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Abstract 
Consider a wireless network where links may be unidirectional, that is, a computer node A can broadcast a 
message and computer node B will receive this message but if B broadcasts then A will not receive it. 
Assume that messages have deadlines. We propose a medium access control (MAC) protocol which 
replicates a message in time with carefully selected pauses between replicas, and in this way it guarantees 
that for every message at least one replica of that message is transmitted without collision. The protocol 
ensures this with no knowledge of the network topology and it requires neither synchronized clocks nor 
carrier sensing capabilities. We believe this result is significant because it is the only MAC protocol that 
offers an upper bound on the message queuing delay for unidirectional links without relying on synchronized 
clocks.  
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Abstract 

Consider a wireless network where links may be 
unidirectional, that is, a computer node A can broadcast 
a message and computer node B will receive this 
message but if B broadcasts then A will not receive it. 
Assume that messages have deadlines. We propose a 
medium access control (MAC) protocol which replicates 
a message in time with carefully selected pauses between 
replicas, and in this way it guarantees that for every 
message at least one replica of that message is 
transmitted without collision. The protocol ensures this 
with no knowledge of the network topology and it 
requires neither synchronized clocks nor carrier sensing 
capabilities. We believe this result is significant because 
it is the only MAC protocol that offers an upper bound 
on the message queuing delay for unidirectional links 
without relying on synchronized clocks. 

 

1 Introduction 

Consider a computer node A that can broadcast a 
message and computer node B that can receive this 
message but if B broadcasts then A cannot receive it. We 
say that the network topology has a unidirectional link 
from A to B. Empirical data show that unidirectional 
links exist and they are not uncommon; typically, in 
networks with low-power radios, 5-15% of all links are 
unidirectional [1-7]. This has been recognized at the 
routing layer but the MAC layer is still poorly developed 
for unidirectional links. Traditional MAC protocols fail 
on unidirectional links. For example, consider a node A 
that performs carrier-sensing before it sends a message 
to node B. Node B transmits as well but due to the fact 
that the link A→B is unidirectional, node A perceives 
that there is no carrier. Consequently, node A transmits 
and it collides with the transmission from node B. Also, 
RTS/CTS (Request-to-Send/Clear-to-Send) exchanges 
fail as well because node A sending a RTS-packet does 
not receive a CTS packet from node B. In addition, 
protocols that allow collisions but let a sender A wait for 
an acknowledgement from node B can fail too. Node B 

received the message but since the link A→B was 
unidirectional, node B cannot send an acknowledgement 
back to the sender A: the sender A has to wait forever. 
The only existing solutions today for medium access in 
the presence of unidirectional links require synchronized 
clocks [8] or cause unbounded number of collisions. 

In this paper we study medium access of wireless 
links which may be unidirectional. We show, informally, 
that designing a collision-free MAC protocol is 
impossible. For this reason, we design a replication 
scheme; every message that an application requests to 
transmit is replicated in time by the MAC protocol with 
carefully selected pauses between the transmissions of 
replicas. This guarantees that for every message, at least 
one of its replicas is transmitted without collision. 

The protocol proposed in this paper is quite heavy-
weight. We will see that such a high overhead is 
necessary in order to bound the number of collisions and 
hence to achieve real-time guarantees in the presence of 
unidirectional links; this is our main focus. But less time-
critical applications (such as file transfer) demand high 
throughput and networks often have links that are mostly 
bidirectional, and unidirectional only occasionally. In 
such networks, the robustness and delay guarantees 
offered by the bounded number of collisions of our 
scheme is not worth the high overhead. For this reason, 
we will discuss how the protocol can be adapted to 
obtain an average-case overhead similar to “normal” 
protocols designed for bidirectional links, while 
retaining the upper bound on the number of collisions in 
the presence of unidirectional links. 

The remainder of this paper is organized as follows. 
Section 2 presents the system model, the impossibility of 
designing a collision-free MAC protocol and the main 
idea of the protocol. Section 3 presents schedulability 
analysis of sporadic message streams. Section 4 presents 
implementation and experimental validation of the 
protocol. Section 5 reviews previous work and discusses 
unidirectional links in its larger context. Finally, 
Section 6 offers conclusions. 
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Fig. 1. A network topology which illustrates the impossibility of collision-free medium access in the presence of 
unidirectional links. N1 can transmit to N2 but N2 cannot transmit to N1. Analogously for N2 and N3. When N1 and N3 transmit 
there will be a collision on node N2. 

 

2 Preliminaries and the Main idea 

2.1 Network and Message Model 

The network topology is described using a graph with 
nodes and links. A node represents a computer node. A 
link is directed. Consider a node Ni that broadcasts a 
message or any signal (for example an unmodulated 
carrier wave). Then node Nk will receive it if and only if 
there is a link in the topology graph from node Ni to node 
Nk. A node can only transmit by performing a broadcast 
and it is impossible for a node Ni to broadcast such that 
only a proper subset of its neighbor nodes receive it. No 
assumption on the topology of each node is made. It is 
allowed that a node has only outgoing links or only 
ingoing links or no links at all. Unless otherwise stated, 
the topology is assumed to be unknown to the MAC 
protocol. In Section 5, we will discuss how knowledge 
of the network topology can be exploited. 

Let mtotal denote the number of nodes and let m 
denote the number of nodes that can transmit. Nodes are 
indexed from 1 to mtotal, where the m nodes that can 
transmit have the lowest index. As an illustration, 
consider a network with mtotal = 5 nodes but 2 nodes 
will never transmit; these nodes will have index 4 and 5. 
The other m = 3 nodes are permitted to request to 
transmit and these nodes have index 1, 2 and 3. 

We will initially assume that on each node with index 
1..m, there is a single application and it makes only a 
single request to the MAC protocol to transmit a 
message. The exact time of the request is unknown 
before run-time and the MAC protocol does not know 
about the time of the request before it occurs. Let Ji 
denote this single message on node Nj. (Ji is analogous to 
a job in processor scheduling.) It is assumed that when 
the MAC protocol sends a message it takes one time 
unit. We are interested in finding a value z such that it 
holds for any node that the time from when a message 
transmission request is made at a node until this message 
is successfully transmitted without collision is at most z. 

Let propi,j denote the propagation delay of the 
medium between nodes Ni and Nk. We assume that 
propi,k is unknown but it is bounded such that 
∀i,k∈{1..mtotal}: 0 < propi,k ≤ prop. Hence, prop is an 
upper bound on the propagation delay of the medium; 
we expect that a typical value is prop = 1μs for 

distributed real-time systems in a small geographical 
area, such as a ship, a factory or a virtual caravan of cars. 
We assume that prop is finite but we make no 
assumptions on its actual value. However, we assume the 
following: (i) nodes can “boot” at different times and 
when they boot, they do not have synchronized clocks; 
(ii) when a node is transmitting it cannot receive 
anything; and (iii) the MAC protocol can be represented 
as a set of timed automata, with potentially different 
automata on different computer nodes. 

2.2 Impossibility 

Let us now show that, under these assumptions, it is 
impossible to design a collision-free MAC protocol 
when there are unidirectional links. Consider Figure 1. It 
illustrates a simple exemplifying topology. For such 
topology and links characteristics, it is necessary that N1 
does not transmit simultaneously with N3, in order to 
guarantee that collisions will not occur. This requires 
that N1 can get some information about the other nodes 
on whether there is an ongoing transmission on the other 
link. But N1 cannot hear anything so the transmission 
from N1 may overlap with the transmission from N3, and 
then N2 will not receive any of them. Hence, it is 
impossible to design a MAC protocol that is guaranteed 
to be collision-free in the presence of unidirectional 
links. Even if a node knows the topology but it does not 
know the time when other nodes will transmit then a 
collision can occur, and hence the above mentioned 
impossibility also extends to the case where the topology 
is known to the MAC protocol. 

Given the impossibility of collision-free medium 
access in the presence of unidirectional links we will 
now design a solution. 

2.3 The Main Idea 

For each message Ji the MAC protocol transmits the 
message several times. Each one of them is called a 
replica. Of those replicas from message Ji let Ji,1 denote 
the one that is transmitted first. Analogously, let Ji,2 
denote the one that is transmitted second, and so on. The 
number of replicas transmitted for each message of Ji is 
nreplicas(Ji), and the time between the start of 
transmission of Ji,j until the start of transmission of Ji,j+1 
is denoted as Δi,j. Figure 2 illustrates these concepts for 
the case when all messages request to transmit    
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Δ1,1=6 Δ1,2=16 Δ1,3=16

Δ2,1=8 Δ2,2=18 Δ2,3=8 
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time 

Fig. 2. Transmission of replicas with a possible assignment of Δ:s to messages. J1, J2, J3, J4 
requested to transmit simultaneously at time 0. As it can be seen, at least one replica is 
collision-free. It turns out that for every possible combination of times of requests of 
J1, J2, J3, J4 this is true as well. 

Message arrival Replica transmission 
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simultaneously. We let Ji,1 be transmitted immediately 
when Ji is requested to be transmitted. For convenience, 
we assume in this section (Section 2) that prop = 0 and 
this is known to the MAC protocol. In Section 5, we will 
discuss a simple technique to extend the results to the 
case where  prop > 0.  

We will now reason about how to select nreplicas(Ji) 
and then select Δi,j. It is necessary to select 
nreplicas(Ji) ≥ m because otherwise there is a topology 
for which it is possible that all replicas of Ji collide. To 
see this, consider m nodes where one central node Nk has 
ingoing links from all other nodes; one of these other 
nodes is node Ni. There is also a link from Nk to Ni. Let 
us now consider the case where Ni broadcasts its 
replicas. Let Nl denote any other node than Nk and Ni. 
The first message transmission of Jl can happen at any 
time, so it can collide with one of the replicas from Ji. 
Analogously, the first replica of another message Jl can 
collide with another replica of Ji. In addition, the first 
replica from Jk can occur any time too, so this first 
replica can be transmitted when Ji sends a replica to Nk. 
Then Nk will not hear the replica from Ji Hence, if Ji 
transmits nreplicas(Ji) < m replicas, it can happen that 
none of them are received at node Nk. Therefore, 
nreplicas(Ji) must be selected such that: 

( ) mJnreplicas i ≥   

Later in this section, we will select Δi,j such that at 
most one replica from Ji can collide with a replica of Jl. 
With such an assignment of Δi,j, the assignment of 
nreplicas(Ji) is as follows: 

{ } ( ) mJnreplicasmi i =∈∀ :,..,1  (1) 

Having selected nreplicas(Ji) = m, the issue of 
selecting �i,j will now be considered. Clearly, since a 
node i transmits nreplicas(Ji) replicas, it is necessary to 
specify nreplicas(Ji) – 1 values of �i,j for node i. 
Consider the time span starting from when an application 
requests to transmit on a node until the last replica has 
finished its transmission on that node. The maximum 
duration of this time span over all nodes is z (as 
mentioned in Section 2.1). Figure 2 illustrates this. 
Clearly, we wish to minimize z. This can be formulated 
as a mixed linear/quadratic optimization problem. 
Therefore, the objective is to minimize z subject to: 

{ }
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and (1), and subject to an additional third constraint that 
will be described now. Let u and v denote the indices of 
two nodes that may transmit. Hence, u and v belong to 
the set {1..m}. Let ju and jv denote the indices of the first 
replica of the sequence of replicas transmitted in nodes 
Nu and Nv, respectively. Hence ju belongs to 
{1..nreplicas(Ju)–1} and jv belongs to {1..nreplicas(Jv)–
1}. Let lu and lv denote the lengths of these subsequences 
in terms of the number of replicas. lu should be selected 
such that ju + (lu - 1) ≤ nreplicas(Ju) – 1. Analogous for 
lv. Hence, lu belongs to {1.. nreplicas(Ju) – ju} and lv 
belongs to {1.. nreplicas(Jv) – jv}. We say that a 
combination of u, v, ju, jv, lu, lv is valid if: (i) these 6 



variables are within their ranges; and 
(ii) u ≠ v ∧ (ju ≠ jv ∨ lu ≠ lv). For every valid combination 
of u, v, ju, jv, lu, lv, the optimization problem must respect 
the following constraint: 
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Intuitively, (3) states that there is no sum of 
consecutive Δ:s on node u which is equal to a 
consecutive sum of Δ:s on node v. In addition, the 
difference is larger than 2; this implies that it is enough 
to be sure that there is no collision. (To understand why 
the difference must be 2, consider the following system: 
m = 2, nreplicas(J1) = 2 and nreplicas(J2) = 2 and Δ1,1 = 
2 and Δ2,1 = 3.98, and J1 arrives at time 0.99 and J2 
arrives at time 0. Then the first replica of J1 and J2 will 
collide, and the second replicas of J1 and J2 will collide 
as well. One can see that the sum of Δ:s must differ by 
the duration of two.). 

Therefore, (3) states that at most one replica from 
node u can collide with a replica from node v. Hence, of 
those nreplicas(Ju) replicas sent from node u, at most 
m – 1 of them can collide. Naturally, this permits stating 
Theorem 1 below. 

Theorem 1. If the differences between transmission 
start times of replicas are selected according to (1)-(3), 
then it holds that: (i) for every node i, at least one replica  
does not collide; and (ii) the time from when an 
application requests to transmit on node i until the last 
replica is transmitted on node i is at most z. 

Proof: Follows from the discussion above.    � 
We will now illustrate the use of (1)-(3) in 

Example 1. 
Example 1. Consider m = 4 to be solved using (1)-

(3). The solution that is obtained is as follows: 
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102010
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16166
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This is illustrated in Figure 2.      � 
It is easily perceived that the number of inequalities in 

(3) grows as O(m6). Hence, it is only possible to solve 
small problems with this approach. (There were 232 
constraints for m = 4 and 3411 constraints for m = 6. We 
used a modeling tool (AMPL [9]) and a back-end solver 
(LOQO [10]), and with these tools it was only possible 
to solve (1)-(3) for m ≤ 6.) Many interesting systems are 
larger though. For those systems the optimization 
problem phrased in (1)-(3) simply cannot be solved 
because the number of inequalities in (3) is too large. 
(The extended version of this paper [11] presents 

techniques that find Δ:s for m≤100 by trading off the 
optimality of z. ) 

3 Sporadic Message Streams 

Let us now consider that traffic is characterized by the 
sporadic model [12]. Each node has exactly one message 
stream. Node Ni is assigned the message stream τi. This 
message stream makes an infinite sequence of requests, 
and for each request, the message stream requests to 
transmit a message. The exact time of a request is 
unknown before run-time and the MAC protocol only 
knows about the time of the request when it occurs. But 
for every message stream τi there is at least Ti time units 
between two consecutive requests in τi and the MAC 
protocol knows all Ti. For every such request, the MAC 
protocol must finish the transmission of one replica of a 
message from stream τi without collisions at most Ti time 
units after the request. If this is the case, then we say that 
deadlines are met; otherwise a deadline is missed. 
Naturally, we assume 0 ≤ Ti. 

From Section 2.3 it results that the maximum time it 
takes from when a message requests to send until the 
MAC protocol has transmitted a collision-free replica is 
z, if a message stream only makes a single request. 
Based on this, it would be tempting to think that if 
∀i∈{1..m}: z ≤ Ti then all deadlines are met. 
Unfortunately, this is false, as illustrated by Figure 3, 
even if T1 = T2 = T2 = … = Tm . A correct schedulability 
analysis is given now. 

Let wi be defined as: 
( )

1
1

1
, +Δ= ∑

−

=

inreplicas

j
jiiw

τ
 (4) 

Theorem 2. If (Δ:s satisfy (1)-(3))∧(wi is computed 
according to (4))∧(wi≤Ti)∧(∀k,k≠i:wi≤Tk-wk-1) then 
every message released from τi transmits at least one 
replica collision-free at most Ti time units after the 
message transmission request occurred. 

Proof: Follows from the fact that during a time 
interval of duration Tk - wk - 1, message stream τk can 
release at most one message.      � 

4 Implementation and Experiments 

Having seen that the replication scheme can guarantee 
that at least one replica is collision-free in theory, we 
now turn to practice. We want to test the following 
hypotheses: 

1. The replication scheme is easy to implement. 
2. The number of lost or corrupted messages at the 

receiver is smaller when the replication scheme in 
this paper is used, as compared to a replication 
scheme with random pauses. This applies even if 
the random scheme transmits only a single replica 
per message. 



time

τ1

τ2

τ3

τ4

Fig. 3. Consider Δ:s that are selected based on the assumption a transmission request on a node occurs at 
most once. If these Δ:s are used for sporadic message streams with T1 = T2 = T3 = T4 = z then a deadline miss 
can occur. All replicas from τ4 collide and τ4 misses its deadline. 

3. The replication scheme guarantees that for each 
message, at least one replica is indeed collision-
free. 

4. If a link is bidirectional then our replication 
scheme can be extended so that it still offers a 
bounded number of collisions but it also has a low 
average-case overhead. 

In order to test these hypotheses, we implement the 
replication protocol both on a real platform and use 
simulation (for details, see [11]). The following sections 
describe the implementation, experimental setup and 
results obtained. For these experiments, we used more 
than 6 computer nodes and hence the optimal algorithm 
described in Section 2.3. could not be used. We 
developed a heuristic algorithm (see [11]) for assigning 
Δ:s such that (1)-(3) are satisfied. 

4.1 Implementation and Experimental Setup 

The replication protocol was implemented on the 
MicaZ platform [13] and this implementation was 
dubbed HYDRA. MicaZ is a platform offering a low 
power microcontroller, 128 Kbytes of program flash 
memory and an IEEE 802.15.4 compliant radio 
transceiver, capable of 250 kbps data rate. The MicaZ 
supports running TinyOS [14] an open-source operating 
system. This platform was found to be attractive for the 
implementation of our experiments because of some 
particularly relevant characteristics: (i) it allowed us to 
replace the MAC protocol; (ii) the timers available 
where reasonably precise for our application; (iii) the 
radio transceiver makes automatic CRC checks and 
inserts a flag indicating the result of this check along 
with the packet, and (iv) the spread spectrum modulation 
used makes data frames resistant to noise and distortion. 

Hence, collisions due to medium access are the main 
source of lost frames or corrupted frames. 

The experimental application setup consisted of one 
receiving node and a many sending nodes. Efforts where 
made such that the experiments took place under a 
similar, noise-free, environment. The sending nodes send 
messages with sequence numbers so that the receiving 
node detects when a message has been lost. Additionally, 
the receiver collected other statistics, such as total 
number of replicas and redundant replicas received (by 
redundant replicas we mean replicas for which a 
previous replica of the same message has already been 
received). The time to transmit a replica is 928μs. So, we 
let one time unit represent 1 ms to improve robustness 
against propagation delay and clock inaccuracy. 

First, to acquire the probability that a replica is not 
correctly received (this is due to noise or distortion), we 
set up a scenario with one sending node (N1) and one 
receiving node (N2). Node N1 transmitted 2 replicas per 
message and N2 gathered statistics on the number of 
received replicas. We obtained that the probability of 
having a replica lost is approximately 0.002737%. If the 
events “a replica is lost” were independent, we would 
expect that the probability that two consecutive replicas 
are lost is 0.000027372. Hence we would expect the 
probability that a message was lost is 0.000027372 as 
well. However, we observed a 0.00153% probability for 
messages loss; this indicates that errors are correlated, 
which was expected. 

After that, we ran experiments with different number 
of nodes, for three different MAC protocols: (i) one 
where we use our scheme with deterministic Δ:s 
(HYDRA);  (ii) another where we used a similar scheme, 
but where the Δ:s were random variables within an 
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Fig. 4. Message loss ratio in simulation 

interval between 1 ms and (Ti − 1)/(nreplicas(τi) − 1) 
time units, which was named Random HYDRA 
(RHYDRA) and (iii) finally a third MAC protocol where 
only one replica is sent at a random time within the 
interval [0, Ti − 1] time units after the message was 
requested, which will be referred to as Random MAC 
(RMAC). The Δ:s were obtained from a close-to-optimal 
algorithm (see [11] for details). From these Δ:s, we 
derived z and Ti. The application on Ni generated 
message transmission requests such that the time 
between two consequtive requests is a uniform random 
variable with minimum Ti and maximum Ti × 1.25.  

The experiments where performed until each node 
transmitted 100000 messages, for m = 2 and m = 4. The 
resulting message loss rate is shown in Figure 5, which 
is presented in a logarithmic scale. By these results, we 
can observe that HYDRA obtained a message loss rate 
always better to the replica loss rate (0.002737%) 
previously obtained, indicating that noise was the cause 
for application message loss. 

Performing statistically significant experiments with 
the actual implementations was very time consuming. 
Therefore, in order to test our protocol further, a 
simulation model for the protocol in OMNeT++ [15] was 
implemented. With this model we study the message loss 
ratio for different numbers of nodes with HYDRA, 
RHYDRA and RMAC (see [11] for details). The 
simulator assumes that replicas cannot get lost or 
corrupted due to noise, but it does model collisions 
which is the only source of lost messages.  

All simulations were executed for a length of 10 
simulated hours. For simulations involving random 
numbers generation, several independent runs were 
executed to verify the statistical validity of the results. 
The results of the simulations are given in Figure 4 with 
respective error bars which are mostly not visible due to 
the small variation found throughout the simulation runs. 

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

2 4
m

m
es

sa
ge

 lo
ss

 p
ro

ba
bi

lit
y

HYDRA

RHYDRA

RMAC

 
Fig. 5. Message loss ratio of experiments 

with MicaZ platforms 
Observe that the application message loss for the scheme 
using deterministic Δ:s is always zero. This is expected 
as the simulation only models collisions, no noise in 
transmission was introduced, whereas the other schemes 
suffer from application message loss.  

4.2 Support of Hypotheses 

§Hypothesis 1. In order to test Hypothesis 1 the time 
required to implement HYDRA was measured. We spent 
approximately 3 days on implementing the protocol. 
Almost a third of this time was spent on getting familiar 
with the platform details. The time for coding the 
protocol was less than a day and we encountered no 
relevant bugs that were related to the implementation of 
the protocol. However, we encountered and fixed some 
bugs related to the platform. This suggests that 
Hypothesis 1 withstood our test. 

§Hypothesis 2. The experiments presented in 
Section 4.1. corroborate Hypothesis 2. 

§Hypothesis 3. Testing Hypothesis 3 is difficult 
because it is difficult to know if a lost frame is due to a 
collision or due to noise/distortion. Corrupt CRC may be 
because of noise or it may be because of collisions. 
Based on the experiments with the actual 
implementation of HYDRA in Section 4.1, it results that 
the number of lost messages is less than the probability 
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Fig. 6. The frequency of the number of necessary replicas and variation of the number of redundant replicas with m. 

 
of a single message with a single sender being lost; this 
corroborates our hypothesis that the implementation of 
our protocol indeed guarantees that at least one replica is 
collision-free. Furthermore, we have run simulations 
during a period of 100 simulated hours for the scheme 
using deterministic Δ:s for 2 ≤ m ≤ 8 and found that no 
application messages were lost during these simulation 
runs. This suggests that Hypothesis 3 withstood our test. 

§Hypothesis 4. In order to test Hypothesis 4, we 
considered the simulation experiments used to test 
Hypothesis 3 and acquired both the frequency of the 
number of replicas necessary until the first replica is 
transmitted without collision (Figure 6a) and the number 
of redundant replicas for 2 ≤ m ≤ 8 (Figure 6b). Observe, 
in Figure 6b, that for the case with m = 8 we obtain that 
approximately 84% of the first replicas of a message are 
collision-free. Hence, if most (but not all) links are 
bidirectional and we would have used a scheme where 
the receiver sends an acknowledgement when it receives 
the first successful replica then in approximately 84% of 
the cases the sender Ns only needs to send one replica. 
Hence, in 84% of the cases, Ns can send 7 non real-time 
messages instead of the replicas that Ns would normally 
send. This discussion supports, Hypothesis 4.  

In order for the acknowledgement scheme described 
above to be efficient, it is necessary that the time 
required to send acknowledgements is negligible. 
Nonetheless, it could easily been the case by using 
longer packets (say 1500 bytes) for data and short 
packets (say 20 bytes) for the acknowledgements. But 
unfortunately this is not supported by our experimental 
platform so we did not implement it. 

5 Discussion and Previous Work 

Bidirectional links are useful for MAC and routing 
protocols. Let us categorize a MAC protocol based on 
whether it can suffer from collisions. If it can suffer from 
collisions then a sender typically retransmits data 
packets until it receives an acknowledgement from the 
intended receiver. Typically the data and the 
acknowledgement are transmitted on the same link, so 
this requires bidirectional links. This is exemplified by 
ALOHA [16] and some CSMA/CA protocols. MAC 

protocols that are collision-free typically rely on that 
senders receive feedback from the intended receiver. 
Some protocols, such as MACA [17] do this using an 
RTS/CTS exchange before the data packet is sent. In 
other protocols, a receiver sends a busy tone when it 
receives a packet and other senders can hear it, thus 
avoiding a collision. Common to all these MAC 
protocols is that they depend on bidirectional links. 
Routing algorithms also typically assume that links are 
bidirectional, being one notable exception the Dynamic 
Source Routing (DSR) [18]. We can conclude that the 
current communication protocols are heavily dependent 
on bidirectional links. 

Unfortunately, unidirectional links are not rare and 
they are caused by a variety of reasons such as: 
(i) differences in antenna and transceivers even from the 
same type of devices; (ii) differences in the voltage 
levels due to different amounts of stored energy in the 
battery; (iii) different properties of the medium in 
different directions (anisotropic medium) and (iv) 
different interferences from neighboring nodes. 

Given that protocol stacks tend to be implemented 
based on the assumption that unidirectional links do not 
exist, three techniques have been used to "hide" the 
unidirectional links: (i) tunneling; (ii) blacklisting 
and (iii) transmission power increase. If a link from 
node u to v is unidirectional, the tunneling approach 
attempts to find a path from v to u and give higher level 
protocols the illusion of a link from v to u. In order to 
achieve this, some routing functionality has to be 
performed at the lower layers of the protocol stack [19]. 
Packets sent across the tunnel have larger delays because 
they have to cross several hops. This is not too important 
though, because often the tunnel is used only for 
acknowledgements to packets that were sent across the 
unidirectional link. It is important however to avoid the 
ACK explosion [20]. Consider a unidirectional link from 
node Nu to node Nv. Consider also that there is a path 
from Nv to Nu. A data message has been sent across the 
link Nu to Nv and now the node Nv should send an ACK 
across the path back to Nu. However, the path from Nv to 
Nu contains a unidirectional link too. This link is from 
node Nx to Ny. When a packet has crossed the hop from 



Nx to Ny, node Ny should send an ACK to Nx. In order to 
do this, it may have to find a path to Nx. It is possible that 
the path from Ny to Nx uses the link from Nu to Nv. This 
may generate an ACK from Nu to Nv and this process 
continues forever. 

The technique of blacklisting detects unidirectional 
links when sending data messages, and does not use 
them in the future. The technique "hello" is similar but 
here “hello” messages are exchanged so a node i knows 
about the existence of a neighbor and whether they can 
hear i. This exchange is periodic and occurs regardless of 
whether the nodes are involved in routing data traffic or 
not. These techniques are sometimes called ignoring [21] 
or check symmetry [6]. Yet another technique to ignore 
unidirectional links is to treat it as a fault. This technique 
has been applied in conjunction with Ad-hoc On-
Demand Distance Vector Routing (AODV) and it works 
as follows. When a source node attempts to find a route 
to the destination, it floods the network with Route-
Request (RREQ) packets. In the normal AODV when 
RREQ packet reaches a node which knows a route to the 
destination, this node sends Route Reply (RREP) back 
on the same paths as the RREQ was sent on. With the 
normal AODV, RREP would fail on unidirectional links 
but instead this technique attempts to find a new path 
back to the source. When it finds a node with RREQ it 
knows a route back to the source node [22]. A similar 
scheme was proposed in [6] called Bidirectional 
flooding. Another technique (which we call 
“transmission power increase”) permits a downstream 
node of a unidirectional link to temporarily increase its 
power for sending responses such as acknowledgements 
and clear-to-send [23]. This technique is based on the 
sender to piggyback its geographical position obtained 
by GPS and the receiver should use this information to 
calculate the distance, which in turn is used to know how 
much the transmission power should be increased. We 
think the idea of increasing transmission power is 
interesting but in [23] the authors do neither give any 
details on how this increase transmission power is 
computed nor state the assumed path loss. Common to 
these techniques is that they require no or minimal 
changes to routing protocols. 

Several routing algorithms have been proposed for 
unidirectional links. A common challenge that faces 
routing with unidirectional links is knowledge 
asymmetry; that is, if a link from u to v is unidirectional, 
only v can detect the existence of the link (by hearing a 
broadcast from u) but u is the one that will use the 
knowledge of the link for routing purposes. One 
technique builds on distance vector. The classic distance 
vector algorithm maintains a vector at each node and this 
vector stores the hop count to every other node Ni and 
the next node that should be used for forwarding to this 
node Ni (sometimes a sequence number is added too; it is 
used for updates). 

Consider a node Nu with a neighbor Nv. Node Nv 
knows a route to node Nw. The number of hops from Nu 
to Nw is no larger than the number of hops from Nv to Nw 
plus one. If the link Nu to Nv is bidirectional this fact can 
be easily exploited in the design of a routing protocol 
because the length of the route Nv to Nw can simply be 
communicated over one hop to Nu. However, if the link 
Nu to Nv is unidirectional this is more challenging. 

One extension of distance vector [21] however stores 
all distance vectors of all nodes in the network (hence it 
requires O(m2) storage). Another extension [24] sends 
information "downstream" until every node knows a 
circuit to itself. The node selects the shortest circuit and 
informs its upstream neighbors, and then the standard 
distance vector algorithm is used. Other techniques [19, 
25] and [26] disseminate link state information across a 
limited number of hops. This is based on the assumption 
that the reverse path of a unidirectional link is short and 
this assumption has been supported empirically [19]. 

Pure link-state routing disseminates the topology 
information to all nodes and then the routes are 
calculated. This avoids the problem of asymmetric 
information (mentioned earlier) but the overhead of this 
scheme is large already. 

In order to reduce the routing cost in networks with 
unidirectional links, it has been suggested that a subset 
of nodes should be selected and only they should 
maintain routing information about all nodes in the 
network. It is required that all nodes which are not in this 
subset have a link from the subset and a link to the 
subset. Algorithms for selecting this subset of nodes 
have been proposed and they have very low 
overhead [27].  

It has often been pointed out that unidirectional links 
should be avoided altogether because existing MAC 
protocols cannot deal with them (as we already 
mentioned, MACA, which was the basis for the 
RTS/CTS exchange in IEEE 802.11, relies on 
bidirectional links). But recently, this view has been 
challenged. For example [28] mentioned that their 
routing protocol works well for multicast and that it 
could be used for unicast routing as well – if there was a 
MAC protocol for unidirectional links. 

To the best of our knowledge, the only previous MAC 
protocol that work for unidirectional links require 
synchronized clocks and it suffers from (an unbounded 
number of) collisions [8]. The technique in [8] addresses 
medium access control on unidirectional links. The 
technique generates pseudo-random numbers on each 
node and these numbers act as priorities. Every node 
knows the seed of the pseudo-random numbers on other 
nodes and hence a node knows if it has a higher priority 
than its neighbors. If it has, then it is the winner; 
otherwise it is not a winner. If it is a winner then it 
transmits in that time slot. Every new time slot, a new 
pseudo-random number is generated. This protocol is 
designed to deal with hidden nodes in the following     



 

way: if a node Ni has a neighbor with higher priority 
two hops way then node Ni simply does not transmit. 
This scheme is collision-free but it depends on 
synchronized clocks. Our protocol does not require 
that. 

In the theory we assumed that prop = 0. We can 
easily extend the theory for the case when prop > 0. 
We can do it as follows. Select the time unit such that 
(1−prop) is the time it takes to transmit a replica. 
Hence, if prop = 1μs and the time to transmit a replica 
is 1 ms, then let 1.001 ms denote a time unit. 

In this paper, we assumed topology is not known. 
However, if the topology is known we can perform 
significantly better (assuming that we also know the 
interference graph). Every node in the topology graph 
also exists in the interference graph. The links in the 
interference graph are non-directed. The links in the 
interference graph cannot simply be computed from the 
topology graph. However, there are some links in the 
interference graph that are necessary. Consider two 
nodes in the topology graph Ni and Nj. If there is a link 
from Ni to Nj or from Nj to Ni, then there is a link 
between Ni and Nj in the interference graph as well. If 
there is a node Nk with a link from Ni to Nk and a link 
from Nj to Nk then there is a link between Ni and Nj in 
the interference graph as well. From the interference 
graph, it is possible calculate Δ:s that cause a 
significant decrease in the overhead. This is illustrated 
in Example 2. 

Example 2. Consider m = 13 nodes ordered in a line 
such that every node with an even index has two 
outgoing links; node i has a link to node i-1 and node 
i+1. This is illustrated in Figure 7a. If the topology is 
unknown, then we must assume that all 13 nodes can 
transmit simultaneously and can collide. A solution to 
(1),(2),(3) in Section 2.3 is the following Δ:s: 
Δ1 = 22, Δ2=26, Δ3 = 34, Δ4 = 38, Δ5 = 46, 
Δ6 = 58,  Δ7 = 62, Δ8 = 74, Δ9 = 82, Δ10 = 86, Δ11 = 94, 
Δ12 = 106, Δ13 = 118 and z = 1417. From the 

interference graph shown in Figure 7b, we observe that 
every node has at most 4 links. This gives us m = 5, 
and we calculate the following Δ:s:  6, 10, 14, 22, 26. 
Now we can assign Δ1 = 6, Δ2 = 10, Δ3 = 14, Δ4 = 22, 
Δ5 = 26, Δ6 = 6, Δ7 = 10, Δ8 = 14, Δ9 = 22, Δ10 = 26, 
Δ11 = 6, Δ12 = 10, Δ13 = 14. Observe that we reuse Δ:s 
and this does not cause any collisions. In this way, we 
obtain z = 105, which is significantly lower.   � 

In general this requires solving the problem 
Achromatic Number which is known to be NP-hard 
(see page 191 in [29]) but several approximation 
algorithms are available. We can see from Figure 7 that 
z is unaffected by the size of the network; only the 
number of neighbors 2-hops away matters. Hence, this 
approach is efficient in large networks if they are not 
dense. 

  

(a) Connectivity graph. 

(b) Interference graph. 

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12 

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12 

(a) Topology graph

(b) Interference graph 

Fig. 7. An example of how the performance of our MAC 
protocol can be significantly improved if the topology is known. 

6 Conclusions 

We have presented the first MAC protocol that can 
guarantee that the time from when an application 
requests to transmit until the message is transmitted is 
bounded even in the presence of unidirectional links 
and without using synchronized clocks or taking 
advantage of topology knowledge. We have 
implemented the protocol and observed that: (i) the 
effort required to implement it is small; (ii) by 
observing the number of lost messages we found that 
the implementation guaranteed that at least one replica 
of a message is collision-free and (iii) the number of 
lost messages at the receiver is significantly lower 
using our protocol than a replication scheme with 
random delays between replicas. We also run a scheme 
with random time for transmission with only one 
replica. We expect such a scheme to perform similarly 
to ALOHA [16], and we found that our protocol 
performed significantly better. 
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