

Considerations on the Least Upper Bound for
Mixed-Criticality Real-Time Systems

Conference Paper

*CISTER Research Center

CISTER-TR-151102

2015/11/03

J. Augusto Santos-Jr.

George Lima

Konstantinos Bletsas*

Conference Paper CISTER-TR-151102 Considerations on the Least Upper Bound for ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Considerations on the Least Upper Bound for Mixed-Criticality Real-Time Systems

J. Augusto Santos-Jr., George Lima, Konstantinos Bletsas*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: ksbs@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Real-time mixed-criticality systems (MCS) are designed so that tasks with different criticality levels share the same
computing platform. Scheduling mechanisms must ensure that high criticality tasks are safe independently of
lower criticality tasks’ behaviour. In this paper we provide theoretical schedulability properties for MCS by showing
that: (a) the least upper bound on processor utilisation of MCS is in general null for both uniprocessor and
multiprocessor platforms; (b) this bound lies in interval [ln 2, 2(√2−1)] if higher criticality tasks do not have
periods larger than lower criticality ones; and (c) if the task of these uniprocessor systems have harmonic periods,
the least upper bound reaches 1.

Considerations on the Least Upper Bound for

Mixed-Criticality Real-Time Systems

J. Augusto Santos-Jr. and George Lima

Distributed Systems Laboratory (LaSiD)

Federal University of Bahia (UFBA)

Salvador-Bahia, Brazil

Email: {jamjunior,gmlima}@ufba.br

Konstantinos Bletsas

CISTER/INESC-TEC Research Centre, ISEP/IPP

Porto, Portugal

Email: ksbs@isep.ipp.pt

Abstract—Real-time mixed-criticality systems (MCS) are de-
signed so that tasks with different criticality levels share the same
computing platform. Scheduling mechanisms must ensure that
high criticality tasks are safe independently of lower criticality
tasks’ behaviour. In this paper we provide theoretical schedula-
bility properties for MCS by showing that: (a) the least upper
bound on processor utilisation of MCS is in general null for both
uniprocessor and multiprocessor platforms; (b) this bound lies
in interval [ln 2, 2(

√

2−1)] if higher criticality tasks do not have
periods larger than lower criticality ones; and (c) if the task
of these uniprocessor systems have harmonic periods, the least
upper bound reaches 1.

I. INTRODUCTION

A real-time embedded system may consist of components

associated with different levels of criticality. For example,

take the domain of unmanned aerial vehicles (UAV). Their

on-board system functionalities are specified in terms of

two criticality levels. At level 1, there are mission-critical

components, which are associated with image acquisition, data

transfer to base station, surveillance objectives etc. The most

critical functionality are at criticality level 2, where the com-

ponents must ensure a safe flight. Flight permission is given

only after Certification Authorities (CA) ensure that level-2

functionalities are safe whereas designers are responsible for

ensuring the correctness of mission-critical functionalities.

The design of such real-time embedded systems usually

requires that system components are partitioned according

to their criticality so that the safety of higher criticality

components are preserved independently of the behaviour of

lower criticality ones. If physical partitioning is employed,

higher design costs may be in place since under this strategy

computing resources are not shared, which causes excessive

over-provisioning. On the other hand, if the same hardware

platform is shared by the system components, one must

guarantee that the correctness of higher criticality components

are not at stake by the behaviour of lower criticality ones.

Systems designed according to this latter partitioning strategy

are known as mixed-criticality systems (MSC).

This work was supported by CNPq (grant number 456193/2014-6), CAPES (grant number 99999.005354/2014-05),

and National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by ERDF

(European Regional Development Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER).

Also by FCT/MEC and the EU ARTEMIS JU within projects ARTEMIS/0001/2013 - JU grant number 621429 (EMC2).

Mixed-criticality systems have recently been subject to

considerable research efforts [1]. Indeed, several systems com-

monly found in the automotive and aerospace industries are

evolving to adopt the concept of MCS with the aim of opti-

mizing non-functional requirements such as cost, weight, size,

energy consumption etc. One of the parameters usually taken

into consideration by the research community and industry is

the worst-case execution time (WCET) of the system tasks. CA

have their own tools, methods and mechanisms to determine

WCET values of critical components, which are then used

for certification purposes. Designers may take advantage of

the fact that these estimates are usually too conservative for

implementing less critical components on the same platform.

Each task of such a mixed-criticality system is then specified

in terms of possibly two or more WCET estimates each one

with a degree of conservativeness. If the system behaves

as assumed by the designers, schedulability of the whole

system is preserved. Otherwise, scheduling mechanisms must

guarantee temporal correctness of high criticality level tasks,

as required by CA, possibly canceling the execution of low

criticality tasks. Indeed, scheduling policies and schedulability

analysis play a central role in the design of MCS.

After briefly reviewing recent results in the field of MCS

scheduling in Section II, we address this issue by deriving

theoretical properties of MCS schedulability in terms of least

utilisation bounds. These serve as a way of determining

whether or not a given system will be correctly scheduled

when subject to a scheduling algorithm. The precise defini-

tion used in the paper is given in Section III, which also

presents the system model we adopted. We then show in

Section IV a negative result stating that the least processor

utilisation of MCS can be as low as zero. This holds for both

uniprocessor and multiprocessor platforms. Then in Section

V we identify conditions under which MCS exhibits positive

processor utilisation bounds. More specifically, we show that

the least utilisation bound of uniprocessor MCS for which

higher criticality tasks do not have periods larger than lower

criticality ones lies in interval [ln 2, 2(
√
2 − 1)]. Further, we

show that if the task of these uniprocessor systems have

harmonic periods, the least upper bound on their processor

utilisation reaches 100%. We finish the paper presenting our

final comments in Section VI.

II. RELATED WORK

The mixed criticality scheduling problem was initially ad-

dressed by Vestal [2], who described an approach based on

fixed-priority scheduling (FPS). With the focus on uniproces-

sor periodic task systems, this work has shown that the Rate-

Monotonic priority assignment (RM) [3] is not optimal for

MCS, being Audsley’s optimal priority assignment algorithm

[4] more suitable for this kind of system.

Baruah and Vestal [5] have extended Vestal’s model by

considering sporadic tasks. They have shown that the Earliest

Deadline First (EDF) scheduling policy [3] does not dominate

FP (and vice-versa) in MCS by exhibiting feasible systems

that cannot be scheduled by EDF (respectively, FPS) whereas

they can be scheduled by FPS (respectively, EDF).

Later on it has been shown that the mixed-criticality

scheduling problem is strongly NP-Hard [6], [7], [8], which

implies that only sufficient rather than exact analysis is pos-

sible. Since then several pieces of work in the field have

been focusing on deriving scheduling strategies with a good

average behaviour either on uniprocessors [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18] or, more recently, considering

multiprocessor platforms [19], [20], [19], [21], [22]. The

reader may refer to [1] for a good source of information about

recent developments in the area.

In this paper we rather focus on deriving utilisation bounds

for MCS. Both uniprocessor and multiprocessor platforms are

considered. Usually, schedulability limits for MCS are given

in terms of speed-up factor, which represents the increase in

processing resources for a given system be schedulable in

comparison with an optimal scheduling approach. Although

such a schedulability characterization is useful, it does not give

a direct connection with the schedulability of a given system

implemented on a given computing platform. To the best of our

knowledge, studying the mixed-criticality scheduling problem

in terms of utilisation bounds has not been carried out before.

III. SYSTEM MODEL

In this section we describe our system model which is

based on the Mixed Criticality System (MCS) model proposed

by Vestal [2] and explored by Baruah [5] and others, as

generalised for multiple criticality levels. We consider a MCS

composed of a set Γ of N independent implicit-deadline

sporadic tasks to be scheduled on M identical processors.

Any task τi releases a possibly infinite sequence of jobs. As

usual, we make the simplifying assumption considering that

preemption and migration costs can be neglected. Since our

focus is on deriving schedulability bounds, this simplification

does not restrict the results presented in this paper. Indeed,

the processor utilisation bound for a given system is certainly

lower when migration/preemption costs are considered.

Each task τi is associated to a pre-specified criticality level.

Task τi is represented by the tuple (
−→
Ci, Ti, Li), where

−→
Ci =

[Ci[1], . . . , Ci[Li]] is a vector of computation times for each

criticality level, Ti is the minimum interarrival time between

two successive jobs by the task and Li ∈ {1, . . . ,L} is its

criticality, where L is the number of criticality levels of the

considered system. In this document Ti may also be called

the period of task τi for convenience. For any two criticality

levels k and l with k < l 6 Li, it holds that Ci[l] > Ci[k];
in other words, WCET estimates for the same task are more

pessimistic at higher criticality levels. We assume that no task

τi executes for more than Ci[Li] 6 Ti time units.

We assume that system starts executing in criticality 1,

that is, all its tasks always start to execute at the lowest

criticality level. At run-time the criticality may increase. A

MCS composed of a set of tasks Γ is said to be in criticality

k > 1 if no job of any its task τi ∈ Γ has yet executed for

more than Ci[k] but at least one job by some τi has executed

for more than Ci[k − 1].
Under the MCS assumed in this paper, and consistently with

Vestal’s model, it is necessary to offer guarantees for tasks

with criticality level k or higher when the system is running

in criticality k. That is, when analysing the system in criticality

k, one has to consider only tasks with criticality k or higher.

The schedulability of lower criticality tasks are not taken into

consideration, as the definition below states:

Definition 1 (MCS Schedulability): A task set Γ of a MCS

with L criticality levels is schedulable in criticality k if there is

an algorithm capable of scheduling Γ such that (i) no task in Γ
with criticality k or higher misses its deadline when the system

runs in criticality k and (ii) additionally, for the case that

k < L, no task in Γ with criticality k+1 or higher misses its

deadline when the system runs in criticality k + 1. Further, if

Γ is schedulable in all criticality levels k ∈ {1, . . . ,L}, Γ is

said to be schedulable.

It is worth observing that the above definition takes into

consideration criticality level changes, when the system runs in

criticality k and goes to level k+1. This is important because

when running at level k, enough computing resources must be

available to take care of a possible change to criticality k+1,

which is defined in terms of more pessimistic estimates for

WCET, as we now illustrate:

Example 1: Let Γ = {τ1 = ([1], 2, 1), τ2 = ([2, 10], 10, 2)}
be a task set to be scheduled on M = 1 processor.

According to Definition 1, Γ given in this example is not

schedulable although {τ1, τ2} and {τ2} could be feasibly

scheduled if one independently considered criticality levels 1

and 2, respectively, which is illustrated in Figure 1(a) and

Figure 1(b). As can be noticed, a schedule of this MCS in

criticality 1 should take into consideration the execution of 5

jobs of τ1 within any time interval of size 10; otherwise there

would missed deadlines. More specifically, each of these jobs

must execute within an interval of size 2, as illustrated in

the Figure 1(a). Considering the system in criticality 2, since

there is no slack time available, τ2 should execute without

preemption. The problem arrises when analysing a possible

mode change, from criticality 1 to criticality 2. Deciding to

schedule the first job of τ1 before that of τ2, this latter misses

its deadline if the system goes to criticality 2, a scenario

illustrated in Figure 1(c). Scheduling the execution of τ2 before

that of τ1 does not work either: τ1 would miss its deadline if

the system is kept at criticality level 1.

τ1τ1τ1

τ2τ2 τ2

(a) System in criticality 1 (b) System in criticality 2 (c) Criticality change: τ2 misses its deadline

000 222 444 666 888 101010 timetimetime

Fig. 1. Possible schedules for Example 1, an unschedulable MCS: (a) feasible schedule in criticality 1; (b) feasible schedule in criticality 2; (c) infeasible
schedule when criticality changes at time 4. Solid gray boxes represent task execution whereas dashed white boxes indicate task cancelations.

The processor utilisation of a task τi for single-criticality

task sets is usually defined as U(τi)
def
= Ci

Ti

. And the total

system utilisation for a single-criticality task set Γ is the

sum of all task utilisations, U(Γ)
def
=

∑

τi∈Γ U(τi). For

convenience, we extend these definitions for mixed-criticality

systems. The utilisation of task τi in criticality k is denoted

Uk(τi)
def
=

{
Ci[k]
Ti

if k 6 Li

0 otherwise

which makes it possible to denote the system utilisation in a

given criticality as

Uk(Γ)
def
=

N∑

i=1

Uk(τi)

For the sake of notation, we consider that L = 1 for

single-criticality systems. This allows us to consistently denote

U1(τi) and U1(Γ) as the utilisation of single-criticality task

and system, respectively. For a given criticality k, we also

denote the set of system tasks with criticality greater than k

as

Hk def
= {∀τi ∈ Γ : Li > k}

In the literature for single-criticality scheduling, the Least

Upper Bound (LUB) on processor utilisation (or, simply, the

Least Utilisation Bound) is a traditional metric for evaluating

the scheduling potential of a given scheduling algorithm A.

Meaningful only in the case of implicit deadline tasks, the

LUB is defined as a threshold for the system utilisation

such that any system whose utilisation does not exceed that

threshold is guaranteed to be schedulable under algorithm

A. In this paper we extend (the use of) this metric for the

characterisation of scheduling performance of mixed criticality

systems, conforming to Vestal’s model:

Definition 2 (LUB): The Least Utilisation Bound in critical-

ity k ∈ {1, . . . ,L} for a task set Γ (LUB(k)) with L criticality

levels is a threshold such that if Uk(Γ) 6 LUB(k), then Γ is

schedulable in criticality k (according to Definition 1).

Two observations about the above definition must be made.

First, the concept of LUB generalises the usual definition of

LUB applied to single-criticality systems. If L = 1, it is

only required that all tasks in the system meet their deadlines

because the system would never be in criticality 2 (recall

Definition 1). Second, the above definition is not related to

a particular scheduling algorithm. Therefore, when we say

that LUB(k) = u, we are implicitly stating that there is

some scheduling algorithm capable of feasibly scheduling the

system into consideration Γ as long as Uk(Γ) 6 u. Defining

LUB independently of specific scheduling algorithms serves

for our purposes since we are interested in analysing the

properties of MCS and not those of the algorithms to schedule

them.

IV. NEGATIVE RESULTS

In this section characterize LUB(k) for each criticality level

k considering the MCS model previously defined. More specif-

ically, we show that LUB(k) = 0 for some k. Before showing

this negative result, we establish a necessary condition for

preserving schedulability on MCS.

Lemma 1: Assume that the system is in criticality k and may

reach criticality up to k + 1, where 1 6 k 6 L − 1. If a job

by τi ∈ Hk, released at instant t, does not execute for at least

Ci[k] time units during interval [t, t+Ti−(Ci[k+1]−Ci[k])]
when the system is in criticality k, then the job might not meet

its deadlines if the system reaches criticality k + 1.

Proof: Without loss of generality assume that τi ∈ Hk

arrives at time t, when the system is in criticality k, and that

the system switches to criticality k+1 at instant t′ = t+Ti−
(Ci[k+1]−Ci[k]). Also, assume that by this time the job has

executed for less than Ci[k]. Then, even if this job executes

continuously from t′ until completion, it misses its deadline if

it executes for its entire WCET in criticality k + 1.

The following two lemmas give negative results for multi-

processor and uniprocessor systems.

Lemma 2: An MCS composed of a set of periodic tasks Γ
and with M > 1 identical processors has LUB(k) = 0 for

some k ∈ {1, . . . ,L − 1} even if Γ is schedulable in any

criticality level greater than k.

Proof: We will construct an unschedulable system in

criticality k with M > 1 processors and N tasks, where

N = L = M + k and with system utilisation in criticality k

barely above zero. Let the system tasks be defined as follows:

([ǫ, . . . , ǫ, T ′ǫ] , T ′, i) , 1 6 i < N − M
︸ ︷︷ ︸

k−1 tasks with criticality <k

([T ′ǫ, . . . , T ′ǫ, C ′] , T ′, k) , i = k = N − M
︸ ︷︷ ︸

1 task with criticality =k






ǫ2, . . . , ǫ2, C ′′

︸︷︷︸

Ci[k]

, 1, . . . , 1



 , 1, i



 , N − M < i 6 N
︸ ︷︷ ︸

M tasks with criticality >k

where T ′ = 1 + ǫ, C ′ = 1, C ′′ = ǫ and ǫ ∈ (0, 0.5). Since

Hk contains M tasks, this system is clearly schedulable in M

processors when in criticality greater than k. We proceed to

show that τk may miss its deadline when the system runs in

criticality k.

Without loss of generality assume that every task in the

system arrives at time t. By inspecting the behavior of the

sytem over the time interval [t, t′ = t + T ′], it follows that

the processor time available in all M processors within this

interval is
M∑

i=1

(t′ − t) = T ′
M = (1 + ǫ)M (1)

Given that during the time interval [t, t′] every job of tasks in

Hk must execute for up to C ′′ time units (as follows from

Lemma 1) and there are up to two jobs of each such a task

during [t, t′], the processor time that must be provided to Hk

within this time interval to guarantee that the corresponding

deadlines will be met cannot be lower than
∑

τi∈Hk

2Ci[k] = 2C ′′
M = 2ǫM (2)

From Equations (1) and (2) it follows that the remaining

processing capacity that can be used by τk does not exceed

(1− ǫ)M < C ′
M. Nevertheless, note that the M tasks in Hk

cannot be interfered during their execution, otherwise they

would not be able to meet their deadlines when the system

goes to criticality greater than k. This means that all these M

tasks must execute in parallel in M processors. Therefore a

deadline miss may occur with the system utilisation being

Uk(Γ) =
∑

τi∈Γ

Uk(τi) = 1 + ǫM ⇒ Uk(Γ)

M
=

1

M
+ ǫ

Assuming that ǫ = 1
M+1 , the above equation yields

lim
M→∞

Uk(Γ)

M
= lim

M→∞

(
1

M
+

1

M + 1

)

= 0

Interestingly, the result given by Lemma 2 is independent of

the scheduling algorithm. We next show that similar conclu-

sions can be drawn for uniprocessor systems.

Lemma 3: A uniprocessor MCS composed of a set of

periodic tasks Γ has LUB(k) = 0 for some k ∈ {1, . . . ,L−1}
even if Γ is schedulable in any criticality level greater than k.

Proof: Once again, it suffices defining an unschedulable

task set in criticality k, which is schedulable in criticality k+1
or higher but whose utilisation in criticality k can be as close

to zero as we wish. Let Γ contain N = L tasks, defined as:
([
ǫ4, . . . , ǫ4, ǫ3

]
, ǫ, i

)
, 1 6 i < k

︸ ︷︷ ︸

k−1 tasks with criticality <k
([
ǫ3, . . . , ǫ3, 2ǫ2

]
, ǫ, k

)
, i = k

︸ ︷︷ ︸

1 task with criticality k
([
ǫ2, . . . , ǫ2, ǫ, 1− ǫ2

]
, 1, i

)
, i = k + 1

︸ ︷︷ ︸

1 task with criticality k+1
([

ǫ2

N
, . . . ,

ǫ2

N
, C ′

]

, 1, i

)

, k + 1 < i 6 N
︸ ︷︷ ︸

N−k−1 tasks with criticality >k+1

where C ′ = ǫ2

N−k
and ǫ ∈ (0, 0.5). We first observe that when

this system is in criticality higher than k, at most N − k must

run and all these tasks have the same deadline, which is equal

to 1. The computation time jointly required by these tasks

cannot be greater than

(N − k − 1)
ǫ2

N − k
+ 1− ǫ2 < 1

Hence, this system is schedulable in criticality k+1 or higher.

Now let us turn our attention to the schedulability of τk.

Without loss of generality, assume that a job by each task in

Γ arrives at time instant t and that the system is in criticality k

at t. Let us analyse the system behaviour during time interval

[t, t′ = t+ ǫ2 + ǫ]. Note that during the this time interval task

τk+1 must execute for up to Ck+1[k] = ǫ time units otherwise

it may miss its deadline if the system goes to criticality

k + 1 within [t, t′] (recall the necessary condition stated in

Lemma 1). This means that the time left for executing other

tasks is no more than t′ − t−Ck+1[k] = ǫ2 + ǫ− ǫ = ǫ2. As

the processor time that τk requires during time interval [t, t′]
can be as much as 2ǫ2 time units, a deadline miss may occur

with the system utilisation being

Uk(Γ) =
∑

τi∈Γ

Uk(τi) =
ǫ

1
+

2ǫ2

1
+

ǫ2

N
(N − k − 1) < 3ǫ2 + ǫ

And so limǫ→0 U
k(Γ) = 0, as required.

We now generalize the results stated in Lemmas 2 and 3:

Theorem 1: An MCS composed of a set of periodic/sporadic

tasks Γ to be scheduled on M > 1 identical processors has

LUB(k) = 0 for some k ∈ {1, . . . ,L − 1}.

Proof: From Lemmas 2 and 3 we know that the theorem

follows for periodic tasks even when Γ meets its deadlines

at criticality level k + 1. Since the periodic task model is a

special case of the sporadic task model, we conclude that in

these cases the theorem also follows for sporadic tasks.

The claim trivially holds when Γ misses a deadline at criti-

cality level k+1. Assume for example that Uk+1(Γ) = M+ ǫ

and that Uk(Γ) = ǫ, where ǫ is a small positive constant. That

is, Γ is not schedulable in criticality k and k + 1 due to the

assumption that the system misses a deadline at criticaliy level

k+1 . This completes the proof, since limǫ→0 U
k(Γ) = 0.

A way of circumventing this negative result is examined in

next section, which gives a positive upper bound on LUB(k)
for uniprocessor systems if additional conditions are satisfied.

V. POSITIVE RESULTS

We now focus on uniprocessor MCS characterized by:

Hypothesis 1: For any two tasks τi and τj , if Li > Lj then

Ti 6 Tj .

We consider systems conforming to Hypothesis 1 because

of their interesting theoretical properties. We notice that not

all systems may be in line with this hypothesis, though. This

is because, unlike task priorities, which are controlled by

the designer, the task interarrival times and criticalities are

typically specified as input parameters to the design process

and may not be changed by designers.

We next show that even under Hypothesis 1, no algorithm is

able to schedule uniprocessor systems with LUB higher than

2(
√
2− 1):

Theorem 2: No uniprocessor MCS composed of a set of

tasks Γ has LUB(k) greater than 2
(√

2− 1
)

for some k ∈
{1, . . . ,L − 1}.

Proof: We will show that Γ is not schedulable in critical-

ity k although it has utilisation barely above 2
(√

2− 1
)
. For

this, we will consider that Γ is schedulable in any criticality

greater than k. If at criticality level k+1, Γ misses a deadline,

the theorem could be verified by simply presenting such a task

set so that Uk(Γ) < 2
(√

2− 1
)
. Hence, let Γ contain N = L

tasks defined as follows:
([

ǫ, . . . , ǫ,
√
2ǫ
]

,
√
2, i

)

, 1 6 i < k
︸ ︷︷ ︸

k−1 tasks with criticality <k
([√

2ǫ, . . . ,
√
2ǫ, C ′

]

,
√
2, k

)

, i = k
︸ ︷︷ ︸

1 task with criticality =k

([ǫ, . . . , ǫ, C ′′, 1− ǫ] , 1, i) , i = k + 1
︸ ︷︷ ︸

1 task with criticality =k+1
([

ǫ

N
, . . . ,

ǫ

N
,

ǫ

N − k

]

, 1, i

)

, k + 1 < i 6 N
︸ ︷︷ ︸

N−k−1 task with criticality >k+1

where C ′ = 2−
√
2+2

√
2ǫ, C ′′ =

√
2−1−ǫ and ǫ ∈ (0, 0.5).

As for criticality higher than k, note that the deadline of all

N−k tasks with criticality k+1 or higher have deadline equal

to 1. Their joint computation time can be bounded by

(N − k − 1)
ǫ

N − k
+ 1− ǫ < 1

which means that this system is schedulable in criticality

k + 1 or higher. The schedulability of τk, however, cannot

be guaranteed, as we now show.

Without loss of generality, assume that a job by each task in

Γ arrives at time instant t and that the system is in criticality

k at t. Analyzing the system behaviour during time interval

[t, t′ = t+
√
2], we note that task τk+1 arrives up to two times

during the interval [t, t′] and the second job of the task must

complete up to C ′′ time units of execution until time instant

t′ (by Lemma 1). Thus, τk+1 must execute for up to 2C ′′

time units otherwise it may miss its deadline if the system

goes to criticality k+1 within [t, t′]. This means that the time

left for executing other tasks is no more than t′ − t− 2C ′′ =
2 −

√
2 + 2ǫ < C ′. As the processor time that τk requires

during time interval [t, t′] can be as much as C ′ time units, a

deadline miss may occur with the system utilisation being

Uk(Γ) =
C ′

√
2
+

C ′′

1
+

(N − k − 1)ǫ

N
< 2

(√
2− 1

)

+ 2ǫ

Since limǫ→0 U
k(Γ) = 2

(√
2− 1

)
, the Theorem holds.

Although Theorem 2 gives us an upper bound on LUB(k),

its result alone is not of any help given that we know from the

previous section that LUB(k) can be as low as zero. However,

under Hypothesis 1, we show that LUB(k) > ln 2 by studying

the schedulability of the MCS into consideration. This is done

based on properties associated with single-criticality systems

Γk whose tasks are obtained from the tasks with criticality at

least k of an MCS task set Γ. More formally,

Γk
def
=

⋃

τi∈Hk−1

{τ ′i = (Ci[k], Ti)} (3)

A first (naı̈ve) attempt to use Γk to infer the schedulability of Γ
would be to check whether or not each Γk, k ∈ {1, . . . ,L}, is

schedulable. As we have seen in Example 1, such an approach

does not work; changes in the system criticality during execu-

tion must be taken into account. We address the criticality

change issue turning our attention to a specific scheduling

algorithm, namely Rate-Monotonic (RM) [3], and considering

MCS systems complying with Hypothesis 1. Interestingly, in

this scenario the RM priority assignment equals criticality

monotonic priority assignment [11]. Under these conditions,

the schedulability of Γ can indeed be verified via checking the

schedulability of Γk, as the following theorem states:

Theorem 3: Let Γ be an MCS task set with L criticality

levels in line with Hypothesis 1. Γ is schedulable by RM if Γk,

as defined by (3), is schedulable by RM for all k ∈ {1, . . . ,L}.

Proof: We first observe that if the system always runs

in criticality k = 1, the theorem trivially holds; otherwise,

Γ1 would not be schedulable by RM. Now consider the case

where the system is in criticality k > 1. For this case, we

proceed by contradiction assuming that some task in Γ misses

its deadline at some instant t when Γ is scheduled by RM

with the system running at criticality k ∈ {2, . . . ,L}. This

task must belong to Hk−1 since the schedulability of lower

criticality tasks is not taken into consideration when the system

runs in criticality k.

From Hypothesis 1, we know that tasks in Γ\Hk−1 cannot

interfere in the execution of tasks in Hk−1 since lower critical-

ity tasks have greater periods and, therefore, lower priorities

according to RM. From our contradiction assumption, we also

know that any task τi that executes before t requires no more

than Ci[k]. Furthermore, by definition, the execution time of

all tasks τ ′i in Γk is also upper bounded by Ci[k]. This means

that some task in Γk would also miss its deadline at or before

t if Γk was scheduled by RM, which is a contradiction.

As the above reasoning holds all k ∈ {1, . . . ,L}, it follows

that no task in Hk−1 can miss its deadline when the system

runs in criticality k. Therefore, Γ is schedulable by RM.

An interval that characterizes LUB(k) can now be given:

Theorem 4: If uniprocessor MCS with L criticality levels is

schedulable by RM and Hypothesis 1 holds, then LUB(k) ∈
[
ln 2, 2

(√
2− 1

)]
for all k ∈ {1, . . . ,L}.

Proof: Let Γ be the considered task set. The fact that Γ is

schedulable by RM means that Γk (defined according to (3))

is schedulable by RM for all k ∈ {1, . . . ,L} (by Theorem

3), where U1(Γk) = Uk(Γ). We know from [3] that any task

set schedulable by RM has a least utilisation upper bound not

lower ln 2. The upper bound of 2
(√

2− 1
)

follows directly

from Theorem 2.

Our final observation comes from the fact that for some

systems, task periods have an harmonic relation [23]. That

is, task periods are multiple from one another. Since it is

known that under this condition RM can feasibly schedule

uniprocessor systems with utilisation as high as 100%, MCS

schedulability also exhibits such a high bound if Hypothesis

1 holds:

Theorem 5: Let Γ be the task set of a uniprocessor MCS for

which Hypothesis 1 holds. If the periods of tasks in Γ exhibit

an harmonic relation, then LUB(k) = 1 for all k ∈ {1, . . . ,L}.

Proof: Consider that Uk(Γ) 6 1 for all k ∈ {1, . . . ,L}.

Based on Definition 2, we need to show that any such a Γ
is schedulable by some scheduling policy (we use RM for

this purpose) provided that the harmonic relation between task

periods holds. Since we are interested in determining LUB(k),
task sets for which utilisation values are greater than 1 are not

to be considered since they are not schedulable anyway.

Let Γk be defined according to (3) for all k ∈ {1, . . . ,L}.

By construction, both the task periods in Γk are harmonic

and U1(Γk) 6 1. We know from [24] that all these Γk are

schedulable by RM. By Theorem 3, this implies that Γ is also

schedulable by RM.

VI. CONCLUSION

We have studied in this paper schedulability properties for

mixed-criticality systems. After defining the concept of least

upper bound on processor utilisation in a given criticality k,

LUB(k), we have shown that both uniprocessor and multi-

processor systems exhibit null LUB(k) in general. We have

also shown that LUB(k) lies within interval
[
ln 2, 2

(√
2− 1

)]

for uniprocessor systems whose lower criticality tasks have

periods not lower than those of higher criticality ones; and

that if those systems are made of tasks with harmonic task

periods, LUB(k) reaches 1.

An interesting issue for further investigation is about

whether or not some scheduling policy can reach the the-

oretical limit of 2
(√

2− 1
)

when non-harmonic tasks are

considered. As for multiprocessor systems, it would be also

important to identify conditions under which positive values

for LUB(k) can be guaranteed. Future research steps may

explore these and other related questions.

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems: A review,”
Department of Computer Science, University of York, Tech.
Rep. MCC-1(e), February 2015. [Online]. Available: http://www-
users.cs.york.ac.uk/burns/review.pdf

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems

Symposium, 2007. RTSS 2007. 28th IEEE International, Dec 2007, pp.
239–243.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram
in a hard real-time environment,” Journal of ACM, vol. 20, no. 1, pp.
46 – 61, 1973.

[4] N. C. Audsley, “On priority asignment in fixed priority scheduling,”
Inf. Process. Lett., vol. 79, no. 1, pp. 39–44, May 2001. [Online].
Available: http://dx.doi.org/10.1016/S0020-0190(00)00165-4

[5] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Real-Time Systems, 2008. ECRTS

’08. Euromicro Conference on, July 2008, pp. 147–155.
[6] S. Baruah, “Mixed criticality schedulability analysis is

highly intractable,” Tech. Rep., 2009. [Online]. Available:
http://www.cs.unc.edu/˜baruah/Submitted/02cxty.pdf

[7] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
Computers, IEEE Transactions on, vol. 61, no. 8, pp. 1140–1152, Aug
2012.

[8] S. Baruah, “Semantics-preserving implementation of multirate mixed-
criticality synchronous programs,” in Proceedings of the 20th

International Conference on Real-Time and Network Systems, ser.
RTNS ’12. New York, NY, USA: ACM, 2012, pp. 11–19. [Online].
Available: http://doi.acm.org/10.1145/2392987.2392989

[9] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in Real-

Time Systems (ECRTS), 2012 24th Euromicro Conference on, July 2012,
pp. 145–154.

[10] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-
Spaccamela, S. Van Der Ster, and L. Stougie, “Mixed-criticality
scheduling of sporadic task systems,” in Proceedings of the

19th European Conference on Algorithms, ser. ESA’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 555–566. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2040572.2040633

[11] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 2011

IEEE 32nd, Nov 2011, pp. 34–43.
[12] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of

mixed-criticality real-time task sets,” in Real-Time Systems Symposium,

2009, RTSS 2009. 30th IEEE, Dec 2009, pp. 291–300.
[13] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient

scheduling of certifiable mixed-criticality sporadic task systems,” in
Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, Nov 2011,
pp. 13–23.

[14] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Mixed-criticality task
synchronization in zero-slack scheduling,” in Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2011 17th IEEE, April
2011, pp. 47–56.

[15] H. Li and S. Baruah, “Load-based schedulability analysis of
certifiable mixed-criticality systems,” in Proceedings of the Tenth ACM

International Conference on Embedded Software, ser. EMSOFT ’10.
New York, NY, USA: ACM, 2010, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/1879021.1879035

[16] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP,” in Real-

Time Systems (ECRTS), 2012 24th Euromicro Conference on, July 2012,
pp. 155–165.

[17] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Design, Automation Test in Europe Conference

Exhibition (DATE), 2013, March 2013, pp. 147–152.
[18] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-

Spaccamela, S. Van Der Ster, and L. Stougie, “Preemptive uniprocessor
scheduling of mixed-criticality sporadic task systems,” J. ACM,
vol. 62, no. 2, pp. 14:1–14:33, May 2015. [Online]. Available:
http://doi.acm.org/10.1145/2699435

[19] H. Li and S. Baruah, “Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors,” in Real-Time Systems (ECRTS), 2012

24th Euromicro Conference on, July 2012, pp. 166–175.
[20] R. Pathan, “Schedulability analysis of mixed-criticality systems on

multiprocessors,” in Real-Time Systems (ECRTS), 2012 24th Euromicro

Conference on, July 2012, pp. 309–320.
[21] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality

scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp.
142–177, 2014. [Online]. Available: http://dx.doi.org/10.1007/s11241-
013-9184-2

[22] Z. Al-bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu, “Enhanced
partitioned scheduling of mixed-criticality systems on multicore plat-
forms,” in Design Automation Conference (ASP-DAC), 2015 20th Asia

and South Pacific, Jan 2015, pp. 630–635.
[23] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson,

“RTOS support for multicore mixed-criticality systems,” in Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2012

IEEE 18th, April 2012, pp. 197–208.
[24] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling

algorithm: exact characterization and average case behavior,” in Real

Time Systems Symposium, 1989., Proceedings., Dec 1989, pp. 166–171.

