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Abstract 
 

We propose an exact schedulability test for sporadic real- time tasks with constrained deadlines, 
scheduled by Global Fixed Priority (GFP). Our test is faster and less mem- ory consuming than 
other state-of-the-art exact tests. We achieve such results by employing a set of techniques that cut 
down the state space of the analysis, which extend the prior work by Bonifaci and Marchetti-
Spaccamela. Our test is implemented in C++ code, and it is publicly available.  
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ABSTRACT
We propose an exact schedulability test for sporadic real-
time tasks with constrained deadlines, scheduled by Global
Fixed Priority (GFP). Our test is faster and less mem-
ory consuming than other state-of-the-art exact tests. We
achieve such results by employing a set of techniques that
cut down the state space of the analysis, which extend the
prior work by Bonifaci and Marchetti-Spaccamela. Our test
is implemented in C++ code, and it is publicly available.

1. INTRODUCTION
The key property of a real-time system is time predictabil-

ity: the operations in such a system must be performed
within a strictly defined time. A scheduler is employed to
allocate the available CPU time to pending jobs of real-time
tasks, using certain priority rules.

At design time, a schedulability test is used to ensure
that all system deadlines will be met at runtime. Although
fast exact schedulability tests exist for a uniprocessor plat-
form [1, 2, 3], existing exact tests for a multiprocessor plat-
form are highly time- and memory-consuming. Hence, a
considerable amount of research has focused on su�cient
tests, which however significantly overestimate the system
demand for processing capacities.

To understand the need for an exact test, we thoroughly
evaluated the performance of the su�cient test of Guan
et al. [4] against the exact test of Bonifaci and Marchetti-
Spaccamela [5], and in certain cases, its pessimism exceeds
50%: more than half of those task sets, reported by Guan’s
test as unschedulable, are in fact schedulable. However, due
to high computation time and memory consumption, Boni-
faci’s exact test becomes intractable even for small systems.

In this paper we derive a faster exact schedulability test
for sporadic tasks with constrained deadlines.

1.1 Related works
The first exact schedulability test has been proposed by

Baker and Cirinei [6], for several discrete-time schedulers.
To check whether a given system is schedulable, the authors
solve a reachability problem in a finite state transition graph:
the algorithm traverses such a graph until it either finds
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a state with a violated deadline, or all feasible states are
confirmed schedulable.

Bonifaci and Marchetti-Spaccamela [5] improved signifi-
cantly Baker’s test [6]. They have also refined the complex-
ity bounds for the exact test, showing that it has polynomial
space complexity, rather than exponential, as reported in [6].
An e�cient C++ implementation for Bonifaci’s test is pub-
licly available1 . As our work strongly relies on [5], Section 3
will provide more details on that work.

Another exact test was proposed by Geeraerts et al. [7],
using formal verification methods. Both Bonifaci’s test [5]
and Geeraerts’ test [7] apply to most of online discrete-time
schedulers, such as GFP and GEDF, and allow tasks with ar-
bitrary deadlines. Sun and Lipari [8] have instead derived a
test specifically for GFP, by using a linear hybrid automaton.

Finally, Guan et al. [9] proposed a test for strictly periodic
tasks, for fixed-priority scheduling, using model-checking.
However, in multiprocessor scheduling, the scenario with pe-
riodic activations is not the worst-case for sporadic tasks,
and an exact test for sporadic tasks must analyze a signifi-
cantly larger number of legal release sequences.

Our evaluation has shown that Bonifaci’s test [5] for GFP
is faster, when compared to the exact tests using a timed
automaton, that is by Geeraerts et al. [7], and Sun and Li-
pari [8]. Such a conclusion is based on comparing running
times reported in [7], [8] against our evaluation reported in
Section 5. The runtime gain of Bonifaci’s test increases no-
ticeably for task sets with a larger number of tasks, and
a larger range of task periods. For example, while Geer-
aerts’ test [7] is constrained to task periods not exceeding
6-8, Bonifaci’s test can deal with larger task periods up to
40. We have also made some initial evaluation of constraint
programming and global optimization methods (such an op-
timization problem can be formulated through the notation
proposed in Section 2), but the resulted runtime was much
longer than for Bonifaci’s test [5]. For these reasons, we have
chosen Bonifaci’s test [5] as an initial ground to apply our
improvements. Anyway, we remark that all runtime reduc-
tion techniques derived in this work can be applied to any
other existing exact test for GFP.

1.2 Contributions of this paper
First, we estimate the pessimism of su�cient schedulabi-

lity tests for GFP, and confirm the need for a better solution.
Then, we derive an exact test, faster than Bonifaci’s test [5],
by exploiting (i) a constraint to maximize job interference,
(ii) a su�cient schedulability constraint, (iii) a constraint
for critical job release instants, and (iv) an optimized clock
transition between checked states.

1http://www.iasi.cnr.it/~vbonifaci/software.php



2. DEFINITIONS
We model a real-time system by a set of sporadic tasks

T = {⌧1 , . . . , ⌧n}, wherein each task ⌧

i

= (C
i

, D

i

, P

i

) is
characterized by an execution time C

i

, a relative deadline
D

i

, and a minimum interarrival time P

i

. We consider con-
strained deadlines D

i

 P

i

. Each task ⌧

i

2 T generates a
potentially infinite sequence of jobs, whose releases are sep-
arated by at least P

i

. A job released by ⌧

i

has an execution
requirement of C

i

time units, and a deadline atD
i

time units
after the job arrival time. All task parameters are assumed
to be integers. Tasks are scheduled by Global Fixed Prior-
ities (GFP) upon m identical processors, and are sorted by
decreasing priorities. We consider that scheduling decisions
are taken at discrete time instants N = {0, 1, 2, . . . }.

To represent the possible scenarios of job releases, we de-
fine the release sequence R as a set of n functions

R = {r1(t), . . . , rn(t) | t 2 N},

wherein each function r

i

: N! {0, 1} is such that r

i

(t) = 1
if ⌧

i

releases a job at time t, and r

i

(t) = 0 otherwise.
The release sequence R is said legal if the constraint on

the job minimum interarrival times is met; that is:

8i = 1, . . . , n, 8t
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0
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0
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(r
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0
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� P
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. (1)

Also, we define the finishing sequence F as a set of n

functions

F = {f1(t), . . . , fn(t) | t 2 N},

wherein each function f

i

: N! {0, 1} is such that f

i

(t) = 1
if a job of ⌧

i

is completed at time t, and f

i

(t) = 0 otherwise.
Set Q is defined by

Q = {q1(t), . . . , qn(t) | t 2 N},

wherein each function2
q

i

: N ! {0, 1} indicates if ⌧
i

has a
pending job at time t (in the run queue), defined by:

q

i

(t) =
tX

t

0=0

r

i

(t0)�
tX

t

0=0

f

i

(t0). (2)

A schedule is represented by a set S of n functions

S = {s1(t), . . . , sn(t) | t 2 N},

with s

i

(t) = 1 if any processor among the m available ones
is allocated to ⌧

i

over time [t, t+1), and s

i

(t) = 0 otherwise.
With these notations, GFP schedule S is formally defined by

s

i

(t) = 1 , q

i

(t) > 0 ^
i�1X

`=1

q

`

(t) < m, (3)

and the indicator function f

i

(t) of the finishing time, as

f

i

(t) = 1 ,

9t
r

< t : r

i

(t
r

) = 1 ^
t�1X

t

0= tr

s

i

(t0) = C

i

^ s

i

(t� 1) = 1. (4)

Fig. 1 illustrates an example of a GFP schedule of T =
{⌧1 , ⌧2 , ⌧3}. Below the schedule, we list the respective values
for R, F , Q, and S, where the i-th row corresponds to task
⌧

i

, and the j-th column corresponds to time instant t = j�1.
2We assume that no deadline miss has occurred by time
t, meaning that ⌧

i

has at most one pending job, due to
D

i

 P

i

.

τ1
τ 2
τ 3

Nota%on:(
!"#$%&'&()&$

!"#$*"+,'&-".$

!"#$,%&&+,-".$

%&)"/%*&$
(''"*(-".$

R : 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0

t0 2 4 6 8

F : 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0

Q: 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 1 1 1 1 1 0 0 0

S: 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 0

Figure 1: GFP schedule

Time instants t
r

, t
c

are said to be the release and comple-
tion times of the same job of ⌧

i

, if it holds:

r

i

(t
r

) = 1 ^ f

i

(t
c

) = 1 ^
trX

t=0

r

i

(t) =
tcX

t=0

f

i

(t), (5)

meaning that i) some job of ⌧

i

is released at time t

r

, ii)
some job of ⌧

i

is completed at time t

c

, and iii) the number
of ⌧

i

releases over time [0, t
r

] equals to the number of ⌧

i

completions over time [0, t
c

].
We define schedulability of T as follows.

Definition 1 (Schedulability of T ). Let L
R

denote

all legal release sequences of task set T , satisfying (1). T is

said schedulable upon m processors, if for any R 2 L
R

, all

jobs of task ⌧

i

, i = 1, . . . , n, meet their deadlines:

8R 2 L
R

, 8i 2 {1, . . . , n}, 8(t
r

, t

c

), t

c

�t
r

 D

i

, (6)

where t

r

, t

c

are the respective release and completion times

for the same job of ⌧

i

, defined by (5).

3. BACKGROUND ON EXACT SCHEDULA-
BILITY TESTS

Bonifaci and Marchetti-Spaccamela [5] analyzed the schedu-
lability of sporadic tasks by traversing a finite non-deterministic
state transition graph, searching for a state with a violated
deadline. As our work aims at improving their approach,
next we revisit the main ideas behind Bonifaci’s work [5].

At a given time t, the state of the set of tasks is modeled
by

�
c

i

, d

i

, p

i

�
n

i=1
2 N3n

, (7)

where c

i

2 {0, . . . , C
i

} is the remaining execution time of ⌧
i

pending job at t, if any; d
i

2 {0, . . . , D
i

} is the remaining
time until its deadline; and p

i

2 {0, . . . , P
i

} is the remaining
time until the earliest release of the next job of ⌧

i

.
A state transition graph for T is constructed as follows

(see also Fig. 2). Each state in the graph represents a system



Table 1: Bonifaci’s test: Task set example

i C

i

P

i

D

i

1 2 3 3
2 1 4 4
3 3 5 5

Algorithm 1 Exact schedulability test

1: procedure exactSchedulabilityTest

2: V  ; . initialize V

3: G (0, 0, 0)n
i=1 . initialize G

4: while G 6= ; do
5: g  Dequeue(G)
6: compute G

0 for g . from Eq. (8)
7: for each g

0 2 G

0
do

8: if g

0 62 V then

9: if 9i, (10) holds then . deadline miss
10: return Unschedulable
11: end if

12: V = V [ {g0}
13: G = Enqueue(G, g

0)
14: end if

15: end for

16: end while

17: return Schedulable
18: end procedure

state (c
i

, d

i

, p

i

)n
i=1 at a given time t. The initial state is

(0, 0, 0)n
i=1 , meaning that no job has been yet released.

The state transition law, which governs the transition
from state g = (c

i

, d

i

, p

i

) at time t to the next state g

0 =
(c0

i

, d

0
i

, p

0
i

) at time t+ 1, is the following:

g

0 2 G

0 ()

8
><
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(t+ 1)D
i

p

0
i
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i

� 1, 0) + r

i

(t+ 1)P
i

,

(8)

where G

0 is a set of all successors for g at time t+ 1. In the
equation above, s

i

(t) is the schedule function of ⌧
i

uniquely
determined by the system state g through (3), and r

i

(t+1)
represents the release function (the “input” to the system)
satisfying (1); that is

p

i

� 1 > 0 ) r

i

(t+ 1) = 0

p

i

� 1 = 0 ) r

i

(t+ 1) 2 {0, 1}.
(9)

State (c0
i

, d

0
i

, p

0
i

)n
i=1 , at time t, is a scheduling failure state

if some job misses its deadline:

c

0
i

� r

i

(t)C
i

> d

0
i

� r

i

(t)D
i

, (10)

with r

i

(t) defined by (9). This condition is true when the
remaining execution time for a job (LHS of (10)) exceeds
the remaining time until its deadline (RHS of (10)). r

i

(t)C
i

,
r

i

(t)D
i

are subtracted to correctly consider the case when
the job deadline of ⌧

i

coincides to the next release of ⌧
i

.
Once the scheduling failure state is encountered, the al-

gorithm reports unschedulability of T , and terminates. If
instead all feasible states have been checked, and no failure
state has been detected, then T is reported schedulable.

Algorithm 1 implements Bonifaci’s test using breadth-first
search. It maintains two additional data structures: V is a
set of checked states at previous iterations, and G is a FIFO
queue, containing states for further examination. The set
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Figure 2: State transition graph

V is initially empty, and queue G contains only the initial
state g0 = (0, 0, 0)n

i=1 . At the first iteration of the while
loop, the algorithm removes g0 from G, and computes set
G

0 of successors for g0 using (8). Then, each state g

0 2 G

0

is checked for a deadline miss (line 9), added to a list of
checked states V (line 12), and added to queueG, to examine
the g

0 successors at further iterations. At each iteration of
the while loop, the algorithm removes the first state g from
queue G (line 5), and computes the set G

0 of successors for
g (line 6). Each state g

0 2 G

0 that has not been checked yet
(that is g0 62 V ), is checked for a deadline miss, and added to
V and G. The algorithm terminates when G becomes empty,
meaning that all feasible system states were examined.

A higher runtime e�ciency of Bonifaci’s Algorithm 1 com-
pared to other exact tests is mainly thanks to condition in
line 8: each system state in a graph is checked only once.
However, the same approach cannot be applied directly to
tests using a timed automaton, due to specifics of a timed
automaton. One solution has been proposed by Geeraerts et
al. [7], who derived a so called simulation relation technique
for a timed automaton, but it does not seem to be more
e�cient than Bonifaci’s approach.

Anyway, Algorithm 1 has exponential time and polyno-
mial space complexity, and it might not terminate in a rea-
sonable time even for a small T . According to our evalua-
tion, Bonifaci’s test is capable to deal with up to 5–6 tasks
scheduled upon 2 processors, considering very small range
of task periods, not exceeding 40.

Consider T with the parameters reported in Table 1, to
be scheduled by GFP upon m = 2 processors. In Fig. 2 we
report fragments of the state transition graph for such T .
The total number of states in the full graph is 191.

For the same T , our test checks 12 states only, instead of
191, in one sixth of the running time relative to [5], and the
e�ciency of our test increases for larger task sets.

4. A FASTER SCHEDULABILITY TEST
In this section we derive a faster exact schedulability test

for T . Below we test schedulability of ⌧

k

, assuming that
⌧1 , . . . , ⌧k�1 are schedulable.



4.1 Job interference
We first show that, when analyzing the schedulability of

⌧

k

, we can safely ignore any job of a higher-priority task ⌧

i

,
i < k, that causes no interference to any lower-priority tasks
⌧

i+1 , . . . , ⌧

k

.
Let us define job interference as follows.

Definition 2 (Job interference). Let J

i

denote an

arbitrary job of ⌧

i

, with release and completion times denoted

by t

r

and t

c

respectively. Job J

i

is said to interfere with a

lower priority job J

`

of ⌧

`

, ` > i, if at some time t 2 [t
r

, t

c

)
a processor is allocated to J

i

, but not to J

`

:

9` > i, 9t 2 [t
r

, t

c

) :

s

i

(t) = 1 ^ q

`

(t) = 1 ^ s

`

(t) = 0,
(11)

with s

i

(t), q
`

(t) defined by (3) and (2), respectively.

We clarify this definition on an example. Let T = {⌧1 , . . . , ⌧4}
be scheduled upon m = 2 processors. Consider the release
sequence R for T as depicted in Fig. 3a, and suppose that
we analyze schedulability of task ⌧4 . Job J1,1 of ⌧1 interferes
with job J3,1 of ⌧3 at time t = 2, as (11) holds:

s1(2) = 1 ^ q3(2) = 1 ^ s3(2) = 0.

Instead, job J3,1 does not interfere with J4,1 , as (11) is
violated. By removing such non-interfering jobs, we can
produce a di↵erent arrival sequence that does not a↵ect the
schedule of task ⌧4 . Let us transform R, depicted in Fig. 3a,
into R

0, by erasing all jobs of task ⌧

i

, i < 4, which do not
interfere with lower priority jobs. These jobs are J2,2 , J3,1 ,
and J3,2 . Observe that the amount of resource available for
⌧4 in R

0 is the same as in R.

Theorem 1. Assume that ⌧1 , . . . , ⌧k�1 are schedulable.

Let R = {r1(t), . . . , rk(t)} be any legal release sequence for

T , and let J

i,t

denote the ⌧

i

job, released at time t. Let R

0
be

a new release sequence that excludes all jobs of task ⌧

i

from

R, i < k, which violate the interference condition (11):

R

0 ={r01(t), . . . , r0k(t)} :

r

0
i

(t) =

(
1, if r

i

(t) = 1 and (11) holds for J

i,t

0, otherwise

,

i = 1, . . . , k � 1,

r

0
k

(t) = r

k

(t).
(12)

Then, the job of task ⌧

k

pending at time t (if exists) misses

its deadline in R i↵ it misses its deadline in R

0
.

The proof of Theorem 1 is provided in the Appendix.
According to Theorem 1, the worst-case release sequence

for ⌧
k

is among those satisfying the following condition.

Corollary 1. Let Rreduced

T denote all legal release sequences

for T , wherein each job of ⌧

i

, i = 1, . . . , k�1, interferes with
a lower priority job, as defined by (11). ⌧

k

is schedulable for

each legal R, satisfying (1), i↵ ⌧

k

is schedulable for each

R

0 2 Rreduced

T .

We next apply Corollary 1 to speed-up Algorithm 1. Let
us extend state definition (7) at time t to

⇣
c

i

, d

i

, p

i

, b

i

⌘
k

i=1
,

where b

i

is boolean, such that b
i

(t) = 1 i↵ ⌧

i

has a pending
job at t, and that job has interfered with a lower priority
one by time t inclusive (meaning that condition (11) holds
for that ⌧

i

job at some time t

⇤  t).

(a) A legal release sequence R for T

τ1

t0 12

! 2
! 3

J2,1 J2,2

J1,1

J3,2J3,1

J4,1! 4

R,  S:

2 4 6 8 10

τ1

t0 12

! 2
! 3

J2,1
J1,1

J4,1! 4

!R ,  !S :

2 4 6 8 10

(b) Transformed released sequence R0
for T

! 1

t0 12

! 2
! 3

J2,1 J2,2

J1,1

J3,2J3,1

J4,1! 4

R,  S:

2 4 6 8 10

! 1

t0 12

! 2
! 3

!J2,1

!J1,1

!J4,1! 4

′R ,  ′S :

2 4 6 8 10

Figure 3: Schedule transformation for Theorem 1

The transition law (8) is extended for b

i

(t) accordingly.
An initial state is (0, 0, 0, 0)k

i=1 with b

i

= 0. For state
(c

i

, d

i

, p

i

, b

i

)k
i=1 at time t, b

i

is computed by

b

i

=

8
><

>:

1, if s
i

(t) = 1 ^ (9` > i : q
`

(t) = 1 ^ s

`

(t) = 0)

1, if bprec
i

= 1 ^ q

i

(t) = 1 ^ r

i

(t) = 0

0, otherwise

,

(13)
where b

prec

i

corresponds to the preceding state. In the defi-
nition above, b

i

= 1 i↵ ⌧

i

interferes with a lower priority job
at time t (that is the first condition), or ⌧

i

job, pending at
time t, has interfered with a lower priority job prior to time
t (that is the second condition).

We can determine if a job is non-interfering only after an-
alyzing its entire execution. Therefore, we can check if (11)
holds only when job completes in a state transition graph.
Below we update the transition law (8) accordingly, by ex-
cluding from the analysis every state with jobs that vio-
late (11).

Suppose that state (c
i

, d

i

, p

i

, b

i

)k
i=1 at time t is such that

9` < k : c

`

= 1 ^ s

`

= 1 ^ b

`

= 0,

with s

`

computed by (3). Due to Corollary 1, we can safely
discard a schedule with such a state from the analysis, be-
cause condition (11) is violated for ⌧

`

: c

`

> 0 means that
⌧

`

has a pending job at time t, b
`

= 0 means that ⌧

`

job
does not interfere with any lower priority job by time t+ 1
inclusive, and c

`

= 1 ^ s

`

= 1 means that ⌧

`

job will be
completed by time t+ 1.

Then, the transition law (8) for state g is optimized by
adding a pruning constraint

8g0 2 G

0
, 8i < k : c

0
i

= 1 ^ s

0
i

= 1 �! b

0
i

= 1, (14)

where g

0 = (c0
i

, d

0
i

, p

0
i

, b

0
i

) is a successor for g, with G

0 defined
by (8).

Recall a release scenario R as depicted in Fig. 3a. As
constraint (14) is violated for job J3,1 at time t = 5, such
R is not considered further for t � 5. Instead, the test will
consider a release scenario, when another job is released by
⌧1 or ⌧2 at time t = 5 (if such a release is feasible), so that
J3,1 will cause interference on J4,1 .

Another example is depicted in Fig. 4, showing a reduced
state graph, thanks to (14), for T with parameters as given
in Table 1, scheduled upon m = 2 processors.
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Figure 4: Pruned state transition graph by (14)
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Figure 5: Maximum job interference

Constraint (14) allows to totally eliminate the existence
of all non-interfering jobs from release scenarios. Later, in
Section 5, we report the evaluation results, which confirm
the high e�ciency of (14) in pruning the state space; that
e�ciency significantly increases with the number of tasks n.

4.2 Sufficient schedulability condition
Next, we prune the state space G0 for Algorithm 1 through

applying a su�cient schedulability condition. In fact, if
a su�cient schedulability condition holds for some system
state, then this state cannot lead to a failure state, and thus
we do not need to examine its successors.

At time t, let state (c
i

, d

i

, p

i

)k
i=1 be such that c

k

> 0,
meaning that ⌧

k

has a pending job at time t, with remaining
execution time c

k

and a deadline at time t+ d

k

.
Applying Baruah’s analysis [10], the amount of resource

allocated to ⌧

k

over time [t, t+ d

k

) is at least

d

k

� Ī

k

, (15)

Table 2: Critical release instant: Task set example

i C

i

P

i

D

i

1 3 6 6
2 4 6 6
3 2 3 3
4 - 12 12

where Ī

k

is the upper bound on the interference, caused by
⌧1 , . . . , ⌧k�1 on ⌧

k

, computed by (see Fig. 5 for intuition)

Ī

k

=
W

m

, (16)

with the maximum aggregated workload W for ⌧1 , . . . , ⌧k�1

computed by

W =
k�1X

i=1

W

i

W

i

= min(c
i

, d

k

) + `

i

C

i

+min(C
i

,�
i

),

(17)

with

`

i

= max

✓
0,

�
d

k

� p

i

P

i

⌫◆
and �

i

= d

k

�p
i

�`
i

P

i

. (18)

If the lower bound (15) on the supply allocated to ⌧

k

is not
lower than the remaining demand c

k

of ⌧
k

, that is d
k

� Ī

k

�
c

k

, then ⌧

k

is guaranteed schedulable. Thus, Algorithm 1
needs to check the successor states for (c

i

, d

i

, p

i

)k
i=1 only if

d

k

� Ī

k

< c

k

. (19)

We have chosen condition (19) due to its low computa-
tion time. However, many other tests could be used instead
of (19), and their performance remains to be analyzed.

4.3 Critical release instant
Davis and Burns [11] have shown that the worst-case ex-

ecution scenario for a job of task ⌧

k

occurs when that job
is released at such time t (r

k

(t) = 1), when all m proces-
sors are occupied by higher priority tasks ⌧1 , . . . , ⌧k�1 (that
is,

P
k�1
`=1 q

`

(t) � m), but there is at least one processor
idle during the preceding time interval [t � 1, t) (that is,P

k

`=1 q

`

(t� 1) < m):

r

k

(t) = 1 )
k�1X

`=1

q

`

(t) � m ^
kX

`=1

q

`

(t� 1) < m, (20)

with q

`

(t) defined by (2), and q

`

(t) = 0 extended for t < 0.
Further details can be found in Theorem 1 of [11].

We next adapt such an approach to restrict the release
times for ⌧1 , . . . , ⌧k�1 . We first provide an example. Con-
sider T = {⌧1 , . . . , ⌧4} with parameters as reported in Ta-
ble 2, scheduled upon m = 2 processors. We analyze the
schedulability of ⌧4 .

Fig. 6a depicts a legal release sequence for T , denoted by
R. In such R, job J1,2 of ⌧1 causes no interference to other
jobs until time 10. Observe also that, after releasing J1,2 at
time 8, ⌧1 cannot release another job until ⌧4 ’s deadline at
time 13. Then, we can safely postpone the release of J1,2

until time 10, as depicted in Fig. 6b.
The same reasoning does not apply, however, to job J3,1

of ⌧3 : delaying the release of J3,1 might potentially a↵ect the
release time of J3,2 (due to the constraint on the minimal
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Figure 6: Critical release instants

time separation P3), and J3,2 in turn a↵ects the schedula-
bility of ⌧4 .

We next formalize the argument. For an arbitrary release
sequence R, let time t be such that:

1. ⌧

k

has a pending job at time t: q
k

(t) = 1;

2. ⌧

i

, with i < k, releases a job at time t: r
i

(t) = 1;

3. ⌧

i

cannot release another job until ⌧
k

’s deadline:

P

i

�D

k

+ (t� t

r

) � 0, (21)

where t

r

denotes the release time for ⌧

k

job, pending
at time t.

At such time t, there should be at least m+ 1 pending jobs
for ⌧1 , . . . , ⌧k:

8t, i < k :

8
><

>:

q

k

(t) = 1

r

i

(t) = 1

P

i

�D

k

+ t� t

r

� 0

)
kX

`=1

r

`

(t) > m. (22)

The e�ciency of (22) in pruning the state space is higher
for lower ratios Pk

/Pmin , with Pmin = min
i=1 ,...,k�1 Pi

; that
is due to the presence of (21) in (22).

The release times for ⌧1 , . . . , ⌧k�1 can be further constrained,
by exploring their periods P1 , . . . , Pk�1 . Recall the release
sequence R

0 as depicted in Fig. 6b. At time 8, no job is re-
leased by ⌧1 , . . . , ⌧3 , although each of them could; the next
job is only released 2 time units later, at time 10. To maxi-
mize interference on ⌧4 , we can transform R

0 into a new R

00,
by shifting 2 time units left all release instants for ⌧1 , . . . , ⌧3 ,
occurred after time 8, as depicted in Fig. 6c. Clearly, inter-
ference on ⌧

k

cannot decrease due to such a transformation.
Thus, we require that each R satisfies the condition

k�1X

i=1

p

i

(t) > 0, 8t (23)
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Figure 7: Clock increment �t: cases

in order to exclude case
P

k�1
i=1 p

i

(t) = 0, when each ⌧1 , . . . , ⌧k�1

can release another job, but none of them does.
Due to lack of space, we do not provide a formal proof for

constraints (22) and (23). Such a proof can be conducted
by analogy to the proof of Theorem 1 in [11], which results
in (20).

We conclude that the set G

0 of successor states, defined
by transition law (8), can be pruned further, by adding con-
straints (20), (22), and (23).

4.4 State transition
To avoid unnecessary checks for deadline misses at ev-

ery time instant, we optimize the clock transition between
checked system states as follows.

Let state (c
i

, d

i

, p

i

)k
i=1 , at time t, be such that ⌧

k

does not
miss any deadline, i.e., c

k

 d

k

by condition (10).
Suppose first that at mostm jobs are pending at (c

i

, d

i

, p

i

)k
i=1 ;

that is,
P

k

i=1 min(c
i

, 1)  m (see Fig. 7a). In this case, no
deadline miss can occur until the time when another job can
be released, that is time t+�t, with �t defined by

�t =

✓
min

i=1 ,...,k

p

i

◆

1

, (24)

where (x)1 denotes max(1, x).
Suppose instead that more than m jobs are pending at

(c
i

, d

i

, p

i

)k
i=1 (see Fig. 7b). Let �t denote the remaining

time until the next system event might occur for some task
⌧

i

(job release, completion or deadline):

�t =

✓
min

i=1 ,...,k

(c
i

, p

i

, d

i

)

◆

1

. (25)

Let q0 = (c0
i

, d

0
i

, p

0
i

)k
i=1 be a successor state for q = (c

i

, d

i

, p

i

)k
i=1 ,

�t time units later, with �t defined as above. If any of the
intermediate states between q and q

0 is a failure state, then
q

0 is a failure state as well.
Thus, the optimized clock transition �t between checked

system states is computed by (24) and (25):

�t =

8
>>>><

>>>>:

✓
min

i=1 ,...,k

p

i

◆

1

, if
kX

i=1

min(c
i

, 1)  m

✓
min

i=1 ,...,k

(c
i

, p

i

, d

i

)

◆

1

, otherwise.

(26)



The transition law (8) is updated accordingly, by replacing
the clock increment “1” in (8) and (9) by �t:

(c0
i

, d

0
i

, p

0
i

)k
i=1 2 G

0 ()

8
><

>:

c

0
i

= (c
i

� s

i

(t)�t)0 + r

i

(t+�t)C
i

d

0
i

= (d
i

��t)0 + r

i

(t+�t)D
i

p

0
i

= (p
i

��t)0 + r

i

(t+�t)P
i

i = 1, . . . , k

(27)
where g

0 = (c0
i

, d

0
i

, p

0
i

). �t and s

i

(t) are defined by (26), (3),
and r

i

(t+�t) satisfies (1):

p

i

��t > 0 ) r

i

(t+�t) = 0

p

i

��t = 0 ) r

i

(t+�t) 2 {0, 1}

4.5 Procedure for the schedulability test
The optimized procedure for an exact schedulability test

is as follows. In Algorithm 1, we replace the state transi-
tion law (8) by (27), and we incorporate the pruning con-
straints (14), (19), (20), (22), (23) into (27).

5. EVALUATION
We finally evaluate the performance of the exact schedula-

bility test presented in Section 4.5. The test is implemented
using C++ libraries, by extending Bonifaci’s tool [5], and
its code is publicly available3 .

The experiments are conducted on a hardware platform
with the following specifications:

- Processor: Intel Core i7-4710MQ CPU @ 2.5GHz

- Operating memory (RAM): 15,50 GB 1600 MHz

- System type: 64-bit

- Operating system: Ubuntu 14.04 LTS

5.1 Task set generation
Sporadic task sets T = {⌧

i

= (C
i

, P

i

)} with implicit dead-
lines D

i

= P

i

are randomly generated by specifying the
number of tasks n, the total task set utilization UT , the
maximum individual task utilization U

max

, and the range for
task periods [P

min

, P

max

].
The minimum period P

min

is randomly taken from the
range [3; 10], and all the task periods are generated such
that the specified ratio P

max

/P

min

holds. Task execution times
C

i

are chosen by solving the following linear integer opti-
mization problem, using CPLEX:

minimize

�����UT �
nX

i=1

Ci
/Pi

�����+ |Umax � Ci⇤
/Pi⇤ |

subject to

0 < C

i

< P

i

, i = 1, . . . , n
�����UT �

nX

i=1

Ci
/Pi

�����  �

UT UT

|Umax � Ci⇤
/Pi⇤ |  �

Umax Umax

Ci
/Pi  Ci⇤

/Pi⇤ , i = 1, . . . , n,

where C

i

, i = 1, . . . , n, are integer optimization variables,
|x| denotes the absolute value of x, and index i

⇤ corre-
sponds to task ⌧

i

⇤ having the maximum utilization Umax ;

3www.cister.isep.ipp.pt/docs/CISTER-TR-150503

Table 3: Key parameters: default values

Settings

Number of processors, m 2 3

Number of tasks, n 5 7

Task set utilization, UT 1.6 2.2

Maximum individual task utiliza-
tion, U

max

0.6 0.6

Minimum task period, Pmin [3, 10] [3, 10]

Ratio between the maximum and
minimum task periods, P

max

/P

min

4 4
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Figure 8: Runtime of exact tests (logarithmic scale)

i

⇤ is randomly taken from range [1, . . . , n]. We allow a rel-
ative deviation �

UT = 1.5% between the specified value U

and the actual tasks utilization
P

n

i=1
Ci
/Pi, as well as devia-

tion �

Umax = 2.5% between the specified value Umax and the
actual maximum task utilization max

i=1 ,...,n

Ci
/Pi.

We randomly generate task sets for the settings reported
in Table 3. In each experiment, one key parameter varies,
while the rest are left equal to the default values in Table 3.

The choice for parameter values is constrained by a hard-
ware limitation of 16 GB of operating memory. UT is cho-
sen such that the pessimism of Guan’s test [4] is maximized
(that is the case when the usage of an exact test makes more
sense). For a thorough evaluation, the pessimism of Guan’s
test is analyzed for varying UT as well.

5.2 Runtime reduction
We first compare the runtime of our test against Bonifaci’s

test [5]4 , for m = 2. Figs. 8a, 8b report the average runtime
for a varying number of tasks n, and a varying ratio P

max

/P

min

of task periods, considering only schedulable task sets. We
confirm a significant runtime reduction for our test, allowing
task sets with larger n and P

max

/P

min

. However, the runtime
complexity remains exponential in n.

The second experiment is conducted for m = 3. The

4We speeded-up the original code available at http://www.
iasi.cnr.it/~vbonifaci/software.php by a factor 10–20
times, by recompiling it at optimized settings.
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Figure 9: Contribution of each pruning constraint into the
state space reduction (logarithmic scale)

average runtime for our test is reported in Figs. 8c, 8d. For
such settings, Bonifaci’s test requires more than 16 GB of
memory in most cases, so that the comparison to our test is
infeasible. In 5% of cases, our test exceeds 16 GB as well,
and those cases are discarded.

Figs. 9a-9c report the contribution of each pruning con-
straint into the state space reduction. The plotted size re-
duction is computed by

reduction(x) =
N(x) excluded

N

,

where N is the number of states checked by the algorithm
employing all pruning constraints (14), (19), (20)-(23), (27),
and N(x) excluded is the number of states checked by the same
algorithm excluding the pruning constraint (x).

Despite of the polynomial space complexity, our evalua-
tion shows that the required system memory for our algo-
rithm (as for all other existing exact tests) increases sig-
nificantly with the number of tasks and their periods. For
example, for task sets comprised of just 10 tasks, and their
periods not exceeding 40, the required memory already ex-
ceeds 16 GB in most cases.

5.3 Comparison of exact and sufficient tests
To motivate the need for an exact test, we also evaluate

the pessimism of Guan’s su�cient test [4], which in turn
outperforms most of other existing su�cient tests5 . The ex-
periments are conducted when varying n and UT , for both
m = 2 and m = 3. The results are reported in Figs. 10a-10d.
We confirm a significant pessimism of Guan’s test, exceed-
ing 50% under certain settings. However, our evaluation
is limited to very small task sets, due to the high memory
consumption of the exact test.

6. CONCLUSION
We evaluated the performance of su�cient multiprocessor

schedulability tests for GFP, and confirmed their significant
pessimism. Then, to overcome the major drawbacks of these

5We have implemented Guan’s test following an optimized
procedure in [12]
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Figure 10: Performance of the su�cient test of Guan et

al. [4]

existing exact tests, which is high computation time and
memory consumption, we derived an improved exact test,
by extending Bonifaci and Marchetti-Spacamella’s work [5].
Evaluation confirmed high e�ciency of proposed improve-
ments, although the algorithm remains exponential in time
and polynomial in space.
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APPENDIX
The proof of Theorem 1 relies on the following lemma.

Lemma 1. Let R, R

0
be release sequences, as defined in

Theorem 1. Let S, S

0
be resource schedules for R, R

0
re-

spectively, defined by (3).

S and S

0
have the property:

8i, t : q

0
i

(t) = 1 �! s

i

(t) = s

0
i

(t), (28)

where q

0
i

(t) is defined by (2), and s

i

(t), s

0
i

(t) are defined

by (3), for S and S

0
respectively.

Observe that Lemma 1 does not require feasibility of T .
To proof Lemma 1, we explore definition (3) of supply

function s

i

(t): ⌧
i

job gets supply over time [t, t+1) (that is
q

i

(t) = 1 ^ s

i

(t) = 1), i↵ the number of higher priority jobs
at t is less than m (that is

P
i�1
`=1 q

`

(t) < m):

s

i

(t) = 1 ,

8
>><

>>:

q

i

(t) = 1

i�1X

`=1

q

`

(t) < m

(29)

s

i

(t) = 0 ,

2

66664

q

i

(t) = 0
8
>><

>>:

q

i

(t) = 1

i�1X

`=1

q

`

(t) � m

, (30)

8i, t

where square brace, “[”, denotes logical OR.

Also, the necessary constraints for values of s
i

(t) are:

s

i

(t) = 1 )
i�1X

`=1

q

`

(t) < m, (31)

s

i

(t) = 0 ^ q

i

(t) = 1 )
i�1X

`=1

q

`

(t) � m, (32)

8i, t

We are now ready to prove the lemma.
Proof. We prove the lemma by contradiction. Suppose

that (28) is violated for some task ⌧

i

⇤ at time t

⇤, that is

9i⇤, t⇤ : q

0
i

⇤(t⇤) = 1 ^ s

i

⇤(t⇤) 6= s

0
i

⇤(t⇤). (33)

Without loss of generality, let t⇤ be the earliest time, when (28)
is violated, meaning that

8i, t < t

⇤ : q0
i

(t) = 1 ! s

i

(t) = s

0
i

(t). (34)

As s
i

(t), s0
i

(t) are boolean, (33) might hold in two cases:

8
><

>:

s

i

⇤(t⇤) = 1

s

0
i

⇤(t⇤) = 0

q

0
i

⇤(t⇤) = 1

(35) or

8
><

>:

s

i

⇤(t⇤) = 0

s

0
i

⇤(t⇤) = 1

q

0
i

⇤(t⇤) = 1

(36)

We next show that both cases are infeasible, meaning
that (33) cannot hold.

Case 1: Substituting (31), (32) into (35), we get that

8
><

>:

s

i

⇤(t⇤) = 1

s

0
i

⇤(t⇤) = 0

q

0
i

⇤(t⇤) = 1

(31))

8
>>>><

>>>>:

i

⇤�1X

`=1

q

`

(t⇤) < m

s

0
i

⇤(t⇤) = 0

q

0
i

⇤(t⇤) = 1

(32))

8
>>>>><

>>>>>:

i

⇤�1X

`=1

q

`

(t⇤) < m

i

⇤�1X

`=1

q

0
`

(t⇤) � m

,

meaning that exists such a task ⌧

i

⇤⇤ , with i

⇤⇤
< i

⇤, that

q

0
i

⇤⇤(t⇤) = 1 (37)

q

i

⇤⇤(t⇤) = 0. (38)

From (37), ⌧
i

⇤⇤ has a job at time t

⇤, in S

0. Let J

0
⇤⇤ denote

that job, and let t0
r

⇤⇤ denote its release time, such that

r

0
i

⇤⇤(t0
r

⇤⇤) = 1. (39)

As J

0
⇤⇤ has not been completed by time t

⇤, J 0
⇤⇤ has not re-

ceived C

i

units of resource by time t

⇤:

t

⇤�1X

t= t

0
r⇤⇤

s

0
i

⇤⇤(t) < C

i

⇤⇤. (40)

From (12), whenever ⌧

i

⇤⇤ releases a job in R

0, it also re-
leases a job in R. Due to (39) and (12),

r

0
i

⇤⇤(t0
r

⇤⇤) = 1
(12)
=) r

i

⇤⇤(t0
r

⇤⇤) = 1,

that is ⌧
i

⇤⇤ releases a job at time t

0
r⇤⇤, in R. Let J⇤⇤ denote

that job, as well as t
c

⇤⇤ - the completion time for J⇤⇤.
Considering (38), ⌧

i

has no job pending at time t

⇤ � t

0
r

⇤⇤

in S, meaning that J⇤⇤ has been completed by time t

⇤:

t

c

⇤⇤  t

⇤

tc⇤⇤�1X

t= t

0
r⇤⇤

s

i

⇤⇤(t) = C

i

.



what together with (40) yields contradiction to (34), as

tc⇤⇤�1X

t= t

0
r⇤⇤

s

i

⇤⇤(t) = C

i

^ tc⇤⇤�1X

t= t

0
r⇤⇤

s

0
i

⇤⇤(t) < C

i

implies that

9t 2 [t0
r

⇤⇤
, t

⇤) : q

0
i

⇤⇤(t) = 1 ^ s

i

⇤⇤(t) 6= s

0
i

⇤⇤(t) (41)

Thus, Eq. (35) is infeasible.
Case 2: Suppose that (36) holds. Substituting (29), (30)

into (36), we get that

8
><

>:

s

i

⇤(t⇤) = 0

s

0
i

⇤(t⇤) = 1

q

0
i

⇤(t⇤) = 1

(30)()

8
>>>>>>>>>><

>>>>>>>>>>:

2
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q

i

⇤(t⇤) = 0
8
>><

>>:

q

i

⇤(t⇤) = 1

i

⇤�1X

`=1

q

`

(t⇤) � m

s

0
i

⇤(t⇤) = 1

q

0
i

⇤(t⇤) = 1

(29)()

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

2

66664

q

i

⇤(t⇤) = 0
8
>><

>>:

q

i

⇤(t⇤) = 1

i

⇤�1X

`=1

q

`

(t⇤) � m

q

0
i

⇤(t⇤) = 1

i

⇤�1X

`=1

q

0
`

(t⇤) < m

=)

2

666666666666664

(
q

i

⇤(t⇤) = 0

q

0
i

⇤(t⇤) = 1
8
>>>>>>>><

>>>>>>>>:

q

i

⇤(t⇤) = 1

i

⇤�1X

`=1

q

`

(t⇤) � m

i

⇤�1X

`=1

q

0
`

(t⇤) < m

The first case

q

i

⇤(t⇤) = 0

q

0
i

⇤(t⇤) = 1

is infeasible; the proof is conducted by analogy to Case 1,
for Eq. (37), (38).

Suppose that the second case holds:

q

i

⇤(t⇤) = 1 (42)

i

⇤�1X

`=1

q

`

(t⇤) � m (43)

i

⇤�1X

`=1

q

0
`

(t⇤) < m (44)

Due to (43) and (44), there exists such a task ⌧

i

⇤⇤ , with
i

⇤⇤
< i

⇤, that satisfies the constraints:

q

i

⇤⇤(t⇤) = 1 (45)

i

⇤⇤X

`=1

q

`

(t⇤) = m (46)

q

0
i

⇤⇤(t⇤) = 0. (47)

Let J⇤⇤ denote ⌧

i

⇤⇤ job, pending at time t

⇤ in S (there is
such a job, due to (45)), and let t

r

⇤⇤ denote its release time:

r

i

⇤⇤(t
r

⇤⇤) = 1,

t

⇤X

t= tr⇤⇤

s

i

⇤⇤(t) < C

i

. (48)

Observe that J⇤⇤ interferes with a lower priority job at time
t

⇤: a processor is assigned to J⇤⇤ at time t

⇤ (that is due

to (45) and (46)), and the number of pending jobs at t⇤ ex-
ceeds m (that is due to (42) and (43)). From definition (12)
of R0:

(
r

i

⇤⇤(t
r

⇤⇤) = 1

(11) holds for J⇤⇤

(12)
=) r

0
i

⇤⇤(t
r

⇤⇤) = 1,

meaning that ⌧
i

⇤⇤ released a job at time t

r

⇤⇤ , in R

0. Let J 0
⇤⇤

denote that job, and t

0
c

⇤⇤ - its completion time. Due to (47),
⌧

i

⇤⇤ has no pending job at t

⇤, in S

0, meaning that J

0
⇤⇤ has

been completed by time t

⇤:

t

0
c

⇤⇤  t

⇤

t

0
c⇤⇤�1X

t= tr⇤⇤

s

0
i

⇤⇤(t) = C

i

what together with (48) contradicts to assumption (34):
8
>><

>>:

t

0
c

⇤⇤  t

⇤

t

0
c⇤⇤�1X

t= tr⇤⇤

s

0
i

⇤⇤(t) = C

i

^ t

⇤X

t= tr⇤⇤

s

i

⇤⇤(t) < C

i

t

0
c⇤⇤�1X

t= t

0
r⇤⇤

s

0
i

⇤⇤(t) = C

i

^ t

0
c⇤⇤�1X

t= t

0
r⇤⇤

s

i

⇤⇤(t) < C

i

,

meaning that (34) is violated:

9t 2 [t
r

⇤⇤
, t

⇤) : q

i

⇤⇤(t) = 1 ^ s

i

⇤⇤(t) 6= s

0
i

⇤⇤(t)

We conclude that both cases, (35) and (36), are infeasible,
and lemma statement (28) holds always.

We finally prove Theorem 1.
Proof for Theorem 1. Necessity: We first prove that

feasibility of R implies feasibility of R0. The proof is con-
ducted by contradiction. Suppose that exist such R, R

0,
satisfying (12), that R is feasible, but R

0 is infeasible. For
R

0, let t
dm

denote the earliest missed deadline for ⌧
k

; conse-
quently, t

dm

�D

k

is the release time of the job missing the
deadline:

r

0
k

(t
dm

�D

k

) = 1, (49)

t

dm

�1X

t= t

dm

�Dk

s

0
k

(t) < C

k

. (50)

Due to (12), if ⌧
k

has released a job at time (t
dm

� D

k

) in
R

0, then it has also released a job in R:

r

k

(t
dm

�D

k

) = 1. (51)

Due to the assumption that R is feasible,

t

dm

�1X

t= t

dm

�Dk

s

k

(t) = C

k

, (52)

what contradicts to (50) due to Lemma 1.
Su�ciency: The su�ciency proof shows that feasibility

of R0 implies feasibility of R. Such a proof is conducted by
analogy to the necessity proof, by swapping functions r

k

(t),
s

k

(t) and r

0
k

(t), s0
k

(t) in Eq. (49)-(52).
The theorem follows.


