

Calculating an upper bound on the finishing
time of a group of threads executing on a
GPU: A preliminary case study

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100701

Version:

Date: 07-11-2010

Gurulingesh Raravi

Björn Andersson

Technical Report HURRAY-TR-100701 Calculating an upper bound on the finishing time of a group of threads

 executing on a GPU: A preliminary case study

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Calculating an upper bound on the finishing time of a group of threads
executing on a GPU: A preliminary case study
Gurulingesh Raravi, Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Graphics processor units (GPUs) today can beused for computations that go beyond graphics and such usecan attain a
performance that is orders of magnitude greaterthan a normal processor. The software executing on a graphicsprocessor
is composed of a set of (often thousands of) threadswhich operate on different parts of the data and therebyjointly
compute a result which is delivered to another threadexecuting on the main processor. Hence the response time ofa
thread executing on the main processor is dependent on thefinishing time of the execution of threads executing on the
GPU.Therefore, we present a simple method for calculating an upperbound on the finishing time of threads executing
on a GPU, inparticular NVIDIA Fermi. Developing such a method is nontrivialbecause threads executing on a GPU
share hardwareresources at very fine granularity.

Calculating an upper bound on the finishing time of a group of threads executing on
a GPU: A preliminary case study

Gurulingesh Raravi and Björn Andersson
CISTER-ISEP Research Center
Polytechnic Institute of Porto
4200-072 Porto, Portugal

ghri@isep.ipp.pt, bandersson@dei.isep.ipp.pt

Abstract—Graphics processor units (GPUs) today can be
used for computations that go beyond graphics and such use
can attain a performance that is orders of magnitude greater
than a normal processor. The software executing on a graphics
processor is composed of a set of (often thousands of) threads
which operate on different parts of the data and thereby
jointly compute a result which is delivered to another thread
executing on the main processor. Hence the response time of
a thread executing on the main processor is dependent on the
finishing time of the execution of threads executing on the GPU.
Therefore, we present a simple method for calculating an upper
bound on the finishing time of threads executing on a GPU, in
particular NVIDIA Fermi. Developing such a method is non-
trivial because threads executing on a GPU share hardware
resources at very fine granularity.

I. INTRODUCTION

Graphics processors were originally used only for graph-
ics but they have evolved significantly during the recent
decade as witnessed by the following. First, graphics proces-
sors double their performance every 6 months [1, page 1];
this should be compared with normal CPUs which double
their performance every 18 months [1, page 1]. Conse-
quently, graphics processors today offer significantly higher
peak performance than a normal CPU. The most recent
graphics processor, NVIDIA Fermi [2], has a peak comput-
ing performance of approximately one Teraflop [3]; this is
approximately thousand times greater than a normal single-
core processor in a normal PC. Second, graphics processors
are able to perform general-purpose computations, pro-
grammed using CUDA APIs [1] with C; hence enabling
”normal software developers” to use graphics processors
for data-parallel programs. Therefore, today this type of
processor can be thought of as a multicore processor; it has
come to be called General Purpose Graphics Processor Unit
(GPGPU) or simply GPU (the phenomenon is called GPU
computing [2]).

So far, the GPU has been marketed as a ”supercomputer-
at-your-desktop” but we believe that its use will also spread
to embedded computer systems. A GPU however has no I/O
capability and was not designed to run a normal operating
system and therefore, a GPU is used as a co-processor to a
CPU – the term CPU/GPU computing signifies this.

Figure 1(a) shows an example of the use of a GPU as
a co-processor. A thread on the main processor arrives and
performs some computations (for example reading sensors)
and copies data from main processor’s memory to GPU’s
memory. Then the thread on the main processor invokes
the threads on GPU and suspends itself. The threads on the
GPU execute in parallel on different data that they have been
assigned and when these threads finish their execution, the
thread on the main processor resumes execution. It copies
the data from GPU’s memory to main processor’s memory
and then uses this result (for example for actuation).

We can see that in order for CPU/GPU computing to
be possible for hard real-time applications, three research
problems must be solved:

P1. A method must exist for synchronizing the thread
on the main processor and the threads on the GPU
and the schedulability analysis on the main proces-
sor must take this synchronization mechanism into
account. One could either (i) assign sub deadlines
to the three different phases (shown in Figure 1(a))
or (ii) let the thread on the main processor suspend
when not all threads serving it on the GPU has fin-
ished. The former approach transforms the problem
to many scheduling problems with constrained-
deadline sporadic tasks. For the latter approach,
we can use scheduling theory which assumes that
tasks can self-suspend [4], [5] for a time which is
unknown but is upper bounded. A discussion on
different models for describing such suspension in
the context of GPU computing is available in [6].

P2. A method must exist for determining if the GPU
should be used to assist a thread on the main
processor. This amounts to the task-assignment
problem for heterogeneous multiprocessors which
is known to be a very challenging problem (it
is NP-hard and the standard use of normal bin-
packing heuristics, such as first-fit, can cause
poor performance [7]). But fortunately, in many
practical scenarios, there are only two types of
processors available (processor cores of the main






 


 


 

 
  









 

  

(a) A common use of a GPU. A thread executing on a main
processor arrives and after some of its execution, it suspends and
invokes multiple threads on the GPU. When these threads have
finished, the thread on the main processor resumes execution again.





  


  


 





(b) The internals of NVIDIA Fermi GPU. It consists of 16 stream-
ing multiprocessors which share a cache memory. To the right is
shown thread blocks; a thread block is assigned to a streaming
multiprocessor.






























(c) A detailed view of a streaming multiprocessor.

Figure 1. The use of a GPU and its internals.

processor and the processor cores in the GPU) and
for such situations, an efficient algorithm can be
created [7].

P3. A method must exist for determining the finishing
time of the group of threads executing on the GPU.

P1 and P2 have partly been addressed in previous re-
search. The current research literature offers no method for
P3 however and therefore, we will discuss P3.

Figure 1(b) shows the internals of a GPU; we consider
the most recent one – NVIDIA Fermi. It comprises 16
so-called streaming multiprocessors (SMs) and a shared
cache memory. Software threads are organized into so-

called thread blocks, where a thread block is assigned to a
streaming multiprocessor. A streaming multiprocessor may
be assigned many thread blocks but a thread block cannot be
assigned to two or more streaming multiprocessors. In order
to solve P3 we therefore need to address two subproblems:

P31. Given that the assignment of thread blocks to
streaming multiprocessors is known, compute, for
each streaming multiprocessor, an upper bound on
the finishing time of the threads assigned to this
streaming multiprocessor.

P32. Assuming that the exact assignment of thread
blocks is not known but some knowledge of the as-
signment heuristic is available (for example assign
thread blocks in a round-robin fashion), compute,
for each streaming multiprocessor, an upper bound
on the finishing time of the threads assigned to this
streaming multiprocessor.

Given that chip makers of GPUs currently do not publish
the heuristic used for thread-block assignment, we focus
on P31 and postpone P32 for future work. P31 cannot be
solved through normal Worst-Case Execution Time (WCET)
analysis [8] methods because they assume that all hardware
resources of a processor is dedicated to a thread that exe-
cutes. But this assumption is not true for a streaming multi-
processor. Figure 1(c) shows a detailed view of a streaming
multiprocessor. A streaming multiprocessor comprises 32
Compute Unified Device Architecture (CUDA) cores; each
CUDA core is composed of an ALU, a floating point unit,
input registers and an output register. It is therefore possible
for 32 threads to perform ALU operations in parallel on
a single streaming multiprocessor. But there are only 16
load/store units; hence only 16 threads can perform load in-
structions in parallel. Analogously, only a limited number of
trigonometrical computations can be performed in parallel.
We can see that we need a method for WCET analysis which
analyzes not only a single thread which has all hardware
resources under its control but instead we must analyze a
set of threads which share hardware resources.

Therefore, in this paper, we present a simple method for
calculating an upper bound on the finishing time of threads
assigned to a streaming multiprocessor. In order to take this
first step, we limit ourselves to the study of a simplified
version of a streaming multiprocessor in NVIDIA Fermi.

II. SYSTEM MODEL

Program Structure: We consider the code structure
shown in Figure 2 (derived from matrix multiplication code)
for analyzing the finishing time of a set of threads. The ‘+’
mark over the sub-block (involving LOAD, LOAD and a
CUDA instruction) in Figure 2 indicates that the sub-block
may repeat itself one or more times. The program structure
of Figure 2 consists of:

1) an arithmetic instruction (say, initializing a register)
that will be executed on a CUDA core followed by

LOAD

LOAD

CUDA

+

STORE

CUDA

Figure 2. The template of the program’s control flow. CUDA means an
instruction that uses the CUDA processor (e.g., an ALU operation), LOAD
is an instruction that fetches data from memory to a register and STORE
is an instruction that stores the content of a register to memory.

2) a sub-block (which can occur one or more times)
consisting of two memory accesses (say, reading two
variables into registers) carried out by LOAD/STORE
unit and an arithmetic instruction (say fused multiply
and add) followed by

3) another memory access instruction (say, to store the
result of fused multiply and add instruction).

Assumptions: In order to calculate an upper bound on
the finishing time of a kernel (a set of thread blocks which
serve a thread on the main processor), we make the following
assumptions on the SM and its scheduling algorithm:

• Before run-time, tasks assigned to a SM are organized
into groups of 16 threads (also known as a warp).

• Each instruction takes just one clock cycle to execute
(including memory access instructions).

• There are no cache misses i.e., all the data that memory
access instructions are interested in is found in cache
(it is intuitive from the previous assumption).

• Each SM has 32 CUDA cores and 16 LOAD/STORE
units i.e., in a clock cycle, each SM can either perform
32 arithmetic operations or 16 memory operations.

• At run-time, in each clock cycle, the scheduler of SM
selects one or two warps for scheduling.

• Whenever there are warps available for execution,
the run-time scheduler must select a warp (work-
conserving). (Since we assume that each instruction
takes just one clock cycle, every warp is available every
time as long as its threads have not yet terminated.)

• As already mentioned, we assume that the control flow
of the program is as specified by Figure 2; it comprises
a CUDA instruction followed by rep cnt sub-blocks
and then a LOAD/STORE instruction. In addition, we
assume that instructions are scheduled in a fair manner
on sub-block level, that is, when threads compete for
resources, an instruction belonging to sub-block k has
priority over an instruction belonging to sub-block k+1
– this will be illustrated in Section III. (The assumption
on fairness on sub-block level is probably not realistic
for GPUs of today but this assumption has the benefit
that it simplifies our analysis.)

a) One possible interleaving.

Threads 1−16
Threads 17−32

Threads 33−48

Threads 49−64
Clock Cycle

C L L C S
C L L C S

C
C

L L C S
L L C S

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b) Another possible interleaving.

Threads 1−16
Threads 17−32

Threads 33−48

Threads 49−64
Clock Cycle

C L

C
C

1 2 3 4 5 6 7 8 9 10 11 12 13

L S
LC

C
SCL

L
L

SL C
L C S

Figure 3. Two possible interleavings/schedules when sub-block has
appeared only once.

III. THE NEW METHOD

In this section, we present our method to determine an
upper bound on the finishing time of n threads assigned to
a single SM. We assume all these threads have the same
program structure that is described in Section II. Recall that
we make no assumption on the exact scheduling policy in
a SM – we assume that it is work-conserving and sub-
block level fair. Hence, for a given set of threads, there
are many possible schedules (interleavings) that can be
generated. To calculate an upper bound on the finishing
time of a kernel, it is essential to know: “Given that a
certain number of threads are assigned to a particular SM,
what order of interleaving of these threads results in a
maximum time (measured in clock cycles) to finish their
execution”. Figure 3 shows two such possible interleavings
when 64 threads are assigned to a SM. Figure 3 shows,
in each clock cycle, the instruction of different warps that
is being executed by CUDA and LOAD/STORE units. We
have used C, L and S to represent CUDA, LOAD and
STORE instruction respectively. For example, in Figure 3(a),
in the first clock cycle, CUDA instruction of thread 1-16
(say, warp1) and 17-32 (say, warp2) are being executed; in
the second cycle, LOAD instruction of warp1 and CUDA
instruction of threads 33-48 (say, warp3) and 49-64 (say,
warp4) are being executed.

In the first case (Figure 3(a)), the scheduler is trying to
finish the execution of one warp before switching to another
warp but without violating its work-conserving property. In
this case, the scheduler has scheduled the threads as follows:
whenever possible, warp1 is executed, then warp2, then
warp3 and when none of these warps can be executed, it
executes warp4. In the second case (Figure 3(b)), the sched-
uler is trying to give a fair share of the resources to each
warp by executing one instruction each from every warp
and at the same time exploiting the parallelism whenever
possible (to preserve the work-conserving property). As we
can observe form this example, the first schedule has the

C L L C

C L L C

C

C

L L C

L L C

L L C S

L

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SCL

SCL

C SLL

15 16 17 18 19 20 21 22

Threads 1−16

Threads 17−32

Threads 33−48

Threads 49−64

Clock Cycle

Figure 4. A schedule when sub-block is repeated twice.

C L L C

C L L C

C

C

L L C

L L C

L L C

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Threads 1−16

Threads 17−32

Threads 33−48

Threads 49−64

Clock Cycle 23 24 25 26 27 28 29 30

SCLL

S

S

SCL

CL

CLL

L

L

L C

L L C

L L C

Figure 5. A schedule when sub-block is repeated thrice.

worst case finishing time as it takes 14 clock cycles whereas
the second schedule takes only 13 clock cycles to finish.

Hence, we conjecture that the worst case interleaving
happens for our program structure when the scheduler tries
to schedule threads (group of 16 for the architecture under
consideration) so as to finish the execution of a group of 16
threads in a particular order (as shown in Figure 3(a)).

Now, considering our conjectured worst possible inter-
leaving for a given number of threads on a SM, we discuss
the worst-case finishing time for a given number of threads
on a SM. From the schedule shown in Figure 3, we can
observe that, for the program structure under consideration,
each warp (except the first one) needs 3 additional clock
cycles to finish its execution compared to its previous warp.
Note that in Figure 3, the inner sub-block (consisting of
LOAD, LOAD and CUDA instructions) appears only once
in the program structure. This can be generalized to n
threads: The total number of clock cycles needed to finish
the execution of n threads when the sub-block appears only
once in the program structure is: ! n

16
" · 3 + 2.

Now, consider the same number of threads (i.e., 48
threads) but with the sub-block repeated multiple times. To
understand the finishing times in such a scenario, consider
schedules for the cases when the sub-block has repeated
twice and thrice in Figure 4 and 5. As we can observe,
the total number of clock cycles (required to finish the
execution of all the 48 threads) for each repetition of sub-
block increases by 8. This can be generalized to n threads:
The number of additional clock cycles needed to finish the
execution of n threads when the sub-block has appeared
rep cnt of times is: ! n

16
" · (rep cnt− 1) · 2.

Hence, with the help of above two relations, we conjecture
that the total number of clock cycles needed to finish the
execution of ni threads with rep cnt appearances of the
sub-block assigned to SMi is:

FTi =
(⌈ni

16

⌉

· 3
)

+ 2 +
⌈ni

16

⌉

· (rep cnt− 1) · 2

This equation gives the finishing time of ni threads
assigned to SMi. As described earlier, a GPU consists of

many such SMs (say m) and hence the maximum finishing
time of a kernel is: FTkernel = max(FT1, FT2, . . . FTm).

IV. CONCLUSION AND FUTURE WORK

We presented a method for calculating an upper bound on
the finishing time of threads executing on an NVIDIA Fermi
GPU. We left the following problems open: (i) proving
mathematically the correctness of our stated upper bounds
on finishing times, (ii) relaxing the assumption of fairness
on sub-block level, (iii) relaxing the hardware assumptions
to allow cache misses and longer latency of floating-point
operations, (iv) generalizing the method to other control
flows and to user-specified number of LOAD/STORE units
and CUDA cores and (v) validating the output of our method
by comparing it with experimental runs on real hardware.

Acknowledgments
This work was partially supported by ARTISTDesign Network

of Excellence on Embedded Systems Design, funded by the Eu-
ropean Commission under FP7 with contract number ICT-NoE-
214373 and the Portuguese Science and Technology Foundation
(Fundação para Ciência e Tecnologia - FCT) and the Luso-
American Development Foundation (FLAD).

REFERENCES

[1] “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide, available at
http://developer.download.nvidia.com/compute/cuda/
1 1/NVIDIA CUDA Programming Guide 1.1.pdf.”

[2] “NVIDIA’s Next Generation CUD-
ATM Compute Architecture: Fermi,
http://www.nvidia.com/content/pdf/fermi white papers/
nvidia fermi compute architecture whitepaper.pdf.”

[3] “http://techreport.com/articles.x/17670.”

[4] K. Bletsas, “Worst-case and best-case timing analysis for
real-time embedded systems with limited parallelism,” Ph.D.
dissertation, The University of York, 2007.

[5] P. Gai, L. Abeni, and G. C. Buttazzo, “Multiprocessor DSP
scheduling in system-on-a-chip architectures,” in 14th Euromi-
cro Conference on Real-Time Systems (ECRTS 2002), Vienna,
Austria, Jun. 2002, pp. 231–238.

[6] K. Lakshmanan, S. Kato, and R. Rajkumar, “Problems in
scheduling self-suspending,” in RTSOPS 2010: 1st Interna-
tional Real-Time Scheduling Open Problems Seminar in con-
junction with the 22th Euromicro Intl Conference on Real-Time
Systems, Brussels, Belgium, Jul. 2010.

[7] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-
time tasks on heterogeneous multiprocessors with two unre-
lated types of processors,” CISTER research unit, ISEP/IPP,
Polytechnic Institute of Porto, Porto, Portugal, Tech. Rep.
HURRAY-TR-100505, May 2010.

[8] A. C. Shaw, “Reasoning about time in higher-level language
software,” IEEE Trans. Software Eng., vol. 15, no. 7, pp. 875–
889, 1989.

