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Abstract 
High-level parallel languages offer a simple way for application programmers to specify parallelism in a form that 
easily scales with problem size, leaving the scheduling of the tasks onto processors to be performed at runtime. 
Therefore, if the underlying system cannot efficiently execute those applications on the available cores, the benefits will 
be lost. 

In this paper, we consider how to schedule highly heterogenous parallel applications that require real-time performance 
guarantees on multicore processors. The paper proposes a novel scheduling approach that combines the global Earliest 
Deadline First (EDF) scheduler with a priority-aware work-stealing load balancing scheme, which enables parallel real-
time tasks to be executed on more than one processor at a given time instant. Experimental results demonstrate the 
better scalability and lower scheduling overhead of the proposed approach comparatively to an existing real-time 
deadline-oriented scheduling class for the Linux kernel. 
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CISTER Research Centre/INESC-TEC

School of Engineering (ISEP), Polytechnic Institute of Porto (IPP), Portugal
{lmn,jcnfo,crrm,lmp}@isep.ipp.pt

Abstract—High-level parallel languages offer a simple way for

application programmers to specify parallelism in a form that

easily scales with problem size, leaving the scheduling of the tasks

onto processors to be performed at runtime. Therefore, if the

underlying system cannot efficiently execute those applications

on the available cores, the benefits will be lost.

In this paper, we consider how to schedule highly heteroge-

nous parallel applications that require real-time performance

guarantees on multicore processors. The paper proposes a novel

scheduling approach that combines the global Earliest Deadline

First (EDF) scheduler with a priority-aware work-stealing load

balancing scheme, which enables parallel real-time tasks to be

executed on more than one processor at a given time instant.

Experimental results demonstrate the better scalability and lower

scheduling overhead of the proposed approach comparatively to

an existing real-time deadline-oriented scheduling class for the

Linux kernel.

I. INTRODUCTION

The advent of multicore technologies has resulted in a
renewed interest on parallel programming and dynamic task
parallelism is steadily gaining popularity as a programming
model for multicore processors. Intra-task parallelism is easily
expressed by spawning threads that the implementation is
allowed, but not mandated, to execute in parallel, using frame-
works such as OpenMP [1], Cilk [2], Intel’s Parallel Building
Blocks [3], Java Fork-join Framework [4], Microsoft’s Task
Parallel Library [5], or StackThreads/MP [6].

The idea behind those frameworks is to allow application
programmers to expose the opportunities for parallelism by
pointing out potentially parallel regions within tasks, leaving
the actual and dynamic scheduling of these regions onto
processors to be performed at runtime, exploiting the maxi-
mum amount of parallelism. However, scalable performance
is only one facet of the problem in multicore embedded real-
time platforms. Predictability and computational efficiency are
often conflicting goals, as many performance enhancement
techniques aim at boosting the average execution time, without
considering potentially adverse consequences on worst-case
execution times.

Therefore, parallel programming models introduce a new
dimension to real-time multicore scheduling, with many open
issues to be studied. Recent works on real-time scheduling of
parallel tasks define a task as a collection of several regions,
both sequential and parallel [7], [8]. A task always starts with
a sequential region, which then forks into several parallel
independent threads (the parallel region) that finally join in

another sequential region. However, these models require that
each region of a task contains threads of execution that are of
equal length.

In contrast, we consider a more general model of parallel
real-time tasks where threads can take arbitrarily different
amounts of time to execute. That is, in this paper, different
regions of the same parallel task can contain different numbers
of threads, regions can contain more threads than the number
of cores, and threads can have arbitrarily different execution
needs. Therefore, this model is more portable. Indeed, there
are many applications for which these conditions hold, and it is
this kind of irregular parallelism that is of primary interest for
us. The distribution of work and data in such applications can-
not be characterised a priori because those quantities are input-
dependent and evolve with the computation itself. In practice,
such real-time applications span a wide spectrum, including
radar tracking, autonomous driving, and video surveillance.
Applications with these properties pose significant challenges
for high-performance parallel implementations, where equal
distribution of work over processors and locality of reference
are desired within each processor. Nevertheless, as the problem
sizes scale and processor speeds saturate, the only way to meet
deadlines in such systems is to parallelise the computation.

At the same time, implicit threading languages encourage
the programmer to divide the program into short-living threads
because doing so increases the flexibility to distribute work
evenly across processors. The downside of such fine-grained
parallelism is that the total scheduling cost can be significant.
The best way to reduce the total scheduling cost is to find the
sub-costs that matter most and focus on reducing them. One
of the simplest, yet best-performing, dynamic load-balancing
algorithms for shared-memory architectures is work-stealing
[9]. The principle of work-stealing is that idle cores, which
have no useful work to do, should bear most of the scheduling
costs, and busy cores, which have useful work to do, should
focus on finishing that work. Blumofe and Leiserson have
theoretically proven that the work-stealing algorithm is optimal
for scheduling fully-strict computations, i.e. computations in
which all join edges from a thread go to its parent thread in the
spawn tree [9]. Under this assumption, an application running
on P processors achieves P -fold speedup in its parallel part,
using at most P times more space than when running on one
CPU. These results are also supported by experiments [10].

Motivated by these observations, this paper breaks new



ground in several ways. First, it proposes the Real-Time Work-
Stealing (RTWS) scheduler that combines the global EDF
scheduler with a priority-based work-stealing policy which
allows parallel real-time tasks to be executed in more than
one processor at a given time. To the best of our knowledge,
no research has ever focused on this subject. Second, while
several others have previously considered work-stealing as a
load balancing mechanism for parallel computations, we are
the first to do so considering different tasks’ priorities. Third,
our work is the first to actually implement support for parallel
real-time computations in the Linux kernel.

II. TASK-LEVEL PARALLELISM IN REAL-TIME SYSTEMS

Many real-time applications have a lot of potential paral-
lelism which is not regular in nature and which varies with
the data being processed. Parallelism in these applications is
often expressed in the form of dynamically generated threads
of work that can be executed in parallel. The goal is to allow
the programmer to express all the available parallelism and let
the runtime system execute the program efficiently. The most
difficult task for the programmer is partitioning the program
across the multiprocessor system so that the computational
load is balanced among the cores. Thus, it is important for the
underlying architecture to provide help to the programmer in
order to ease this burden.

At the same time, implicit threading encourages the pro-
grammer to divide the program into threads that are as
small as possible, increasing the scheduler’s flexibility when
distributing work evenly across processors. The downside of
such fine-grained parallelism is that if the total scheduling cost
is too large, then parallelism is not worthwhile. Therefore,
having many short-lived threads requires a simple and fast
scheduling mechanism to keep the overall overhead low.

However, most results in multiprocessor real-time schedul-
ing concentrate on sequential tasks running on multiple pro-
cessors or cores [11]. While these works allow several tasks to
execute on the same multicore host and meet their deadlines,
they do not allow individual tasks to take advantage of a
multicore machine. It is essential to develop new approaches
for intra-task parallelism, where real-time tasks themselves are
parallel tasks which can run on multiple cores at the same time
instant.

Early work in real-time scheduling of parallel tasks [12],
[13], [14], [15], [16] makes simplifying assumptions about task
models, such as knowing beforehand the parallelism degree
of jobs and using this information when making scheduling
decisions. In practice, this information is not easily discernible,
and in some cases can be inherently misleading. Since many
details of execution, such as the number of iterations in a
loop and the number of threads that will be created in a
parallel region are often not known in advance, much of
the actual work of assigning parallel tasks to cores must
be performed dynamically. Unlike static policies, dynamic
processor-allocation policies allow the system to respond to
load changes, whether they are caused by the arrival of new
jobs, the departure of completed jobs, or changes in the

parallelism of running jobs - the last case is of particular
importance to us in this paper.

Recently, Lakshmanan et al. [7] proposed a scheduling
technique for synchronous parallel tasks where every task is
an alternate sequence of parallel and sequential regions with
each parallel region consisting of multiple threads of equal
length that synchronise at the end of the region. In their model,
all parallel regions are assumed to have the same number of
parallel threads, which must be no greater than the number of
processors. In [8], Saifullah et al. considered a more general
task model, allowing different regions of the same parallel
task to contain different numbers of threads and regions to
contain more threads than the number of processor cores. It
still requires, however, that each region of a task contains
threads of execution that are of equal length. In contrast, this
paper considers a more general model of parallel real-time
tasks where threads can take arbitrarily different amounts of
time to execute.

Furthermore, both works handle scheduling parallel tasks
by decomposing them into sequential subtasks. In [7], this
technique requires a resource augmentation bound of 3.42
under partitioned Deadline Monotonic (DM) scheduling. For
the synchronous model with arbitrary numbers of threads in
parallel regions, the work in [8] proves a resource augmen-
tation bound of 4 and 5 for global EDF and partitioned
DM scheduling, respectively. Instead, we try to minimise
the scheduling overhead by generating parallelism only when
required, i.e. when a processor becomes idle.

We believe that achieving predictable good performance
for fine-grained task-level parallelism in embedded real-time
systems is important for several reasons: (i) an efficient
implementation of fine-grained parallelism allows more par-
allelism to be exploited, which is especially important with
the expected increase in core counts in future processors; (ii)
the programming model is simplified if programmers do not
need to avoid spawning small tasks, which is very difficult
when task execution times can not be predicted in advance;
and (iii) many real-time systems have periodic serialisation
points when input is consumed and output is produced. A
natural way to program such a system is to parallelise each
interval, which then becomes a parallel region.

Therefore, this paper proposes RTWS, a novel scheduler
that integrates a priority-based work-stealing policy into global
EDF, enabling parallel real-time tasks to be executed on more
than one processor at a given time instant. In addition, to
the best of our knowledge, no other real-time scheduler that
supports task-level parallelism has actually been implemented
within a real operating system. In contrast, we have im-
plemented RTWS in Linux and thus have a real working
framework. To ease the algorithm’s discussion, the system
model and the main principles of the proposed approach are
discussed in the next sections, while RTWS is presented in
Section V.



III. SYSTEM MODEL

We consider the scheduling of implicit-deadline peri-
odic independent real-time tasks on m identical processors
p1, p2, . . . , pm using global EDF. With global EDF, each task
ready to execute is placed in a system-wide queue, ordered
by non-decreasing absolute deadline, from which the first m
tasks are extracted to execute on the available processors.

We primarily consider a synchronous task model, where
each task τ1, . . . , τn can generate a virtually infinite number
of multithreaded jobs. A multithreaded job is a sequence of
several regions, and each region may contain an arbitrary
number of parallel threads which synchronise at the end of
the region (see Fig. 1). For any region with more than one
thread, the threads on that region can be executed in parallel
on different cores. All parallel regions in a task share the
same number of processors and threads inherit the parent’s
deadline. For now, our work is focused on systems where all
parallel threads are fully independent, i.e. except for the m-
cores there are no other shared resources, no critical sections,
nor precedence constraints.

Fig. 1. A multithreaded job with 5 regions

The jth job of task τi arrives at time ai,j , is released to
the global EDF queue at time ri,j , starts to be executed at
time si,j with deadline di,j = ri,j + Ti, with Ti being the
period of τi, and finishes its execution at time fi,j . These times
are characterised by the relations ai,j ≤ ri,j ≤ si,j ≤ fi,j .
Successive jobs of the same task are required to execute in
sequence.

During the course of its execution the jth job of task τi
can enter in a parallel region and dynamically generate an
arbitrary number of parallel threads which synchronise at the
end of that region. A thread is denoted wk

i,j , 1 ≤ k ≤ ni,
where ni is the total number of threads belonging to the jth

job of task τi. We assume ni ≥ 2 holds for at least one task
τi in the system. Otherwise, the considered task set does not
have intra-task parallelism.

The execution requirements of a thread wk
i,j of task τi

is denoted by eki,j . Therefore, the worst-case execution time
(WCET) Ci of task τi on a multicore platform is the sum of
the execution requirements of all of its threads, if all threads
are executed sequentially in the same core.

Contrary to regular jobs of a task, dynamically generated
parallel threads are not pushed to the global EDF queue,

but instead maintained in a local priority-based work-stealing
double-ended queue (deque) of the core where the job is
currently being executed, thus reducing contention on the
global queue. For any busy core, parallel threads are pushed
and popped from the bottom of the deque and these operations
are synchronisation-free.

The fraction of the capacity of one processor that is assigned
to a task τi is defined as its utilisation ui = Ci

Ti
. We

further define UΠ =
�n

i ui as the system utilisation on the
identical multiprocessor platform Π comprised of m unit-
capacity processors and uΠ = max1≤i≤nui as the maximum
task utilisation.

A task set Γ is said to be schedulable by algorithm A,
if A can schedule Γ such that every τi ∈ Γ can meet its
deadline di. With global EDF, a task τi executed on the
identical multiprocessor platform Π comprised of m unit-
capacity processors never misses its scheduling deadline under
the following conditions [17]:

uΠ ≤ 1;

UΠ ≤ m− uΠ(m− 1) (1)

Naturally, if only soft real-time tasks are considered, jobs
may miss their deadlines by bounded amounts, eliminating
such restrictive utilisation limits. It has been shown that, when
using global EDF to schedule sporadic soft real-time tasks on
m processors, deadline tardiness is bounded, provided total
utilisation is at most m [18].

IV. TOWARDS REAL-TIME WORK-STEALING

Dynamic scheduling of parallel computations by work-
stealing [9] has gained popularity in academia and industry for
its good performance, ease of implementation and theoretical
bounds on space and time. Work-stealing has proven to be
effective in reducing the complexity of parallel programming,
especially for irregular and dynamic computations, and its
benefits have been confirmed by several studies [19], [20].

A work-stealing scheduler employs a fixed number of
workers, usually one per core. Each of those workers has a
local deque to store threads. Workers treat their own deques as
a stack, pushing and popping threads from the bottom, but treat
the deque of another busy worker as a queue, stealing threads
only from the top, whenever they have no local threads to
execute. This reduces contention, by having stealing workers
operating on the opposite end of the deque than the worker
they are stealing from, and also helps to increase locality, since
stealing a thread also migrates its future workload [2]. All
deque manipulations run in constant-time O(1), independently
of the number of threads in the deque. Furthermore, several
papers [21], [22], [23] explain how a non-blocking deque can
be implemented to limit overheads.

Following [24], we denote T∞ as the execution time of an
algorithm on an infinite number of processors and T1 as the
sequential time of this algorithm. It is proved that the time Tp



required for execution, on an ideal machine with no scheduling
overhead, on p processors verifies Equation 2.

Tp ≤ T1

p
+ T∞ (2)

This time appears asymptotically optimal in the case of very
parallel applications where T∞ ≤ T1.

However, the need to support tasks’ priorities fundamentally
distinguishes the problem at hand in this paper from other
work-stealing choices previously proposed in the literature
[25], [26], [27]. With classical work-stealing, threads waiting
for execution in a deque may be repressed by new threads,
which are enqueued at the bottom of the worker’s deque. As
such, a thread at the top of a deque might never be executed
if all workers are busy. Consequently, there is no upper bound
on the response time of a multithreaded real-time job.

Therefore, considering threads’ priorities and using a single
deque per core would require, during stealing, that a worker
iterate through the threads in all deques until the highest pri-
ority thread to be stolen was found. This cannot be considered
a valid solution since it greatly increases the theft time and,
subsequently, the contention on a deque.

Using a single global concurrent priority-based deque is
also not viable. While priority queues are often used in
single core schedulers, when moving to a parallel context,
concurrent priority queues are hard to make both scalable
and fast [28]. Furthermore, the semantics of priority queues
naturally suggest an ordered insertion method, which is against
the work-stealing deque philosophy.

Our proposal is to replace the single per-core deque of
classical work-stealing with a per-core priority queue, each
element of which is a deque. A deque holds one or more
threads of the same priority. At any time, a core picks the
bottom thread from the highest-priority non-empty deque. If
it finds its queue empty, it steals a thread from the top of the
highest-priority non-empty deque of the chosen core’s queue.

Two approaches are possible for selecting the victim pro-
cessor: (i) a probabilistic approach, where the victim is chosen
randomly [9]; or a (ii) deterministic approach, where the core
is chosen by the priorities of the threads in the deques waiting
to be executed. Blumofe and Leiserson [9] demonstrate that
a random choice of the stolen core is fair and presents the
advantage that the choice of the target does not require more
information than the total number of cores in the execution
platform. However, random selection, while fast and easy
to implement, may not always select the best victim to
steal from. As core counts increase, the number of potential
victims also increases, and the probability of selecting the
best victim decreases. This is particularly true under severe
cases of work imbalance, where a small number of cores
may have more work than others [29]. Moreover, when a
thief cannot obtain tasks quickly, the unsuccessful steals it
performs waste computing resources, which could otherwise
be used to execute waiting threads. In fact, if unsuccessful
steals are not well controlled, applications can easily be slowed

down by 15%–350% [9]. Therefore, we follow a deterministic
approach, following a strict priority schedule.

Definition 1: The set of processors Ps eligible for work-
stealing among the set of m identical processors P =
{p1, p2, . . . , pm} is given by Ps = {pi|ps ∈ P, npi ≥ 1},
where npi is the number of threads in the local priority queue
of processor pi.

Having Ps, an idle processor steals the earliest deadline
thread wedf among the ones in the top of the highest-priority
non-empty deques (first entry in each of the processor’s local
priority queue) from the set of eligible processors Ps.

Definition 2: The earliest deadline thread wedf from the
set of eligible processors Ps is defined as ∃1wedf ∈ Ps :
mindr

k
(Ps), Ps �= ∅.

Note that the ∃1 relation is guaranteed by the min function
which, whenever there is more than one thread with the same
earliest deadline, always returns the first thread on the list.

V. THE RTWS SCHEDULER

One approach to schedule parallel applications using work-
stealing is to include the calls to a user-space runtime library
that manages the threads themselves explicitly in the applica-
tion. This technique places a lot of onus on the programmer,
requiring that the programmer is fully aware of the runtime
library and the details of scheduler, which in turn affects the
productivity. Hence, work-stealing schedulers generally resort
to an alternate approach where the parallelism is expressed at a
higher-level of abstraction using some parallel constructs in a
language. This code is then transformed into an equivalent
version with appropriate calls to the work-stealing runtime
library using a compiler. However, the compiler needs to do
a good job of mapping the threads appropriately in order to
match the performance of a good hand-written application with
direct calls to runtime.

Therefore, implementing a work-stealing scheduler at the
kernel level, by exploiting the operating system’s capabilities,
allows one to finally switch from the current support of user-
space runtime libraries or compilers to native support from
the operating system. Furthermore, existing user-level work-
stealing schedulers are not effective in the increasingly com-
mon setting where multiple applications time-share a single
multicore, suffering from both system throughput and fairness
problems [30].

On the other hand, kernel-focused work has been invalu-
able in demonstrating the capabilities and limitations of new
multicore resource allocation techniques on actual hardware.
Among research projects, the works more related to our
proposal of extending the Linux kernel with the concept of
actual timing constraints, e.g. deadlines, are LITMUSRT [31]
and SCHED DEADLINE (originally named SCHED EDF)
[32]. The LITMUSRT patch is a soft real-time extension of the
Linux kernel with a focus on multicore real-time scheduling
and synchronisation. The Linux kernel is modified to support
the sporadic task model and modular scheduler plugins. Work
in [32] targets global/clustered EDF scheduling specifically
through dynamic task migrations. This means that tasks can



migrate among (a subset of) cores when needed, by means of
pushes and pulls.

Nevertheless, none of those patches directly supports paral-
lel real-time tasks. The proposed RTWS scheduler extends the
Linux kernel with a global EDF scheduling scheme combined
with a priority-based work-stealing load balancing policy, used
to allow parallel tasks to execute on more than one processor
at a time. The major rules of the proposed scheduler are
described next.

• Rule A: a single global ready queue exists in the system,
ordered by non-decreasing absolute deadlines. At each in-
stant, the higher priority (with shorter absolute deadline)
jobs are scheduled for execution.

• Rule B: whenever a job of a task τi being executed at
a processor p enters a parallel region and dynamically
generates a set of parallel threads, those threads are not
pushed to the global EDF queue but instead maintained in
the processor’s local priority queue to reduce contention
on the global queue.

• Rule C: each entry in the processor’s local priority queue
is a deque, holding one or more threads of the same
priority. At any time, a processor first looks into its
local queue, picking the bottom thread from the highest-
priority non-empty deque.

• Rule D: if the local queue is empty and there is no thread
to pick, then a processor searches for jobs in the global
EDF queue.

• Rule E: still, if there is no eligible job in the global
EDF queue, the processor will steal the earliest deadline
eligible thread from the top of the deterministically
selected busy processor’s deque.

• Rule F: opposed to a locally generated thread, a stolen
thread preempted by a new arriving job with a shorter
deadline is enqueued in the global queue and not back
in the respective deque of the processor’s local priority
queue.

Each released job is enqueued in a system-wide global EDF
queue ordered by non-decreasing absolute deadlines, with ties
broken by FIFO. At t = 0, all the m cores are idle and the m
higher priority jobs are selected for execution. By following
a global approach, cores are responsible for dequeueing the
highest priority jobs from the global queue and therefore the
bin-packing problem of partitioned approaches is avoided.

When entering a parallel region, a job generates an arbitrary
number of threads, possibly with different execution require-
ments. To avoid uncontrolled priority inversion when stealing,
each core has a deadline-ordered queue, each element of which
is a deque. Therefore, each dynamically generated thread is
enqueued in the bottom of the respective deque, so that data
locality is achieved and communication and synchronisation
among cores are minimised.

Whenever a new job is released and enqueued in the global
EDF queue and all the cores are busy, the scheduler verifies
if the core executing the lowest priority job/thread among
all the executing jobs/threads has a higher deadline than the
newly arrived job. If this condition is true, the job/thread is

preempted. One of three possible situations occurs, depending
on the properties of the preempted entity: (i) the job is
enqueued back in the global queue; (ii) the locally generated
thread is enqueued back in the respective deque in the core’s
local priority queue; and (iii) a previously stolen thread is
enqueued in the global queue in order to prevent starvation
and, therefore, a possible deadline miss.

For each core, the local deques are the first place to look
for work, not only due to the fact that if they have work it
means that there is a deadline to be met, but also to take
advantage of data locality. If the local deques are empty, the
global queue is searched. This step assumes that no matter
how many threads the other cores in the system still have to
execute, they are able to finish their work within the deadline
(the schedulability of the task set is assured by global EDF).
Clearly, this step favours jobs in the global EDF queue with
respect to parallel threads generated on other cores. Recall
that we try to minimise the scheduling overhead by generating
parallelism only when required, i.e. when a processor would
be otherwise idle.

Finally, if no work has yet been found, a stealing operation
takes place which assures that the top-right parallel thread
(i.e. the highest priority thread), in the deterministically chosen
core, is stolen. This reduces contention, by having stealing
cores operating on the opposite end of the deque than the core
they are stealing from, and also imputes the load balancing
operation costs to the idle core.

A. Scheduling multithreaded jobs with RTWS

Consider the following task set, described by WCET and
period, τ1 = (5, 10), τ2 = (10, 20), and τ3 = (4, 19). Task
τ1 executes sequentially for three time units and then spawns
two threads which have an execution requirement of one time
unit each. Task τ2 has a sequential execution requirement of
two time units and then spawns four threads, with the first
and third threads having an execution requirement of one time
unit, whereas the second and fourth threads have an execution
requirement of three time units. Finally, task τ3 only executes
sequentially. Note that the task set is schedulable under global
EDF, uΠ = 0.5 and UΠ = 1.21.

Fig. 2 depicts a possible schedule generated by RTWS for
those three tasks in two identical processors. For the sake of
simplicity of presentation, the first thread of each fork-join
task does not execute any code in a parallel region.

All tasks are released at t = 0. The ones with a lower
deadline, τ1 and τ3, are selected for execution in the two
cores. In the interval t = [0, 5] none of the cores is idle.
Therefore, task τ1 executes sequentially, although it spawns
parallel threads. At t = 5, task τ2 is scheduled for execution
in core 1. Its sequential part executes until t = 7 and then it
spawns four threads. As core 2 is idle at time t = 7 and there
is pending work in the priority queue of core 1, it is able to
work-steal. Therefore, at t = 7, core 2 steals w2

2,1 from the
highest-priority non-empty deque of core 1.

At t = 10, a job from task τ1 is released and preempts w3
2,1,

which has a lower priority. According to the RTWS policy,



Fig. 2. Scheduling multithreaded jobs with RTWS

w3
2,1 is enqueued in the global queue until one of the cores is

able to finish its execution. In the depicted example, w3
2,1 is

executed at t = 11 in core 1.
As core 2 is idle after t = 12, threads generated by the

second job of task τ1 can be executed in parallel by both
cores, by work-stealing at time t = 13.

VI. EXPERIMENTAL EVALUATION

Based on the design principles presented in the previous
section, we have implemented RTWS in the standard Linux
kernel 2.6.36 as a new scheduling class called SCHED RTWS.
The experiments reported in this paper were conducted in a
machine equipped with 16 GB of main memory and an eight-
core processor, where each of the cores is running at 2.0 GHz.
The Linux kernel was configured as follows: disabled CPU
frequency scaling, hyper-threading, and tickless system; HZ
macro set to 1000; preemptible kernel selected as preemption
model. Since our evaluation is also based in a comparison to
SCHED DEADLINE (version 3), we have disabled bandwidth
management on it to set equal grounds.

A set of three major experiments was conducted, where in
each of the experiments twenty random task sets were used,
running in 2, 4 and 8 cores. In order to dynamically generate
the task sets, we have defined the minimum task utilisation
(umin) equal to 0.1, the maximum task utilisation (umax)
equal to 0.5, a minimum period (Tmin) of 700 ms, and a
maximum period (Tmax) of 800 ms. The period Ti of each
task was computed as Ti = Tmin+x∗ (Tmax−Tmin), where
x denotes a random value between 0 and 1.

In order to analyse the scalability of the proposed approach
with respect to the number of tasks/threads in the system,
until the maximum system utilisation calculated by Equation 1
is reached, three utilisation windows ([UΠmin, UΠmax]) were
chosen: [0.38, 0.40], [0.58, 0.60] and [0.73, 0.75]. The tightness
of the chosen intervals is justified by the need to ensure
similarities between task sets within the same experiment.
With these parameters, we compute each task utilisation as
follows: ui is given by ui = umin+x∗(umax−umin), where�n

k=1 uk ≥ UΠmin and
�n

k=1 uk ≤ UΠmax. Finally, Ci is
given by Ci = Ti ∗ ui.

The number of parallel threads per task was dynamically
derived as ni = x ∗ (m ∗ 2), whereas the number of tasks (n)
was totally dynamic, based on the system utilisation window
condition being satisfied (please refer to Table I). Note that
as we keep increasing UΠmax, and umax remains constant, n
scales. We strongly believe that these parameters can deeply
assess our scheduler features.

m Total tasks Total threads
38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 50 82 98 128 218 216
4 102 158 193 457 703 866
8 217 320 401 1736 2720 3491

TABLE I
COMPOSITION OF EACH EXPERIMENT

Each task was a simple fork-join application whose actual
work was limited to a series of NOP instructions to avoid
memory and cache interferences. Each of the task’s jobs (i)
executes sequentially; (ii) splits into multiple parallel threads;
and (iii) synchronises at the end of the parallel region, resum-
ing the execution of the master thread. Sequential, parallel, and
total execution times were derived randomly, with the actual
total execution time upper bounded by Ci.

Data was collected and averaged concerning the number of
context switches and migrations, parameters which represent
the main sources of scheduling overhead. Fig. 3 depicts
the average number of migrations that occurred for each
scheduling policy when all cores were online. In the case
of SCHED RTWS, the number of migrations refers to the
number of steals performed by the idle cores, while the values
collected for SCHED DEADLINE refer to pure migrations
that occurred between the cores.

The overall results show that SCHED RTWS outperforms
SCHED DEADLINE in every experiments. These results can
be explained by our decision to favour data locality, generating
parallelism only when strictly required, i.e. when a core
becomes idle. In fact, the results are far better for medium/high
workloads since load balancing calls are more frequently
required on SCHED DEADLINE with the greater number of
tasks. Remarkably, the number of migrations barely increases
on SCHED RTWS under such heavy circumstances. For lower
workloads, the difference becomes slighter mainly because on
our scheduling policy the system lacks parallel threads to keep
all cores busy.

Regarding the average number of context switches, de-
picted in Fig. 4, no matter the considered workload rate,
SCHED RTWS also outperforms SCHED DEADLINE on
eight cores. SCHED DEADLINE blindly assigns new jobs
of a task to the core where the last job of that task was
executed, which rather frequently leads to a preemption of
the running job. Contrariwise, in SCHED RTWS, preemptions
are minimised because a released job is assigned to a idle
core (if available) or inserted into the global queue when its
priority is lower than the ones currently executing. Moreover,
we do not allow parallel threads to preempt other threads or
jobs, unless they have been stolen. Even though the number



Fig. 3. Average number of migrations on 8 cores Fig. 4. Average number of context switches on 8 cores

of context switches increases with higher system utilisations,
values indicate a less than linear scalability for both policies,
which can be seen as a good behaviour.

Using the obtained results of both scheduling policies in two
cores as the base case, we have measured the scalability of
SCHED RTWS and SCHED DEADLINE when scheduling
the parallel task sets described in Table I. The obtained results
are depicted in Tables II and III. Note that, in both tables, a
scale up ratio of two means that the considered metric has
doubled.

m SCHED RTWS SCHED DEADLINE
38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 2.75 3.27 3.08
4 5.88 5.55 5.92 11.38 12 13
8 36.38 33 31.08 45.38 48.36 55.08

TABLE II
SCALE UP RATIOS ON NUMBER OF MIGRATIONS

According to the values reported in Table II and consid-
ering the properties of our experiments, one can conclude
that the number of migrations is largely influenced by the
number of dynamically generated parallel threads. Provided
that we create more tasks when m is increased, the number
of threads exponentially grows as can be easily seen in Table
I. Nonetheless, this growth factor is not directly proportional
to the scale up ratio. Note the reaction triggered by Ci being
constant in every experiment: the more we parallelise, the less
executing time will be assigned to each thread, faster threads
will finish, migrations will scale. Thereby, we have to multiply
the ratio of the system’s total number of threads by the ratio
of each task’s maximum number of threads to be able to find
the linear scalability value. For example, for m = 4 and a
utilisation interval [0.38, 0.40], the scale up ratio is expected
to be 457

128 ∗ 8
4 = 7.14. After analogously calculating for the

remaining cases, it is clear that SCHED RTWS efficiently
scales as respects to the number of migrations.

m SCHED RTWS SCHED DEADLINE
38-40% 58-60% 73-75% 38-40% 58-60% 73-75%

2 1 1 1 1.35 1.40 1.33
4 2.91 2.80 3 4.43 4.45 4.74
8 10.60 9.97 10.75 15.93 16.36 18.51

TABLE III
SCALE UP RATIOS ON NUMBER OF CONTEXT SWITCHES

Under global EDF, context switches occur either when a
job is released or when it completes. However, not every
job release will swap the currently executing job. Thus, the

number of context switches over a time interval of length
L is upper bounded by twice the number of jobs’ releases
during that interval. As every experiment has lasted exactly
the same time and its periodicity parameters were constant,
the scale up ratio on the number of jobs is given by the
scale up ratio on the number of tasks. Intuitively, for m = 4,
SCHED RTWS scales in a very efficient manner, as Table
III reflects, since there are approximately twice more tasks
(e.g.

158
82 = 1.93) but the scale up ratios on the number

context switches are lower than the upper bounded value of 4.
Following the same logic, for m = 8 our scheduling algorithm
appears to scale poorly because the amount of tasks is almost
four times higher ( 21750 ≈ 320

82 ≈ 401
98 ≈ 4). Nevertheless, recall

that in RTWS stolen parallel threads may also preempt any
schedulable entity, plus we still have to account each thread’s
completion as a context switch, seriously inflating the upper
bounded scale up ratio from global EDF. In this case, it is
particularly noticeable by having to dispatch an incredibly high
number of threads, which in turn also potentiates work-stealing
(please refer to Table I and Fig. 4 again).

VII. CONCLUSIONS AND FUTURE WORK

It is expected that parallel workloads to become rather
common as multicore platforms become ubiquitous. In contrast
to prior work on real-time scheduling of parallel workloads,
this paper considered a more general model of parallel real-
time tasks where dynamically generated threads can take
arbitrarily different amounts of time to execute. It proposed
RTWS, a novel scheduling policy that combines the global
EDF scheduler with a priority-based work-stealing policy,
allowing parallel real-time tasks to be executed in more than
one processor at a given time. To the best of our knowledge,
we are the first to: (i) deal with real-time priorities in a work-
stealing scheduler; and (ii) to actually implement support for
parallel real-time computations in the Linux kernel.

Experimental results show that the proposed scheduler sig-
nificantly reduces the scheduling overhead through an efficient
and scalable control of migrations and context switches, while
still achieves good dynamic load balancing even with low
communication costs. Nonetheless, we will conduct further
experiments to evaluate more metrics, such as worst-case
response time and task latency.

As the complexity of multicore systems grows, it would
be interesting to evaluate RTWS in large multicore systems
that are likely to have hierarchical cache layouts. One possible



extension to RTWS for such systems could be a scheduling
approach that mixes aspects of partitioning and global schedul-
ing. In particular, while task migrations within a cluster of
cores that share some lower level cache might be acceptable,
migrations among processors that are “far apart” in the cache
hierarchy may be too expensive.
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