upon the properties of the cluster elements.
A cluster which contains more similar features out of the
five groups (NORM, PVC, APC, LBBB, and RBBB) will
be labelled accordingly. For evaluation and testing purposes,
the ECG beats which are available in the last 25 minutes
of each person’s data record are treated as the test dataset.
The threshold value for clustering normal and abnormal beats
for person 119 is identified as 23.7. In Fig. 4, the sudden
increase of MD value at this threshold is shown. On the other
hand in Fig. 5, the corresponding MD of each heartbeat is
plotted against the test sample for the same person. The red
horizontal line is the threshold value, which was identified
from Fig. 4. The beats which have MDs less than this threshold
are treated as normal, otherwise the beats are regarded as
arrhythmic. According to our results, the number of normal
beats is identified as 1,297, and the remaining 364 beats are
identified as arrhythmic. The green-colored points in Fig. 5
are identified as Normal heartbeats, whereas the blue-colored
points are marked as abnormal. The red line which is parallel

to the X- axis is separating the Normal and Abnormal data
points.

Fig. 4: Threshold Identification using MD Values for Person 119

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

In order to perform different experiments and analysis, a
Java-based programming environment and MATLAB based
simulation environment were used. The dataset of the ECG
records was collected from the MIT-BIH arrhythmia database
[7], which contains 48 different ECG recordings, from which
we selected 43 records for our experiments on the basis of
training data availability. For in-depth analysis, we examine the
performance and efficiency of the proposed scheme in terms
of sensitivity, specificity, and accuracy. This work considers
different types of arrhythmia like LBBB (L), PVC (V), RBBB
(R), and APC (A). The classification of Normal (N) in the
presence of these arrhythmia is the main objective of the
proposed system. The results are calculated and obtained for
each arrhythmia type individually.

B. Results and Discussion

Sensitivity and specificity are the statistical measures used
to analyze the performance of a binary classification test. In
the context of this work, sensitivity of a test refers to the
ability of a test to correctly identify those records of the ECG
that contain any of the five types of arrhythmia. Similarly,
specificity refers to the ability of the test to correctly identify
those patients without the disease. The accuracy also has been
measured to validate the usefulness of the proposed scheme.

1) Detection of N beats:

The average sensitivity of normal beats (N) is found to be
98.07%, which clearly demonstrates that the scheme detects
98.07% of the records with the N (true positives), but 1.94%

Fig. 5: Heartbeat Index-wise Mahalanobis Distance Plot



TABLE III: SENSITIVITY, SPECIFICITY, AND ACCURACY OF N BEATS

CLASSIFICATION

Detection of N in ECG data

Record ID FP (%) FN (%) TP (%) TN (%) Sensitivity (%) Specificity (%) Accuracy (%)

100 0.38 0.53 99.47 97.57 99.47 99.62 99.54

101 0.20 0.53 99.47 98.95 99.47 99.80 99.64

103 0.06 0.17 99.83 99.17 99.83 99.94 99.88

105 0.85 0.75 99.25 96.57 99.25 99.13 99.19

106 2.33 1.62 98.38 97.53 98.38 97.67 98.03

108 0.55 0.62 99.38 97.12 99.38 99.44 99.41

112 0.29 0.28 99.72 98.62 99.72 99.71 99.71

113 0.00 0.13 99.87 99.32 99.87 100.00 99.93

114 2.08 0.13 99.87 99.38 99.87 97.95 98.91

115 0.00 0.00 100.00 100.00 100.00 100.00 100.00

116 3.05 2.14 97.86 92.34 97.86 96.81 97.35

117 0.00 0.23 99.77 98.82 99.77 100.00 99.88

119 0.00 0.15 99.85 99.71 99.85 100.00 99.92

121 0.00 0.26 99.74 98.71 99.74 100.00 99.87

122 0.00 0.05 99.95 99.76 99.95 100.00 99.98

123 0.00 0.00 100.00 100.00 100.00 100.00 100.00

200 8.50 4.94 95.06 94.25 95.06 91.73 93.37

202 2.92 0.33 99.67 98.25 99.67 97.11 98.38

203 9.75 4.90 95.10 89.49 95.10 90.18 92.65

205 1.81 0.47 99.53 98.16 99.53 98.19 98.86

208 25.79 15.06 84.94 89.32 84.94 77.60 81.01

209 2.15 2.56 97.44 93.98 97.44 97.76 97.60

210 3.65 2.74 97.26 92.09 97.26 96.19 96.74

212 9.58 4.91 95.09 98.04 95.09 91.10 93.02

213 8.29 0.86 99.14 98.21 99.14 92.22 95.57

215 2.66 0.86 99.14 96.83 99.14 97.33 98.24

220 1.18 0.56 99.44 98.63 99.44 98.82 99.13

221 4.33 2.76 97.24 93.90 97.24 95.59 96.42

222 16.85 7.14 92.86 86.69 92.86 83.73 88.21

223 9.57 5.31 94.69 91.51 94.69 90.53 92.60

228 6.73 4.79 95.21 90.72 95.21 93.10 94.17

230 0.05 0.11 99.89 99.50 99.89 99.95 99.92

231 0.98 0.00 100.00 100.00 100.00 99.03 99.51

233 3.42 1.13 98.87 98.31 98.87 96.64 97.75

234 0.31 0.67 99.33 97.17 99.33 99.68 99.50

Average 3.67 1.94 98.07 96.53 98.07 96.47 97.25

of the records containing N go undetected (false negatives).
The sensitivity of N beats classification is high due to the
scheme having very low false negatives (FN) and very high
true positives (TP) as seen in Table III.

The specificity of N beats classification is high, ranging up
to 96.47%, as shown in Table III. This demonstrates that the
proposed scheme has better true negatives (TN) (96.53%) and
very low false positives (FP) (3.67%) for N beats classification.
The reason behind the high detection results of N is the
availability of sufficient training data in each patient record
of the dataset.

The scheme has 97.25% accuracy for N beats classification
because it has very high TP (98.07%) and TN (96.53%).
Similarly, accuracy also depends on the FP and FN; lower
values of FN and FP assure higher accuracy. The average
detection rate for N beats classification is very high, as can
be seen in Fig. 6(a), because the scheme has a very high TP
and very low FN.

2) Detection of L beats:

For L beats classification, the average sensitivity is 99.11%,
while the misclassification rate is 1.86%. The sensitivity of
L beats classification is again high due to high TP and very
low FN as shown in Table IV. The specificity of L beats

(a) Detection of N Beats (b) Detection of L Beats

Fig. 6: N and L Beats Detection in Arrhythmia Database

classification is also high (up to 96.80%). This high specificity
demonstrates that the proposed scheme has better TN (96.03%)
and very low FP (3.29%) for L beats classification. The
accuracy of L beats classification is 97.94%; again, this is high
due to the high values of TP (99.11%) and TN (96.03%) and
the low values of FP (3.29%) and FN (0.89%). Our scheme
delivers a very high detection rate and very low false rejection
rate for L beats classification because it exhibits high TP and
low FN as shown in Fig. 6(b).

TABLE IV: SENSITIVITY, SPECIFICITY, AND ACCURACY OF L BEATS

CLASSIFICATION

Detection of L in ECG data

Record ID FP (%) FN (%) TP (%) TN (%) Sensitivity %) Specificity (%) Accuracy (%)

109 0.44 0.92 99.08 96.07 99.08 99.55 99.31

111 0.06 0.06 99.94 94.00 99.94 99.94 99.94

207 5.35 0.73 99.27 98.97 99.27 94.87 97.03

214 7.32 1.86 98.14 95.07 98.14 92.85 95.46

Average 3.29 0.89 99.11 96.03 99.11 96.80 97.94

3) Detection of V beats:

For V beats classification, the average sensitivity is 94.53%,
which means that our scheme misclassifies 5.47% of the
records having V. The high sensitivity of V beats classification
is due to the scheme producing very low FN (5.47%) and very
high TP (94.53%), as shown in Table V. Similarly, on average
the specificity of the V beats classification is also very high
(96.12%). The higher specificity for V beats classification is
the result of having very high TN (98.67%) and very low FP
(4.31%). Moreover, due to the higher TP and TN, the V beats
classification also has a higher accuracy, confirming the overall
superior detection rate and better performance of the proposed
scheme for V beats classification as can be seen in Fig. 7(a).

TABLE V: SENSITIVITY, SPECIFICITY, AND ACCURACY OF V BEATS

CLASSIFICATION

Detection of V in ECG data

Record ID FP (%) FN (%) TP (%) TN (%) Sensitivity (%) Specificity (%) Accuracy (%)

105 3.57 6.9 93.1 99.92 93.1 96.55 94.85

106 0 0 100 100 100 100 100.00

119 0 0 100 100 100 100 100.00

200 4.94 14.86 85.14 94.81 85.14 95.04 90.09

207 20 0 100 100 100 83.33 90.91

221 0.65 2.85 97.15 99.58 97.15 99.35 98.25

228 3.3 2.98 97.02 99.49 97.02 96.79 96.90

233 2.03 16.19 83.82 95.52 83.82 97.92 90.78

Average 4.31 5.47 94.53 98.67 94.53 96.12 95.22



(a) Detection of V Beats

;

(b) Detection of R Beats

Fig. 7: V and R Beats Detection in Arrhythmia Database

4) Detection of R beats:

As discussed above, the sensitivity depends upon TP. A
lower TP in a particular record results in degradation of
sensitivity for that particular record and eventually affects
the overall average sensitivity. For example, the sensitivity
of R beats classification is 94.34%, which is a little lower
than expected because of insufficient training data for record
number 212. If a record contains only 2 or 3 R beats in 5
minutes of training data, then the scheme will be unable to
detect the R beats in that particular record properly because
the scheme is not well trained for the R beats. This scenario
can be seen in Table VI, where the TP is 81.15% and the FN
is 18.85% for record number 212.

The scheme produces 93.54% of specificity for R beats
classification because it has very high TN values for all of
the records except record number 212. This decrease in TN
reduces the overall specificity of the scheme, but not severely
because the average is affected by only one record. Since TP
is a key component in the accuracy calculation, lower TP has
the effect of degrading the reported accuracy.

Fig. 7(b) shows a relatively good detection rate for R beats
classification due to high TP and low FN in some cases,
while other cases have lower performance due to low TP. For
example, person number 3 in Fig. 7(b) shows a low detection
rate and a high false rejection rate because of the lack of
sufficient training data for R beats in that particular case.

TABLE VI: SENSITIVITY, SPECIFICITY, AND ACCURACY OF R BEATS

CLASSIFICATION

Detection of R in ECG data

Record ID FP (%) FN (%) TP (%) TN (%) Sensitivity (%) Specificity (%) Accuracy (%)

118 2.09 2.09 97.91 92.40 97.91 97.79 97.85

124 3.86 1.70 98.30 93.57 98.30 98.30 97.18

212 22.98 18.85 81.15 81.73 81.15 78.05 79.57

231 0.00 0.00 100.00 100.00 100.00 100.00 100.00

Average 7.23 5.66 94.34 91.93 94.34 93.54 93.65

5) Detection of A beats:

The classification of A beats is high due to the high
detection rate and low false rejection rate produced by the
proposed scheme. As can be seen in Table VII, the sensitivity
of the proposed scheme is high due to high TP. Similarly,
the specificity is also very high due to high TN. As a direct
result, accuracy, which depends on both TP and TN, is also
high. Figure 8 shows the detection and false rejection rate
for A beats classification. This results in the proposed scheme
demonstrating high performance for the A beats classification.

TABLE VII: SENSITIVITY, SPECIFICITY, AND ACCURACY OF A BEATS

CLASSIFICATION

Detection of A in ECG data

Record ID FP (%) FN (%) TP (%) TN (%) Sensitivity (%) Specificity (%) Accuracy (%)

100 0.000 0.000 100.00 100.000 100.000 100.000 100.000

118 11.8 12.8 87.2 89.6 87.2 88.4 87.8

232 0.086 0.086 99.914 99.837 99.914 99.914 99.914

Average 3.96 4.30 95.703 96.48 95.70 96.10 95.90

Fig. 8: Detection of A Beats in Arrhythmia Database

The respective results for average sensitivity, specificity,
and accuracy are 98.07%, 96.47%, and 97.25% for N classified
beats; 99.11%, 96.80%, and 97.94% for L classified beats;
94.53%, 96.12%, and 95.22% for V classified beats; 94.34%,
93.54%, and 93.65% for R classified beats; and 95.70%,
96.10%, and 95.90% for A classified beats. The lower results
for sensitivity, specificity, and accuracy in some cases are due
to insufficient training data availability. For example, patient
record ID 118 contains only 10 A beats in 5 minutes of
training data. This reduces the accuracy to 87.8%, resulting
in a decrease of the overall A beats classification to 95.90%.
Similarly, in the classification of V beats, there are certain
records in the training data which do not contain sufficient
information for the system to be well trained. This lack
of sufficient training data ultimately degrades the average
accuracy of the system to 95.22% for V beats classification.

6) Comparison with Cluster Analysis Scheme:

The proposed scheme is compared with the cluster analysis
scheme [7] in terms of sensitivity and accuracy. The cluster
analysis scheme uses only 14 records from MIT arrhythmia
database (person IDs 103, 113,123, 234, 111, 214, 118, 212,
231, 200, 221, 233, 222, and 232). Out of these 14 records,
record numbers 103, 113, 123, and 234 are used as the Normal
(N) case. Of the remaining records, two (111 and 214) are of
the LBBB beats, three (118, 212, and 231) are of the RBBB
beats, three (200, 221, and 233) are of the PVC database, and
two (123 and 234) are of the APC database [7].

In order to compare the sensitivity and accuracy of the
proposed scheme with that of the cluster analysis scheme,
the results are calculated for 14 records. The same evaluation
parameters are also calculated for a total of 43 persons from the
same MIT database. The comparison in Table VIII shows that
the proposed scheme demonstrates markedly improved results
in all cases of classification. The overall sensitivity in the case
of PVC is higher, though it is low for the particular 14 records
used in our comparison. The cluster analysis scheme achieved
94.30% accuracy for 14 records, while the proposed scheme
calculated 96.59% for the same 14 records accurately. It is
also notable that the overall accuracy for the broader sample
of 43 patients is 95.52%. This clearly demonstrates that the



TABLE VIII: COMPARISON OF PROPOSED AND THE CLUSTER ANALYSIS

SCHEME [7]

Scheme

# of Records Sensitivity % Accuracy %

N L V R A

Cluster Analysis [7] 14 95.59 91.32 94.51 90.50 93.77 94.30

Proposed Scheme 14 99.76 99.04 88.70 93.02 99.91 96.59

Proposed Scheme 43 98.07 99.11 94.53 94.34 95.70 95.52

accuracy of our scheme is higher while detecting arrhythmia
in a prominent number of persons. These findings also prove
the efficacy and robustness of the proposed method.

Another major contribution is that the proposed scheme
has a dynamic approach for feature selection, while the cluster
analysis scheme has static features (i.e., the same four features
were used in the analysis of all records). The proposed scheme
has a maximum of five features. For some records, it utilizes
all the five features, while for other records, it uses only
three or four features. This dynamic feature selection and
utilization make the proposed scheme well-suited for energy-
aware environments like WBANs. Similarly, it also helps in
improving the overall performance of the system by selecting
the most appropriate features for the detection process based on
the unique characteristics of the specific record being analyzed.

IV. CONCLUSION

The main purpose of this study was to identify different
types of arrhythmia by using an automated system with a rel-
evant and reduced set of attributes. The Mahalanobis-Taguchi
System (MTS) was used to accurately analyze and classify
patient ECG data records while minimizing unnecessary per-
formance load and implementation cost by avoiding the use of
irrelevant features. It is also designed to filter out the isolated
factors which have the least impact on ECG beat classification.
The proposed architecture can fit in real-time systems, where
ECG sensor nodes attached to the human body can extract
ECG readings based on time. The RR interval and QRS
complex measure the feature values while the Mahalanobis
Distance calculated using filtered feature values is used for
future cardiac event prediction. The number of relevant feature
set as the output of the MTS system varies from 3 to 5 from
one patient to the next due to person-specific divergences
in the ECG signal. By applying the proposed system on
the MIT-BIH arrhythmia dataset, the sensitivity for Normal
(NORM), LBBB, PVC, RBBB, and APC was calculated as
98.07%, 99.11%, 94.53%, 94.34%, and 95.70%, respectively.
A separate statistical analysis confirms that the use of MTS for
ECG beat classification yields better accuracy than other recent
methods proposed by different researchers. In future, we intend
to make the proposed scheme more robust and optimized by
incorporating some dynamic threshold selection mechanism.
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