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Abstract 

Fairness in Federated Learning (FL) is imperative not only for the ethical utilization of technology but also for 

ensuring that models provide accurate, equitable, and beneficial outcomes across varied user demographics and 

equipment. This paper proposes a new adversarial architecture, referred to as Adversarial Graph Attention 

Network (AGAT), which deliberately instigates fairness attacks with an aim to bias the learning process across the 
FL. The proposed AGAT is developed to synthesize malicious, biasing model updates, where the minimum of 

Kullback-Leibler (KL) divergence between the user's model update and the global model is maximized. Due to a 
limited set of labeled input-output biasing data samples, a surrogate model is created, which presents the 

behavior of a complex malicious model update. Moreover, a graph autoencoder (GAE) is designed within the AGAT 
architecture, which is trained together with sub-gradient descent to reconstruct manipulatively the correlations of 

the model updates, and maximize the reconstruction loss while keeping the malicious, biasing model updates 
undetectable. The proposed AGAT attack is implemented in PyTorch, showing experimentally that AGAT 

successfully increases the minimum value of KL divergence of benign model updates by 60.9% and bypasses the 

detection of existing defense models. The source code of the AGAT attack is released on GitHub.  
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Abstract—Fairness in Federated Learning (FL) is imper-
ative not only for the ethical utilization of technology but
also for ensuring that models provide accurate, equitable,
and beneficial outcomes across varied user demographics and
equipment. This paper proposes a new adversarial architec-
ture, referred to as Adversarial Graph Attention Network
(AGAT), which deliberately instigates fairness attacks with an
aim to bias the learning process across the FL. The proposed
AGAT is developed to synthesize malicious, biasing model
updates, where the minimum of Kullback-Leibler (KL) diver-
gence between the user’s model update and the global model is
maximized. Due to a limited set of labeled input-output biasing
data samples, a surrogate model is created, which presents
the behavior of a complex malicious model update. Moreover,
a graph autoencoder (GAE) is designed within the AGAT
architecture, which is trained together with sub-gradient
descent to reconstruct manipulatively the correlations of the
model updates, and maximize the reconstruction loss while
keeping the malicious, biasing model updates undetectable.
The proposed AGAT attack is implemented in PyTorch,
showing experimentally that AGAT successfully increases the
minimum value of KL divergence of benign model updates by
60.9% and bypasses the detection of existing defense models.
The source code of the AGAT attack is released on GitHub.

Index Terms—Federated Learning, Fairness, Adversarial
Graph Attention Network, Feature Correlations, Cyberattacks

I. INTRODUCTION

Federated Learning (FL) has garnered substantial atten-

tion in recent years, emerging as a paradigm in distributed

deep learning. Under the FL framework, each user inde-

pendently trains its local model utilizing proprietary data,
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subsequently generating machine learning model updates

that are transmitted to a server without revealing the user’s

confidential data [1]. The server, in turn, amalgamates these

model updates, to create a global model, which is then

disseminated back to the users to instigate the ensuing

round of FL training [2]. Inherent in the FL methodology

is the safeguarding of individual data privacy, achieved

through obviating the necessity to share private data [3].

Fairness in FL is imperative not only for the ethical uti-

lization of this technology but also for ensuring that models

provide accurate, equitable, and beneficial outcomes across

varied user demographics and equipment. For instance, FL

could be utilized to collaboratively train a machine learning

model for classifying vehicles based on images from urban

areas and rural or industrial areas, with each user training

model updating their image data without sharing it centrally

to preserve privacy or prevent congesting communication

networks [4].

FL models may develop biases towards classifying ve-

hicles more commonly encountered in certain regions over

others. For example, in affluent urban areas, there could

be a higher prevalence of certain types of vehicles, such

as sedans or sport utility vehicles (SUVs), whereas rural

or industrial areas might witness a more frequent transit of

trucks or vans [5]. If the FL model is primarily trained

on data from one type of area due to more advanced

or prevalent data collection infrastructure, it may become

adept at identifying and classifying vehicles typical of that

area while struggling to accurately classify vehicles from

underrepresented areas or those that are less common in

the training data. This discrepancy in model performance

could lead to imprecise data on vehicular movement, types,

and patterns, which could further influence urban planning

and policy-making processes, possibly reinforcing existing

disparities in infrastructure development and resource allo-

cation between different regions.

Despite the fact that FL ostensibly fortifies user data pri-

vacy, attackers or malicious users can deliberately instigate

fairness attacks with an aim to bias the learning process

across FL [6]. This can manifest in various stratagems

designed to subtly manipulate either the model updates

or the training data at users in such a way as to infuse

the global model with biased or misdirected learning [7].

In Fig. 1, the attacker conducts an adversarial training

based on its malicious data that contains images with

only red vans and yellow SUVs. As a result, the FL
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A van is always red;  
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…

Fig. 1: An attacker conducts adversarial training for biasing

the FL of benign users.

is biased with the learning outcome, such as “a van is

always red” or “an SUV is always yellow”. On the server,

the fairness assessment mechanism can involve measuring

the Kullback-Leibler (KL) divergence between a user’s

model update and the global model, which quantifies the

discrepancy between the probability distributions of local

model updates [8]. In addition, malicious update detection

techniques can be applied at the server to the collected

local model updates from participating users, examining

them for statistically significant deviations or anomalies

that might signal malicious alterations. For example, the

Cosine similarity is computed at the server, which intends

to identify those model updates that deviate significantly in

direction from the others [9], [10]. If the Cosine similarity

value exceeds a predetermined threshold, the model update

and the corresponding user can be flagged as potentially

malicious.

This paper explores a new adversarial architecture,

herein referred to as Adversarial Graph Attention Network

(AGAT) attack, which aims to bias FL. The implicit ob-

jective of the AGAT attack is to maximize the minimum

KL divergence of the participating users’ model updates,

thereby biasing the fairness of FL without being detected

by the server. Specifically, an attacker overhears the benign

model updates uploaded by its neighbor users, and receives

the global model broadcast by the server. An AGAT is

designed by the attacker to capture the correlations exis-

tent amongst data features within benign model updates.

Considering a limited set of labeled input-output biasing

data samples, a surrogate model is created, which presents

the behavior of a complex malicious model update. The

data features in the surrogate model can be represented as

a graph. Given the feature correlation, the AGAT is trained

to purposefully contrive malicious, biasing model updates

that involve the hidden representations of each feature in

the graph.

These malicious, biasing model updates maintain com-

patibility with their benign counterparts while compromis-

ing the global model, consequently rendering the AGAT

attack notably effective within FL contexts and concurrently

maintaining a veneer of undetectability at the server level.

This exploration, therefore, underpins the requisite for

rigorous further investigation into safeguard mechanisms

to defend against such subtle and impactful adversarial

undertakings within FL environments.

The key contributions of this paper are as follows:

• The AGAT architecture is proposed to intentionally

instigate fairness attacks with an aim to bias the

learning process across FL. A new AGAT is developed

to synthesize malicious, biasing model updates, which

capture the correlations existent amongst data features

within benign model updates;

• As the optimization of the adversarial training model

at an attacker is a non-convex combinatorial problem

intractable for conventional optimization techniques,

a new approach is developed to iteratively optimize

the biasing model updates by running the AGAT and

sub-gradient descent alternately.

• A graph autoencoder (GAE) is designed within the

AGAT architecture, which is trained together with

sub-gradient descent to reconstruct manipulatively the

correlations of the model updates, and maximize the

reconstruction loss while keeping the malicious, bias-

ing model updates undetectable;

• The proposed AGAT attack is implemented in

PyTorch, showing experimentally that AGAT suc-

cessfully increases the minimum of KL diver-

gence of benign model updates by 60.9% and

bypasses the detection of existing defense mod-

els. The source code of the AGAT attack is re-

leased on GitHub: https://github.com/jjzgeeks/AGAT-

basedModelPoisoningAttackFL.

The remainder of this paper is structured as follows. Sec-

tion II introduces the background of adversarial attacks and

defense models in the FL. Section III investigates the FL

training process with attackers as well as a defense model

at the server. The proposed AGAT attack is described in

Section IV. Section V discusses the performance analysis.

Section VI concludes the paper.

II. LITERATURE REVIEW

This section reviews the literature on adversarial attacks

and security threats against FL, e.g., poisoning, inference,

and backdoor attacks. Existing techniques for improving

the fairness of FL are also presented.

A. Adversarial Attacks on Federated Learning and Defense

Strategies

A local model poisoning attack to Byzantine-robust

FL was studied in [11], where an attacker strategically

alters the local model parameters on the jeopardized users,

resulting in an augmentation of training errors in the

global model. It was argued that FL, relying on weighted

averaging and trimmed averaging to counteract Byzan-

tine faults, remains susceptible to the poisoning attack.

Such vulnerabilities can precipitate pronounced declines

in training accuracy. In [12], an adversarial GAE-based

model poisoning attack was developed to manipulate the
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FL training accuracy. By overhearing the benign local

models uploaded by the users, the attacker generated its

malicious local models by capturing the correlation features

of the benign local and global models. In [13], malicious

users, who might share harmful parameters or possess

compromised local model updates, pose a threat to the FL.

To mitigate the adverse impact of these rogue users on

the global model, a selectively trimmed averaging method

was developed. Their approach focuses on adequately

sifting through and amalgamating the shared parameters,

ensuring the integrity of the global model is maintained.

In [14], an innovative model poisoning attack on FL was

developed, which functions without reliance on training

data. This novel attack utilizes an enhanced adversarial

variational graph autoencoder (VGAE) to develop harmful

local models using only the benign models it intercepts,

without needing any direct access to FL training data. The

VGAE-MP attack strategically extracts and uses the graph

structural correlations between the benign local models and

the training data features, which proves to be effective and

difficult to detect.

A defense strategy was developed against poisoning

attacks on FL in [15], where participating users were

categorized into distinct groups. A global model was trained

for each user group using an existing FL aggregation

rule. Based on the global models of all the groups, a

majority vote mechanism was used to identify whether a

test input was poisoned by the attacker. In [16], a lay-

ered privacy-preserving defense architecture was presented,

which can mitigate poisoning attacks in FL. In such a

layered architecture, users execute synchronous local model

aggregation and orchestrate a defense against poisoning

attacks under the coordination of a designated leader user.

Homomorphic encryption was also used to encrypt the

local gradients that are generated by the users, thereby

ensuring that no sensitive information pertaining to the

local data is disclosed. To resist model poisoning attacks,

a defense scheme was studied to identify the malicious

model update by measuring the Cosine similarity between

every two users’ model updates [9]. A Byzantine-tolerance

aggregation based on this defense scheme can be applied

to support heterogeneous data scenarios, including Indepen-

dently Identically Distribution (IID) and non-IID data.

B. Fairness of Federated Learning

Robustness against data and model poisoning attacks,

as well as fairness, quantified by the equitable distribu-

tion of performance across various users, have emerged

as conflicting constraints within statistically diverse net-

works [8]. An FL methodology was devised in [8] to embed

customary procedures prevalent in cross-user FL, which

include restricted user involvement and the updating of

local models. In civil and social applications, data may

exhibit bias towards features sensitive to fairness, such

as gender, age, or race. Thus, FL models assimilate this

bias from the training data, resulting in unfairness towards

certain user demographics. In [17], data was bifurcated into

two categories grounded in their fairness sensitivities: First,

fairness-insensitive features that are applicable for the target

task, and second, fairness-sensitive features that ought to

be causally inconsequential to model predictions. An FL

architecture was designed according to fairness sensitivi-

ties, which learn coherent and fair representations of data

samples, predicated upon their features disseminated across

users. Given partitioned categories of data, the authors

of [18] focused on training FL models with fairness across

different categories. Each user independently conducts local

debiasing based on its categories of data. To enhance the

efficacy of local debiasing, the users assess the fairness of

the global model using their respective data in each FL

iteration and cooperatively train and adjust the local model

update with the server.

An FL algorithm was introduced [19] to enable a fair re-

source allocation of training users’ small-sized submodels,

instead of original deep neural networks. In particular, com-

putation, memory, and data exchange sizes were adjusted

so that users with varying computing capabilities could

contribute to FL processes by astutely adapting to their

respective resource availabilities. A self-distillation method

was employed, deriving from the maximally supported

submodel on the user, to amplify the feature extraction

capabilities of smaller submodels. Collaborative fairness

was considered in FL [20], where a reputation mecha-

nism can be enabled to assess the contributions of users

throughout the learning process. This mechanism was used

to evaluate the input and engagement of each user in the FL

and continually refine their reputation scores based on their

contributions and adherence to collaborative standards, en-

suring a fair and equitable model development and training

process across distributed learning environments.

C. Our Contributions

The existing adversarial attacks against FL in the liter-

ature have often overlooked an exploration of the latent

relationships among disparate local model updates, which

are the relationships that can potentially be discerned by

recent defense strategies quantifying the model similarities,

such as [21], [22], and [23]. Additionally, the existing de-

biasing strategies within FL predominantly aim to enhance

training fairness, yet a dedicated exploration of intentional

biasing attacks, designed to subvert the FL fairness, remains

notably absent and unexamined.

In contrast, the new AGAT attack proposed in this paper

pioneers a new adversarial approach, strategically inciting

fairness attacks with the objective of biasing the FL learning

procedure. The AGAT attack manipulates the correlations

amongst numerous data features in benign model updates,

meanwhile maintaining the authentic data features integral

to those models, thereby rendering the biasing model up-

dates imperceptible and successfully eluding detection.

III. FEDERATED LEARNING UNDER ADVERSARIAL

ATTACK

In this section, we first present an FL training process,

e.g., for image classification. A threat model is described,
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where the attackers generate an adversarial attack after

overhearing the neighbor benign users’ local model updates.

A defense model that can be employed at the server against

the adversarial attack is also presented.

A. Federated Learning with Benign Users

We assume that N users participate in an FL training

process, including I benign users as well as (N � I)

authorized (legitimate) but malicious users (or attackers).

A benign user i 2 [1, I] has Di(τ) amount of data at the

τ -th iteration, and an input data sample captured at user

i is denoted as si 2 [1, Di(τ)]. 8τ 2 [1, TL], where TL

is the total number of training iterations in the FL. Let

y(si) denote the output of the machine learning model. A

training loss function of FL, denoted by L(ωωωi(τ); si, y(si)),
is defined at user i to capture approximation errors over the

input si and the output y(si), where ωωωi(τ) denotes the local

model of user i.
Given Di(τ), the loss function of the FL in the τ -th

iteration is defined by

F (ωωωi(τ)) =
1

Di(τ)

Di(τ)X

si=1

L(ωωωi(τ); si, y(si)) + β · f(ωωωi(τ)),

(1)

where f(·) is a regularizer function that represents the effect

of the local training noise, and β 2 [0, 1] is a coefficient.

Moreover, we define the model update of user i at round

τ + 1 as

ωωωi(τ + 1) ωωωi(τ)� ηrF (ωωωi(τ)), (2)

where η is a given learning coefficient at the users.

In each iteration τ , all users upload their model updates

ωωωi(τ), 8i to the server. The server aggregates the model

updates to train a global model, denoted by ωωωG(τ), for the

τ -th iteration. Then, ωωωG(τ) is broadcast to all users for

their further training of ωωωi(τ + 1) [24].

B. Defense Model at Server

Measuring the Cosine similarity can be applied at the

server as a defense mechanism to detect malicious, biasing

model updates [9], [10]. The Cosine similarity calculates

the angular similarity between every two user’s model

updates, which is given by

ωi,i0 =
ωωωi(τ) ·ωωωi0(τ)

kωωωi(τ)k · kωωωi0(τ)k
, (3)

where i and i0 indicate two different users, i, i0 2 [1, N ]
and i 6= i0. k · k stands for cardinality of a vector.

By computing the Cosine similarity for each user’s model

update, the server intends to identify those model updates

that deviate significantly in direction from the others. If

the similarity is beyond a predetermined threshold dT ,

the update can be flagged as potentially malicious. This

approach assumes that malicious, biasing model updates

exhibit substantial directional differences compared to be-

nign model updates, thereby providing a means to detect

Attackers

Malicious 
Model Updates

The GATP-driven 
Training

Fig. 2: The proposed AGAT attack aims to generate mali-

cious model updates to bias the FL of benign users.

and possibly discard or down-weight such model updates

during the aggregation process.

The defense model based on Cosine similarity is widely

recognized as the most effective and commonly used mea-

sure for detecting malicious model updates in FL, e.g.,

in [9]–[11]. Cosine similarity can help identify updates that

deviate significantly in direction. By comparing similarity

between the model updates, the server can detect outliers,

which often result from poisoning attempts where malicious

updates deviate significantly from the benign majority.

Other defenses, such as aggregation-based methods (e.g.,

Krum or Trimmed Mean), also use a similar mechanism of

detecting anomalous updates (i.e., by measuring distance

among the local models), underscoring the relevance and

broad applicability of Cosine similarity in defense.

Note that our proposed threat model is designed to evade

generic similarity-based defense mechanisms. The defenses

in FL, whether they are based on Cosine similarity or Eu-

clidean distance, fundamentally rely on detecting anomalies

or deviations by measuring the similarity between model

updates. Our attack model can create malicious local mod-

els to maintain compatibility with benign model updates

while maximizing the attack effect. Therefore, it can bypass

a range of defenses that detect statistical or directional

deviations, making it highly adaptable and relevant beyond

Cosine similarity-based mechanisms.

C. Threat Model

Suppose that the (N � I) attackers with access to their

own training data are considered in the FL together with

I benign users, as shown in Fig. 2. An attacker, who

may appear as a legitimate user, attempts to progressively

manipulate the fairness of the FL by creating and uploading

malicious local models during each communication round.

Let τ denote the index to the iterations of the FL. Ad-

ditionally, the presence of malicious model updates in the

context of the proposed AGAT architecture is assumed to be

unknown during the training process. Nevertheless, while

unaware of the presence of any attackers, it is reasonable

for the server to be cautious about potential presence of

malicious users and their malicious models. The server is

expected to keep monitoring and assessing the local models
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uploaded by all users to detect malicious, biasing local

models.

Specifically, attacker j 2 [1, N � I] constructs a mali-

cious, biasing model update ωωωa
j (τ) based on the parameters

of the benign local models overheard in τ . The server

aggregates the model updates of the users, including both

benign and malicious ones, without realizing the attacker’s

presence. The total size of the training data reported to the

server, DG(τ), is calculated as the sum of the data size

of all benign users, Di(τ), and the data size of the j-th

attacker, Da
j (τ). This results in a manipulated global model

ωωωa
G(τ) that yields

ωωωa
G(τ) =

IX

i=1

N�IX

j=1

Di(τ)

DG(τ)
αa
i,j(τ)ωωωi(τ) +

N�IX

j=1

Da
j (τ)

DG(τ)
ωωωa

j (τ).

(4)

In particular, αa
i,j(τ) is a binary indicator signifying

whether ωωωi(τ) is overheard or not at attacker j. αa
i,j(τ) is

known to the attacker and used as an input variable in Prob-

lems P1 and P2. In other words, if ωωωi(τ) is eavesdropped

by the attacker j for its adversarial training to generate

the malicious, biasing model update, then αa
i,j(τ) = 1;

otherwise, αa
i,j(τ) = 0. ωωωa

G(τ) is broadcast by the server

to all N users.

The KL divergence between ωωωi(τ) and ωωωa
G(τ) [25] can

be used to measure the fairness of FL, which is given by

dKL(ωωωi(τ),ωωω
a
G(τ)) =

τX

τ 0=1

P (ωωωi(τ
0)) log

⇣ P (ωωωi(τ
0))

P (ωωωa
G(τ

0))

⌘
,

(5)

where P (·) is a probability density function, and dKL(·, ·)
calculates the KL divergence between ωωωi(τ) and ωωωa

G(τ).
Given (4) and (5), the loss function with regard to the

FL fairness is defined as

∆Loss = min
i2[1,N ]

dKL(ωωωi(τ),ωωω
a
G(τ)). (6)

The optimization of the adversarial training model at at-

tacker j, 8j 2 [1, N � I], for biasing the FL can be

formulated as

P1 : max
ωωωa

j
(τ)

∆Loss (7a)

s.t. ωi,j  dT , (7b)

αa
i,j(τ) = {0, 1}. (7c)

By maximizing the minimum value of dKL(ωωωi(τ),ωωω
a
G(τ))

in (7a), the malicious, biasing model update ωωωa
j (τ) is

optimized so that the dissimilarity between the updated

attribute in the benign ωωωi(τ) and the one in ωωωa
G(τ) persis-

tently increases. Constraint (7b) confines that the Cosine

similarity between ωωωa
j (τ) and ωωωi(τ) has to be below a

similarity threshold, denoted by dT . This is because the

FL server can perform a model update selection to rule

out those dissimilar to the rest to maintain fairness. As

a legitimate user, the attacker can potentially infer the

detection threshold based on the information exchanged

with the server or from overheard benign local models

during the FL training process. For example, the attacker

can estimate the detection threshold based on the benign

local models accepted by the server during each round of

global aggregation.

By introducing an auxiliary variable R, Problem P1 can

be rewritten as

P2 : max
ωωωa

j
(τ),R

R (8a)

s.t. R  dKL(ωωωi(τ),ωωω
a
G(τ)), (8b)

(7b) & (7c) (8c)

In the next section, we proceed to solve Problem P2 using

a new GAE, which can iteratively regulate ωωωa
j (τ), τ =

1, 2, · · · , to launch fairness attacks to the FL.

By conducting such attacks on the fairness of FL, the

attackers could influence critical decisions in FL, ranging

from urban planning and policy-making processes to med-

ical diagnosis predictions. This not only undermines the

trustworthiness and integrity of FL systems but enables the

attackers to potentially exploit these biases for their own

financial gain, strategic advantage, or to perpetuate dis-

crimination, all under the guise of maintaining a seemingly

unaffected FL model.

The core mechanism of our attack is the construction

of a malicious, biasing model update based on the model

updates overheard from the benign users. This approach

is applicable to both centralized FL and decentralized FL

(DFL). As a matter of fact, in DFL, each participating

user collects the local models from its nearby peers and

aggregates the local models with its own local model. In

this case, the attacker, which is one of the nearby peers,

can still craft malicious local models (in the same way as

in centralized FL) to bias the learning of benign users.

Although cryptography could offer protection against

eavesdropping attacks to some extent, some recent tech-

niques outlined in [26] and [27] have shown that encrypted

information can be decrypted with minimal initial data.

Moreover, the proposed AGAT attack could exert a pro-

found impact on the rapidly emerging field of DFL. In

DFL, each user has the capability to directly receive local

model updates from their neighbors, facilitated through ei-

ther point-to-point encrypted or unencrypted channels. The

DFL architecture inherently increases the attack surface,

making DFL more susceptible to the AGAT attack. Unlike

a single aggregation point in centralized counterpart, the

direct exchange of local model updates in DFL allows

adversaries to exploit the accessibility to neighbor model

updates to inject malicious updates. In this sense, exploring

this AGAT attack within the context of centralized FL

serves as a stepping stone, elucidating potential vulnera-

bilities and informing the development of countermeasures

in anticipation of similar, if not more sophisticated, threats

in DFL.

IV. THE PROPOSED AGAT ATTACK FOR BIASING

FEDERATED LEARNING

In this section, we delineate the architecture of the

AGAT attack that aims to generate malicious, biasing model
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Fig. 3: The proposed AGAT architecture, where the attacker creates a surrogate model that extracts labels of its biasing

data. The adversarial GAT is trained to obtain the hidden representations of each feature in the graph.

updates. By leveraging attention mechanisms, the GAT dy-

namically weighs the importance of different vertices (i.e.,

data features) within the FL, allowing for effective injection

of malicious, biasing model updates. This functionality is

crucial for exploiting potential vulnerabilities in the local

models and the data the local models are trained on, thereby

enabling the attackers to subtly introduce biases that can

degrade the fairness of the FL.

Furthermore, an adversarial GAE is designed within the

AGAT architecture, which is trained together with sub-

gradient descent to reconstruct manipulatively the correla-

tions of the model updates, where the reconstruction loss is

maximized. In addition, a graph signal processing module

is designed with the GAE to decompose the correlation

features of the benign model updates, and the data features

substantiating the model updates.

A. Architecture of AGAT Attack

Due to the high dimensionality of the training data,

obtaining labeled data is expensive or prohibitive. A surro-

gate model g̃(Da
j (τ)) is used at attacker j to approximate

the classification or image labeling, which simplifies the

structure of the image classifier, thus reducing the com-

putation burden. In particular, g̃(Da
j (τ)) can be trained

by deep neural networks, Gaussian process regression, or

polynomial regression. The output of the surrogate model

yields a set of feature vectors of the training data.

Let A and B represent the number of vertexes in the GAT

and the number of features in each vertex, respectively. The

vector that represents feature of g̃(Da
j (τ)), as well as the

overheard ωωωi(τ) can be denoted by hhh = {
�!
h1,
�!
h2, ...,

�!
he},

where e 2 [1, A] is the graph size and he 2 R
B . Based

on the input of hhh, the adversarial GAT calculates attention

coefficients for each of the vertices and features, which is

given by [28]

γxy = atn(W aW aW a�!hx,W
aW aW a�!hy), (9)

where W aW aW a 2 R
B0

⇥B is a weight matrix. Here, B0 defines

the size of the adversarial GAT’s output which is a set of

the biased features.

According to [29], atn(·) presents a shared attention

function which can be specified as

atn(W aW aW a�!hx,W
aW aW a�!hy) = LeakyReLU(�!c T [W aW aW a�!hx ⌦W aW aW a�!hy]),

(10)

where “⌦” stands for a concatenation operation between

the two matrices. �!c T denotes the transpose of a weight

vector �!c 2 R
2B0

that is used to parametrize the atn(·)
function in a neural network.

Moreover, at each vertex x, γxy is computed only for the

neighbors of the vertex x in the graph, namely, y 2 Nx,

where Nx denotes the neighborhood of x. To normalize

attention weights and highlight important neighbors, a

softmax function is used to normalize γxy across all choices

of y. Thus, we have

softmaxy(γxy) =
exp(γxy)P

y02Nx
exp(γxy0)

. (11)

By substituting (10) into (11), the attention coefficients

can be obtained by

dγxy =
exp(LeakyReLU(�!c T [W aW aW a

�!
hx ⌦W aW aW a

�!
hy]))P

y02Nx
exp(LeakyReLU(�!c T [W aW aW a

�!
hx ⌦W aW aW a

�!
hy0 ]))

.

(12)

Based on (12), a normalized dγxy can be used to compute

a linear combination of the features corresponding to the

attention coefficients, to serve as the final output features

for every vertex (after potentially applying a nonlinearity,

ζ). Thus, we have hhh0 = {
�!
h1

0,
�!
h2

0, ...,
�!
he

0}, which is give by

�!
he

0 = ζ(
X

y2Nx

dγxyW aW aW a�!hy) (13)

The optimization of the adversarial training model at

attacker in Problem P2 is a non-convex combinatorial

problem intractable for conventional optimization tech-

niques. We decouple the AGAT architecture between the

attack and the benign user selection using the Lagrangian-

dual method. A new approach is developed to iteratively

optimize the malicious, biasing model updates ωωωa
j (τ) by

running the adversarial GAT and subgradient descent, as

depicted in Fig. 3.



XXXX, 2023. 7

The Lagrange function of Problem P2 is given by

L(αa
i,j(τ),λ(τ)) =∆Loss + λ(τ)(dT � ωi,j)+

NX

i=1

ri(τ)(dKL(ωωωi(τ),ωωω
a
G(τ))�R),

(14)

where λ(τ) and ri(τ) denote the dual variables. The

Lagrange dual function is

Dj(λ(τ), ri(τ)) = max
ωωωa

j
(τ),αa

i,j
(τ)

L(αa
i,j(τ),λ(τ), ri(τ)).

(15)

The dual problem of (7) is

min
λ(τ),ri(τ),8i

Dj(λ(τ), ri(τ)). (16)

B. Generating Biasing Model Updates with GAE

1) GAE for primary variable optimization: At the τ -th

communication round, the primary variable ωωωa
j (τ) of the

Lagrange function (15) can be optimized according to

ωωωa
j (τ)

⇤
= arg max

ωωωa
j
(τ)

⇢
∆Loss � λ(τ)(dT � ωi,j)�

NX

i=1

ri(τ)(dKL(ωωωi(τ),ωωω
a
G(τ))�R)

�
. (17)

We propose to optimize ωωωa
j (τ)

⇤
in (17) by designing a

new GAE model with the AGAT architecture. As shown

in Fig. 3, is comprised of two primary components: an

encoder and a decoder. Within this framework, the encoder

is responsible for encoding the feature matrix hhh0, utilizing

the attention coefficients dγxy (which is described as an

adjacency matrix A), and the decoder takes the encoder’s

output as the input to reconstruct a biasing bA.

In particular, the encoder is constructed using an archi-

tecture based on M layers of graph convolutional networks

(GCN). This design enables the encoder to learn a represen-

tation that effectively captures the essential characteristics

of the model updates, which can be formulated as

ZM = fG(Z
M�1,A|wM ), (18)

where fG(·, ·|·) represents a spectral convolution operation,

while wM signifies the weight matrix corresponding to the

M -th layer within the GCN.

Given an identity matrix I 2 R
J⇥J , eA can be formulated

as eA = A+ I , and we have Axy =
P

j0
eAjj0 . To generate

a feature representation of the graph, the encoder can be

written as

fG(Z
M�1,A|wM ) = Φ

M (A
� 1

2 eAA
� 1

2ZM�1wM ), (19)

where Φ
M (·) denotes a nonlinear activation function, for

instance, tanh(·) or ReLU(·); meanwhile, A
� 1

2 eAA
� 1

2 rep-

resents the symmetrically normalized adjacency matrix.

The output produced by the GAE is the reconstructed

adjacency matrix, denoted bA, which is articulated as

bA = sigmoid
⇣
ZM

�
ZM

�T⌘
, (20)

where the sigmoid function is specified by sigmoid(x) =
1/(1 + exp(�x)). This formulation suggests that the like-

lihood of correlation between model updates within the

graph increases with the magnitude of the inner product

(ZM (ZM )T ).
The discrepancy between A and its reconstructed coun-

terpart bA is quantified through a reconstruction loss func-

tion, as studied in [30], which is defined as

φloss = EfG(ZM�1,A|wM )

h
log p( bA | ZM )

i
, (21)

where the probability p( bA | ZM ), as determined by the

decoder, reflects the degree of correlation among the model

updates.

Since the attacker aims to generate the malicious model

updates for biasing FL, the proposed GAE is constructed

and trained to maximize L(ωωωa
j (τ),λ(t))�φloss. As a con-

sequence, the malicious model update ωωωa
j (τ) increasingly

biases the FL training fairness with the increase in global

model aggregations, i.e., τ = 1, 2, · · · .

A graph signal processing module is introduced to

analyze the correlation features present in benign model

updates alongside the data attributes that support these up-

dates. Utilizing the concept of a Laplacian matrix, denoted

as ψ and constructed from the adjacency matrix (A) of

benign model updates such that ψ = diag(A) � A, as

outlined in [31], we embark on a deeper exploration of

these correlations. Through the application of singular value

decomposition (SVD) on ψ, represented as ψ = BΣBT , a

complex unitary matrix B 2 R
J⇥J is derived. This matrix,

also referred to as the graph Fourier transform (GFT) basis,

facilitates the transformation of graph data (e.g., F) into its

spectral-domain representation. The matrix Σ, characterized

as a diagonal matrix, contains the eigenvalues of ψ on its

diagonal, providing a foundation for further analysis and

manipulation of the graph data.

Consequently, an attacker can isolate a matrix S, en-

capsulating the spectral-domain data features of all benign

model updates. This isolation, achieved by dissociating

the correlations between models and then concentrating

on the data features underpinning these model updates, is

represented as

S = B�1F . (22)

Furthermore, the attacker employs the graph signal process-

ing module to create a Laplacian matrix from the output of

the GAE, indicated by

bψ = diag( bA)� bA. (23)

Subsequent application of SVD on bψ yields the corre-

sponding GFT basis, bB. Leveraging the relationship defined

in (22) for S, the malicious model update, which mirrors the

adjacency matrix processed through the GAE, is identified

as

bF = bBS, (24)

where bF represents a matrix with dimensions R
J⇥D.
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Within bF , the vector ωωωa
j (τ) is identified and chosen by

attacker j as the malicious, biasing model update. This

chosen vector is then transmitted to the FL server by the

attacker for inclusion in the aggregation of the global model

during the communication round τ . Based on the graph

signal processing module, the attacker can influence the

training of global models, by strategically injecting tailored

model updates designed to compromise the FL fairness.

2) Sub-gradient descent for dual variable updating:

Given ωωωa
j (τ), the attacker can also update the dual vari-

ables, λ and ri, i = 1, · · · , N , specified in (16). Let ε

denote the step size. Based on ωωωa
j (τ) obtained from bF

in (24), λ(τ) and ri(τ), i = 1, · · · , N are updated by the

sub-gradient descent method that solves (16), where

λ (τ + 1) = [λ(τ)� ε (ωi,j � dT )]
+
, (25)

ri(τ + 1) = [ri(τ)� ε(dKL(ωωωi(τ),ωωω
a
G(τ))�R)]+,

i = 1, · · · , N, (26)

and [x]
+

= max (0, x). At initialization, λ(τ) is non-

negative, i.e., λ(1) � 0, to ensure that (25) converges.

Moreover, ωωωa
j (τ) is optimized with the updates of ωi,j

and ωωωa
G(τ) according to (3) and (4), respectively, after the

global model aggregation.

C. Training Algorithm of AGAT Attack

According to the design of the new AGAT attack in

Fig. 3, Algorithm 1 is developed along with the FL training

of the benign users and the FL server. Specifically, the

environment and parameters, such as the graph structure

G = (V , E,F), the total number of learning iterations

TL, and the datasets Di(τ) and Da
j (τ) are initialized.

During each training iteration of the FL, benign users train

and upload ωωωi(τ) to the server. The attacker conducts

AGAT(g̃(Da
j (τ)),ωωωi(τ),λ(τ)) to generate ωωωa

j (τ), which

trains g̃(Da
j (τ)) and extracts features using attention co-

efficients dγxy to emphasize correlations. These features are

encoded using GAE to produce the adjacency matrix A
that represents connections between model features. The

attacker then creates a biased model update in an attempt

to manipulate the global model and uploads it to the

server. The server aggregates these updates, including the

malicious ones, to update ωωωa
G(τ), which is then distributed

across the users, including the benign ones, for the next

training iteration. This cyclic process progressively biases

the global model, undermining the integrity and effective-

ness of the FL. As ωωωa
j (τ) is highly correlated with ωωωi(τ)

from the benign users, the FL server is unlikely to detect

and identify the attackers.

V. PERFORMANCE EVALUATION

This section presents the implementation of the AGAT

attack using PyTorch. When subjected to this attack, we

assess the training accuracy of both local and global

models. Moreover, the detection efficacy of the AGAT

attack is examined through the metric of Cosine simi-

larity between the local models and the global one. In

Algorithm 1 The training algorithm of the proposed AGAT

attack

1: 1. Initialize: G = (V, E,F), TL, N , I , dT , Di(τ), and

Da
j (τ).

Proposed AGAT attack:

2: for Training iteration τ = 1, 2, 3, · · · , TL. do

3: Benign users train the local model updates ωωωi(τ),
i 2 [1, I] according to (2).

4: Benign users upload ωωωi(τ), i 2 [1, I] to the server,

and the attacker j 2 [1, N � I] overhears the benign

model updates of its neighbours.

5: The proposed AGAT in Fig. 3 is conducted at the

attacker to generate malicious, biasing model updates

ωωωa
j (τ), i.e., AGAT(g̃(Da

j (τ)),ωωωi(τ),λ(τ)):
6: Training the surrogate mode g̃(Da

j (τ))! hhh.

7: The attention coefficients dγxy  (12).

8: Based on (13), hhh0 that contains correlated features

is obtained.

9: The GAE encoder encodes hhh0 with dγxy (which

represents an adjacency matrix A).

10: bA is reconstructed by training the GAE, which

maximizes L(ωωωa
j (τ),λ(t))� φloss.

11: According to the proposed graph signal process-

ing module (22) ⇠ (24), the malicious, biasing model

update ωωωa
j (τ) is obtained and uploaded to the server.

12: At the server, (7b) is checked to detect the biasing

model update.

13: According to (4), the server aggregates the selected

model updates to generate the global model ωωωa
G(τ)

that is broadcasted to all the users.

14: The benign users conduct training of their next

model updates ωωωi(τ + 1) with the received global

model, i.e., ωωωi(τ) ωωωa
G(τ), 8i 2 [1, I].

15: end for

addition, the source code for the AGAT attack has been

released on GitHub: https://github.com/jjzgeeks/AGAT-

basedModelPoisoningAttackFL.

A. Experimental Settings

The benign FL is designed to improve image classi-

fication accuracy, while the proposed AGAT attack aims

to maximize the KL divergence between the user’s model

update and the global model, which leads to a biased FL

training of the label classification. The total number of users

N increases from 6 to 35, while the number of benign users

I increases from 5 to 30. The global model ωωωa
G(τ) in FL

is trained with 100 communication rounds, and training of

the local model ωωωi(τ) is carried out in 10 iterations.

For building the architecture of the AGAT, the number

of attention heads, the hidden layer size, dropout rate,

weight decay, and the number of layers are set to 4, 80,

0.4, 2⇥103, and 2, respectively. The activation function

is rectified linear unit (ReLU), as given in (10), for the

intermediate layers due to its simplicity and effectiveness



XXXX, 2023. 9

in alleviating the vanishing gradient problem, and softmax

is used for the output layer when dealing with classification

tasks. For building the adjacency matrix AAA in GAE at each

attacker, the number of selected model parameters in ωωωi(τ),
i.e., M , is set to 100, 200, or 300. The GAE encoder is a

two-layer GCN network with a dropout layer to prevent

overfitting. The GAE decoder is an inner product. The

Adam optimizer with a learning rate 0.01 is adopted to

optimize the network. For all datasets, we use the same

encoder, decoder and SVM models.

The implementation of the proposed AGAT attack was

conducted on a SVM model, utilizing PyTorch version

1.12.1 and Python version 3.9.12. This setup was deployed

on a Linux-based workstation, equipped with an Intel(R)

Core(TM) i7-9700K CPU at 3.60GHz, featuring 8 cores,

and supported by 16 GB of DDR4 memory operating at

2400 MHz. The experimentation involved the application of

the AGAT attack across two distinct datasets, demonstrating

the attack’s efficacy and potential impacts on SVM mod-

els under specified computational environments and data

conditions:

• The CIFAR-10 dataset [32], consists of 60,000 images

in color, each with a dimension of 32⇥32 pixels, and

distributed across ten distinct classes. Each class is

represented by 6,000 images. This dataset is organized

into two subsets: 50,000 images designated for training

purposes and 10,000 images allocated for testing. This

structure supports a wide range of image recognition

tasks by providing a diverse set of visual inputs for

model training and evaluation.

• The Street View House Numbers (SVHN) dataset [33],

includes over 600,000 real-world digit images, featur-

ing house numbers in their natural, unsegmented form,

captured in a wide range of lighting conditions, angles,

and backgrounds.

For our experiments, the CIFAR-10 and SVHN datasets

are balanced in terms of their class distributions [34], [35].

This characteristic of the datasets is crucial, as our primary

interest lies in a new fairness attack on the FL. By training

the AGAT based on balanced datasets, we ensure that the

baseline conditions of our experiments do not inherently

contain biases or imbalances that could confound the effects

of the proposed attack. This allows accurate assessment and

demonstration of the impact of the AGAT in biasing the FL.

Three key performance metrics are investigated:

• KL divergence measures the difference between the

probability distributions of a user’s model update and

the global model, providing insight into how much a

local model deviates from the expected global distri-

bution.

• The local model’s testing accuracy assesses to what

extent fairness is compromised without reducing FL

accuracy under the proposed AGAT attack, making the

attack difficult to detect at the server.

• Cosine similarity measures the angular similarity be-

tween the local models and the corresponding global

model, which is used to evaluate the invisibility of the
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Fig. 4: Given I = 5, the KL divergence dKL(ωωωi(τ),ωωω
a
G(τ))

under attacks with one or five attackers.
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Fig. 5: When I increases from 5 to 30, the KL divergence

dKL(ωωωi(τ),ωωω
a
G(τ)) in the presence of one, two, three, or

five attackers.

proposed AGAT attack.

In addition, the proposed AGAT attack is compared with

an existent adversarial GAE-based model poisoning attack

(G-MPA), as well as an existing fairness attack on FL, i.e.,

additive noise-based biasing attack (AN-BA):

• G-MPA focuses on compromising the integrity of
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Fig. 6: Given 20 users, the KL divergence

dKL(ωωωi(τ),ωωω
a
G(τ)), where the number of ωωωi(τ) overheard

increases from 4 to 20.

benign local models by fabricating malicious training

samples, thereby reducing the test accuracy of these

models. This technique has been used in existing

works, such as [36] and [37]. Specifically, the G-MPA

involves the attacker disrupting the training process

through the introduction of a counterfeit user. This

fake user transmits malicious local models to the

server, effectively manipulating the collective learning

outcome.

• AN-BA, considered in [8] and [38], generates ma-

licious local models by injecting a Gaussian ran-

dom noise into the received global model, which can

enlarge the magnitudes of the random local model

updates using a scaling factor.

B. Attacking Performance

1) KL divergence: Given I = 5, Fig. 4 shows the KL

divergence of each user i’s ωωωi(τ) under the proposed AGAT

attack, i.e., dKL(ωωωi(τ),ωωω
a
G(τ)) in (5). The performance is

tested with the CIFAR-10 dataset in Fig. 4(a) or the SVHN

dataset in Fig. 4(b), given one or five attackers in the FL.

Generally, the KL divergence given five attackers is about

three times higher than the case with a solo attacker. This

is reasonable since the increasing number of attackers leads

to more malicious, biasing model updates, i.e., ωωωa
j (τ)

⇤
,

being aggregated in the FL. Consequently, the maximum

loss function with regard to the FL fairness in (6) increases.

In Fig. 5, we conduct a comparative analysis of the

average KL divergence pertaining to local models subjected

to the proposed AGAT attack versus those affected by

the existing G-MPA and AN-BA. This comparison spans

an increase in the number of benign users I from 5 to

30, alongside varying numbers of attackers from 1 to 5.

Specifically, within the context of the CIFAR-10 dataset

and with the presence of five attackers, Fig. 5(a) elucidates

that the KL divergence under the AGAT attack exhibits a

substantial elevation, 70.2% and 85.4% higher compared to

the divergences under the G-MPA and AN-BA, respectively.

Similarly, Fig. 5(b) illustrates that, when considering the

SVHN dataset, the AGAT attack results in a KL divergence

that surpasses that of the G-MPA and AN-BA attacks by

60.9% and 78.6%, respectively. Such findings underscore a

significant bias in FL fairness induced by the AGAT attack.

This bias stems from our innovative architecture based on

GAT and GAE, which tailors the adversarial adjacency

matrix in alignment with the unique features of the users’

local model updates. As a result, this leads to the generation

of maliciously biased model updates aimed at maximizing

the loss differential, ∆Loss, as studied in (6).

As shown in Fig. 5, the KL divergence associated with

local models increases concomitantly with the augmen-

tation in the number of attackers, given a fixed I . This

substantiates the detrimental impact of the proposed AGAT

attack on the fairness of FL. Furthermore, the KL diver-

gence decreases with the increment of I , since increasing

the number of benign users can fortify the resilience of FL

against fairness attacks. This enhancement in resistance is

attributable to the aggregation of an increased number of

benign local models, which inherently dilutes the adversar-

ial influence exerted by the attackers, thereby preserving

the integrity and fairness of the FL process.

Fig. 6 illustrates the KL divergence dKL(ωωωi(τ),ωωω
a
G(τ))

as the number of overheard updates ωωωi(τ) increases from

4 to 20, where I = 20. It is observed that the KL

divergence grows in proportion to the number of model

updates overheard. For instance, with five attackers, the

KL divergence rises by 75.8%. By contrast, with a single

attacker, it increases by 84.6%. This demonstrates that the

more benign model updates the attacker can eavesdrop on,

the more correlated features the proposed AGAT can exploit

to generate malicious, biasing model updates. As a result,

the fairness of the FL process is further compromised, with

model updates becoming increasingly skewed.

To further study the probability distribution of malicious,

biasing model updates generated by the proposed AGAT

attack, Fig. 7 plots the cumulative distribution function

(CDF) of the KL divergence and global model accuracy.

Based on the CIFAR-10 dataset in Figs. 7(a) and 7(b)

as well as the SVHN dataset in Fig. 7(c) and 7(d), we

observe that the CDF with more attackers results in a

higher probability of the KL divergence. More importantly,

the CDF of the malicious, biasing model updates exactly

follows the same probability distribution pattern as the

benign ones. Therefore, it is impossible for the server to

identify the attacker. This is achieved by our innovative

design of the AGAT architecture, namely, the adversar-

ial GAT captures the correlations existent amongst data

features within benign model updates, while the GAE is

trained together with sub-gradient descent to reconstruct



XXXX, 2023. 11

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1
CIFAR-10

Attacker 1

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
CIFAR-10

Attacker 3

Attacker 2

Attacker 1

Attacker 5

Attacker 4

(a) one attacker with CIFAR-10. (b) five attackers with CIFAR-10.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
SVHN

Attacker 1

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
SVHN

Attacker 3

Attacker 1

Attacker 2

Attacker 4

(c) one attacker with SVHN. (d) five attackers with SVHN.

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0

0.2

0.4

0.6

0.8

1
CIFAR-10

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.2

0.4

0.6

0.8

1
SVHN

(e) Global model accuracy with CIFAR-10. (f) Global model accuracy with SVHN.

Fig. 7: Given I = 10, CDF of the KL divergence and global model accuracy under the proposed AGAT attack.
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Fig. 8: The Jain’s fairness index of the model updates, when

I = 20 and five attackers.

manipulatively the correlations of the model updates, and

maximize the reconstruction loss.

Fig. 8 presents the Jain’s fairness index for the model

updates when I = 20 and five attackers are present. Using

the CIFAR-10 dataset, the performance of the proposed

AGAT method is 25.6% and 74.2% lower than that of

G-MPA and AN-BA, respectively. When evaluating the

SVHN dataset, the Jain’s fairness index for AGAT is

15.7% and 61.4% lower compared to G-MPA and AN-

BA, respectively. These results confirm that the AGAT

attack significantly compromises fairness in FL. This bias

is driven by our novel architecture, which leverages GAT

and GAE to adaptively construct an adversarial adjacency

matrix aligned with the distinct features of the users’ local

model updates.

2) FL accuracy: Given I = 5, Fig. 9 shows the local

model’s testing accuracy under the proposed AGAT attack,

based on the CIFAR-10 and SVHN datasets. As observed

from Figs. 9(a) to 9(f), despite the adversarial interventions,

the FL accuracy not only remains unaffected but also con-

tinues to converge. This is attributed to the objective of the

AGAT attack, which diverges from traditional adversarial

tactics by specifically aiming to bias the FL, rather than

undermining their testing accuracy. Furthermore, the new

adversarial GAT design captures the correlations among

data features within benign model updates, thereby skew-

ing the model’s decision boundaries without detrimentally

affecting the FL accuracy. This nuanced strategy highlights

a sophisticated attack vector that compromises the fairness

and integrity of the FL without the conventional hallmark
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Fig. 9: Given 100 FL communication rounds and I = 5, the local model’s testing accuracy under the proposed AGAT

attack on the CIFAR-10 and SVHN datasets.

of reduced accuracy, thus posing a more insidious threat

that can elude standard detection mechanisms.

3) Cosine similarity: To evaluate the invisibility of the

proposed AGAT attack, we further investigate the Cosine

similarity between the local and the global models [39],

i.e., Constraint (7b), based on the CIFAR-10 and SVHN

datasets in Fig. 10. As shown in Figs. 10(a), 10(b), 10(c)

and 10(d), the Cosine similarities between the malicious,

biasing model updates generated by the new AGAT attack

and the corresponding global models are always below

that of the benign local model updates. This complicates

detecting and defending against fairness biases at the server

as malicious updates can blend with legitimate data. In

contrast, as depicted in Figures 10(e) and 10(f), both

the G-MPA method and the AN-BA approach lead to a

markedly higher Cosine similarity between the malicious,

biasing model updates and the aggregate global models.

This increased similarity offers a clearer signal for de-

tection mechanisms. This contrast underlines the superior

tactical advantage of the proposed AGAT attack: AGAT

crafts malicious model updates by exploiting the feature

correlations between benign local updates and the global

model. This strategy effectively obfuscates the distinctions

between benign and malicious updates, rendering the latter

virtually undetectable and showcasing the sophistication

and potential efficacy of AGAT in compromising model

integrity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new AGAT architecture was proposed

to intentionally instigate fairness attacks with an aim to

bias the learning process across the FL. The proposed

AGAT was developed to synthesize malicious, biasing

model updates, which capture the correlations among data

features within benign model updates. Moreover, an adver-

sarial GAE was designed within the AGAT architecture,

which can be trained together with sub-gradient descent

to manipulatively reconstruct the correlations of the model

updates and maximize the reconstruction loss while keeping

the malicious, biasing model updates undetectable. The

proposed AGAT attack was implemented in PyTorch, show-

ing experimentally that AGAT successfully increases the

minimum value of KL divergence of benign model updates

by 60.9% and bypasses detection of the existing defense

model. The source code of the AGAT attack is released on

GitHub.

For future work, we aim to extend the proposed AGAT

attack to DFL, where the users collaborate by sharing

updates directly with their peers. We will explore how

the AGAT attack adapts to decentralized communication

patterns, and assess its effectiveness in this context. More-

over, future work could explore the development of a

defense model against the AGAT attack, where the model

updates can be dynamically selected and weighted. By

using a reward mechanism based on metrics, such as the

consistency and reliability of updates over time, the server

can iteratively adjust its strategy to minimize the influence

of potentially malicious updates. The defense model can be

developed to allow the server to learn from historical data,

gradually identifying and reducing the weight of updates

that exhibit unusual or biased behavior, as might be induced

by the AGAT attack.
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Fig. 10: Given 100 FL communication rounds and I = 5, the Cosine similarities of the local models are measured at the

server in order to detect an adversarial attack, based on the CIFAR-10 and SVHN datasets.
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