

Capturing and Validating Requirements for

Real-Time and Hybrid Systems

Technical Report

CISTER-TR-241204

2024

Reydel Olano

Technical Report CISTER-TR-241204 Capturing and Validating Requirements for Real-Time and ...

© 2024 CISTER Research Center
www.cister-labs.pt

1

Capturing and Validating Requirements for Real-Time and Hybrid Systems

Reydel Olano

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: arrie@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Specifying requirements is essential for aligning project goals, guiding development, ensuring quality, managing

risks, optimizing resource use, and achieving stakeholder satisfaction. The goal of this studyis focused on a

comprehensive investigation of the logics, formalisms, and specification languages commonly used to describe
behavioural properties, including tool support. Next, we select a set of use cases from existing industrial partners,

such as vehicle manoeuvrer computation in the Route25 project and motor controllers for railway systems in the
VALU3S project. The final step involves specifying the collected requirements using informal and formal

specifications, like Fretish, HPL, and dedicated temporal logic. We aim to capture various requirements,
addressing discrete computations and continuous evolution, to support formal verification and validation

processes. This analysis will clarify the target properties and ensure comprehensive coverage of desired and
forbidden system behaviours.

Capturing and Validating Requirements for

Real-Time and Hybrid Systems

Reydel Arrieta Olano

CISTER & Faculty of Engineering of the University of Porto, Portugal
up202101511@up.pt

Abstract. Specifying requirements is essential for aligning project goals,
guiding development, ensuring quality, managing risks, optimizing re-
source use, and achieving stakeholder satisfaction. The goal of this study
is focused on a comprehensive investigation of the logics, formalisms,
and specification languages commonly used to describe behavioral prop-
erties, including tool support. Next, we select a set of use cases from
existing industrial partners, such as vehicle manoeuvrer computation in
the Route25 project and motor controllers for railway systems in the
VALU3S project. The final step involves specifying the collected require-
ments using informal and formal specifications, like Fretish, HPL, and
dedicated temporal logic. We aim to capture various requirements, ad-
dressing discrete computations and continuous evolution, to support for-
mal verification and validation processes. This analysis will clarify the
target properties and ensure comprehensive coverage of desired and for-
bidden system behaviors.

Keywords: Specifications · Requirements · Validations

1 Introduction

In real-time and hybrid systems, the ability to describe behavioural properties
is crucial for ensuring their correct and reliable operation. These systems, used
in a wide range of industrial and technological applications, require specification
tools and languages that provide adequate precision and robustness, especially
for the creation of runtime monitors.

Requirement specifications [7] for hybrid systems, which combine discrete
and continuous components, involve a detailed description of both types of be-
haviours and their interactions. These specifications are crucial for accurately
capturing the dynamics of systems that exhibit both digital and analogue char-
acteristics. They provide a clear framework for designing, developing, and ver-
ifying hybrid systems by detailing the expected performance, safety, and reli-
ability criteria. The process includes using specialized specification languages
and formalisms to express complex requirements, ensuring comprehensive cover-
age and facilitating formal verification and validation to meet rigorous industry
standards. Natural language descriptions and formal modelling languages each
present unique advantages to system designers. Ghosh et al. [3] claim that nat-
ural language can effectively initiate stakeholder discussions during the early

2 R. Olano

design stages with its informal nature. However, it may also confuse, lack of
automation, and errors. In contrast, formal specifications provide rigour that
eliminates ambiguity, supports consistency checking, and enables automatic test
case generation. Nevertheless, mastering formal notations demands considerable
training and a high level of mathematical sophistication. Refining formal spec-
ifications [14] enables the incremental development of a complex specification.
This process starts with an abstract model and progressively adds more concrete
details to the formal model, step by step.

Various logics, formalisms, and specification languages describe the behavioural
properties of real-time and hybrid systems for runtime monitors. Torfah [15] dis-
cusses stream-based runtime monitoring, often using real-time stream specifica-
tion languages like RTLola. Francalanza et al. [2] underscore the importance of
expressive specification logic, such as a modal µ -calculus variant, for runtime
monitoring. Havelund and Reger [5] highlights the distinctions between spec-
ification languages for runtime verification and temporal logics used in model
checking, noting the rise of various runtime verification specification languages.
Klaedtke [6] introduces POLIMON, a monitoring tool that checks temporal prop-
erties over out-of-order streams at runtime using the real-time logic MTL or its
extension with the freeze quantifier. These studies collectively emphasize the
diversity of logics and languages used in the field of runtime monitoring.

2 Formal Requirements for Runtime Verification

We started by comparing different logics commonly used for runtime verification.
We list below a selection of these logics, and highlight some properties of each
of the logics in Table 1. Namely, whether the logics use events, states or both to
model and reason about the behaviour of systems in their temporal evolution;
whether they can be implemented to analyse systems working in real time; ex-
amples of tools that can be used to implement each of the logics; and an example
of their declaration highlighting some of their core constructs.

Linear Temporal Logic (LTL). LTL is used for specifying and verifying
properties of reactive systems, which are systems that continuously interact with
their environment and must respond to events over time [12]. In particular, LTL
uses special operators □ (resp. ⋄) that express that the rest of the formula must
always (resp. eventually) become true. The example in Table 1 captures mutual
exclusions, i.e., variables Cs1 and Cs2 are never true at the same time.

Past Linear Temporal Logic (PLTL). Variation of LTL that expresses
properties of the past states instead of the future states, as in the more traditional
LTL [9]. This logic uses special operators ■ which expresses that the rest of the
formula historically becomes true and the operator → which expresses that the
true state of the variable M2 implies that the variable V(valve) at some point
(i.e. through the operator ♦) was open. The example in Table 1 captures time
response, i.e., if M2 measured results are within regular flow rate, then V should
have been opened at some past time.

Capturing and Validating Requirements for Real-Time and Hybrid Systems 3

Metric Temporal Logic (MTL). It is a version of LTL that specifies com-
plex temporal properties with specific timing constraints in control systems.
The complexity of satisfiability and model-checking problems for different MTL
fragments ranges from polynomial space to undecidable. Despite this, MTL is
well-suited for real-time monitoring requirements, as it allows for the specifica-
tion of time limits within which certain properties must hold [1]. The example in
Table 1 describes a conditional and response time property, i.e., when the traffic
light turns on green will become red after 5-time units

Signal Temporal Logic (STL). Allow the specification of temporal properties
of real-valued signals (unlike MTL which focuses on discrete events occurring at
specific points in time). It has the advantage of naturally admitting quantitative
semantics which, in addition to the binary answer to the question of satisfaction,
provides a real number indicating the quality of the satisfaction or violation [11].
The example in Table 1 captures a time response requirement, i.e. whenever A
vehicle is close to B vehicle, i.e., within the range of 2m, the A vehicle should
come to a stop (| A | < 0.1) for a short period (2s).

Fretish. It is a restricted structured natural language for writing unambiguous
requirements [4] such as safety, response, progress and prevention requirements.
It is currently used to generate formal logics, including PLTL, and code for
runtime monitors e.g., using CoPilot.

Tessla. A specification language based on stream run-time verification, designed
for monitoring a specific class of real-time signals [8] unlike LTL, MTL, and STL
which focus on specifying and verifying temporal properties of discrete and con-
tinuous systems, with varying approaches to time handling and granularity [10].

High-Level Property Specification Language (HPL). It is a minimalistic
specification language tailored for behavioural properties of message-based sys-
tems [13]. HPL was developed to be an integral part of the HAROS framework.
HAROS can define and extract architectural models of ROS systems (the ROS
Computation Graph). Such models are, inherently, mostly concerned with the
structure of the analysed system.

From the information obtained from the Table 1 it can be concluded that all
logics use states to reason about the behaviour of the systems use cases except for
Tessla which can do it through states or events and HPL which does it through
events. It is possible to notice that some of the logics work with a specific tool
where even the name of the tool coincides with the name of the temporal logic,
such as FRET and Tessla, while the rest can be implemented in different tools but
one of the most popular ones was selected for its representation. Concerning the
ability to represent requirements for systems working in real time it is observed
that except for LTL and PLTL all logics can do so. The examples of each logic
show how the syntax varies from one to another, this feature implicitly implies
that one logic can be more explicit than another in reflecting the specifics of the
requirements of a use case.

4 R. Olano

Table 1. Temporal logics for runtime verifications

Logic State Event
Tool

support
Real-
time

Example

LTL Yes No R2U2 No □¬(in_Cs1 ∧ in_Cs2)
PLTL Yes No CoPilot No ■(M2_flow→ ♦ V_open)
MTL Yes No R2U2 Yes □(green → (¬red U[5] red))
STL Yes No StoRM Yes □(|A−B| < 2)→□[0,2] (|A| < 0.1)

Fretish Yes No Fret No “in roll hold mode RollAutopilot shall always sat-

isfy autopilot engaged && no other lateral mode”

Tessla Yes Yes Tessla Yes in e: Events<Unit>

in s: Signal<Int>

define comp:=eventCount(e) > s

define allow:=within(-1,1,filter(e,comp))

define ok := implies(s > 5, allow)

out ok

HPL No Yes
Haros and
HPL-RV

Yes
globally: no /laser {dist<0 or dist>100}

within 0.1s

3 Work Plan

This section outlines the strategy to fulfil the hypothesis. The first step compar-
ing logics, formalisms, and specification languages commonly used for describing
behavioral properties of real-time and hybrid systems, with a focus on runtime
monitors and tool support.

The second step involves selecting use-cases from CISTER’s industrial part-
ners. A key candidate is an engine for computing vehicle maneuvers in the
Route25 project. Alternatives include with alternatives including motor con-
trollers for a railway company in the VALU3S project, or components for semi-
autonomous vehicles by CEiiA.

The third step involves specifying requirements using informal (e.g., Fretish,
HPL) and formal (e.g., temporal logic) specifications. These requirements should
capture desired and forbidden system properties, considering both discrete and
continuous behaviors. The goal is to compile diverse requirements, including
aspects like failure probability and good-enough criteria, for formal verification
and validation.

4 Conclusion

The comparative strategy implemented allowed us to know in more detail the
characteristics of the temporal logic to allow a clear understanding of how the
properties of our target should be taken into account. At present, the work is
in the phase where it is necessary to define the use case that will be studied to
select from the previously analysed temporal logic which one is the most suitable
to represent. The idea is to present in the best possible way all the specifications
of the requirements that guarantee the correct functioning of the selected use
case.

Capturing and Validating Requirements for Real-Time and Hybrid Systems 5

5 Acknowledgments

This work was supported by national funds through the FCT/MCTES, Por-
tuguese Foundation for Science and Technology, within the CISTER, ISEP/IPP
Research Unit (UIDP/UIDB/04234/2020),

It was also supported by National Funds through FCT/MCTES and by
project Ibex (ref. PTDC/CCI-COM/4280/2021) financed by national funds through
FCT.

References

1. Chatterjee, K., Henzinger, T.A.: Formal modeling and analysis of timed systems,
vol. 6246. Springer (2010)

2. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Della Monica,
D., Ingólfsdóttir, A.: A foundation for runtime monitoring. In: International Con-
ference on Runtime Verification. pp. 8–29. Springer (2017)

3. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: Arsenal: auto-
matic requirements specification extraction from natural language. In: NASA For-
mal Methods: 8th International Symposium, NFM 2016, Minneapolis, MN, USA,
June 7-9, 2016, Proceedings 8. pp. 41–46. Springer (2016)

4. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with fret. In: International Working Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ-2020).
No. ARC-E-DAA-TN77785 (2020)

5. Havelund, K., Reger, G.: Runtime verification logics a language design perspective.
Models, Algorithms, Logics and Tools: Essays Dedicated to Kim Guldstrand Larsen
on the Occasion of His 60th Birthday pp. 310–338 (2017)

6. Klaedtke, F.: Polimon: Checking temporal properties over out-of-order streams at
runtime. arXiv preprint arXiv:2404.15723 (2024)

7. Laplante, P.A., Kassab, M.: Requirements engineering for software and systems.
Auerbach Publications (2022)

8. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime
verification of non-synchronized real-time streams. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. pp. 1925–1933 (2018)

9. Mao, X., Li, X., Huang, Y., Shi, J., Zhang, Y.: Programmable logic controllers
past linear temporal logic for monitoring applications in industrial control systems.
IEEE Transactions on Industrial Informatics 18(7), 4393–4405 (2021)

10. Nickovic, D.: Checking timed and hybrid properties: Theory and applications.
(vérification de propriétés temporisées et hybrides: théorie et applications) (2008),
https://api.semanticscholar.org/CorpusID:42021523

11. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: Proceedings of the 18th international
conference on hybrid systems: Computation and control. pp. 239–248 (2015)

12. Rozier, K.Y.: Linear temporal logic symbolic model checking. Computer Science
Review 5(2), 163–203 (2011)

13. Santos, A., Cunha, A., Macedo, N.: Schema-guided testing of message-oriented
systems (2022)

6 R. Olano

14. Sayar, I., Souquières, J.: Formalization of requirements for correct systems. In:
2020 IEEE Workshop on Formal Requirements (FORMREQ). pp. 28–34. IEEE
(2020)

15. Torfah, H.: Stream-based monitors for real-time properties. In: Runtime Verifica-
tion: 19th International Conference, RV 2019, Porto, Portugal, October 8–11, 2019,
Proceedings 19. pp. 91–110. Springer (2019)

