

Al-based Pilgrim Detection using Convolutional Neural Networks

MARWA BEN JABRA, ADEL AMMAR, ANIS KOUBAA, OMAR CHEIKHROUHOU, HABIB HAMAM

Plan

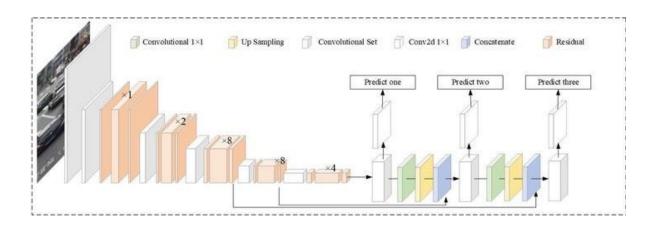
- > INTRODUCTION
- ALGORITHMS BACKGROUND
- > THE PILGRIMS DATASET
- EXPERIMENTAL EVALUATION
- > CONCLUSION
- > PERSPECTIVES

INTRODUCTION

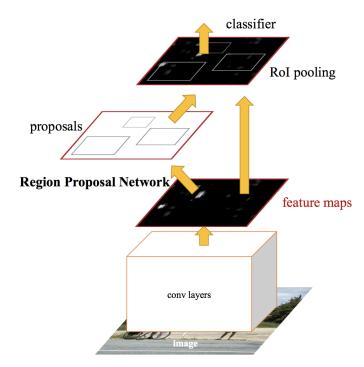
- ➤ The safety and security of pilgrims is the highest priority for the authorities.
- CNN to detect and identify Pilgrims and their features.
- Dataset for the detection of pilgrims and their genders.
- > Two CNN models based on YOLOv3 and Faster-RCNN.

ALGORITHMS BACKGROUND

YOLOv3 is a one-stage detector that is known to be the fastest detection algorithm.



Faster R-CNN is an improvement of R-CNN that represents the most efficient region-based CNN algorithm for image detection.

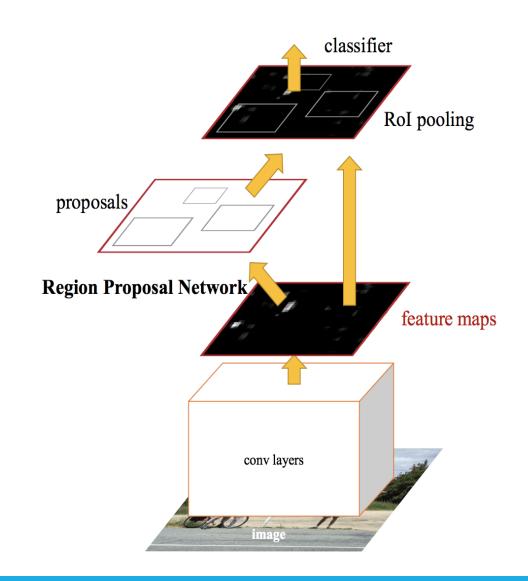


Faster R-CNN

- The RPN module generate the region proposals.
- The Fast R-CNN detector:
- The extraction of feature vectors from the region of interest.
- The feature vector obtained is the input of the classifier

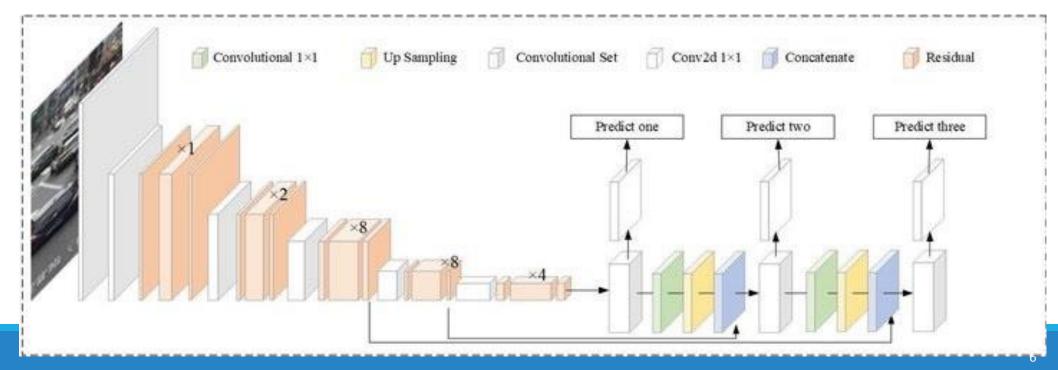
The classification output are:

- A sequence of probabilities estimated of the different objects considered.
- The coordinates of the regions proposals.



YOLOv3

- * Multi-label classification based on logistic regression.
- Cross-entropy loss function.
- The prediction of bounding boxes.
- The concept of Feature Pyramid Network for the prediction
- Darknet-53 CNN features extractor.



THE PILGRIMS DATASET

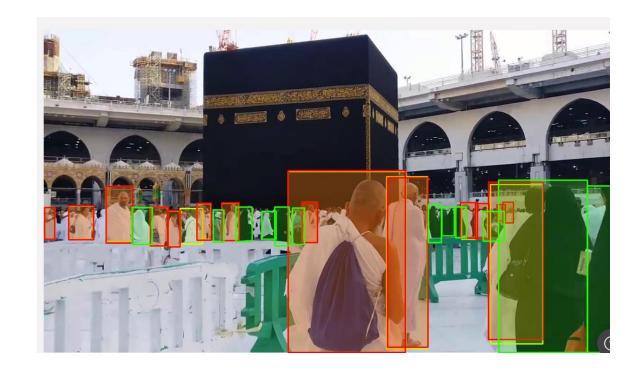
Pilgrim, Not Pilgrim classes designate a male

Woman classes with no additional feature

THE PILGRIMS DATASET

- 622 images of people in the holy places of Makkah and Madinah.
- Using the Labelimg software, we labeled the collected dataset into three chosen labels.

		Training	Testing	Total
Number of images		560	62	622
Number of instances	Pilgrim men	1228	111	1339
	Non- pilgrim men	859	111	970
	Women	1016	162	1178



EXPERIMENTAL SETUP

- For Faster R-CNN: Inception-v2 and ResNet50
- For YOLOv3: (320x320), (416x416), and (608x608) pixels.
- For the learning rate:
- YOLOv3: an initial rate of 0.001,
- Faster R-CNN: an initial rate of 0.0002 with Inception-v2 and 0.0003 with ResNet50.
- The weight decay value of 0.0005.
- Stochastic Gradient Descent (SGD) of momentum (0.9).

	Machine 1	Machine 2
CPU	Intel Core i7- 8700K (3.7 GHz)	Intel Core i9- 9900K (Octa-core)
Graphics card	NVIDIA GeForce 1080 (8 GB) GPU	NVIDIA GeForce RTX 2080T (11 GB) GPU
RAM	32GB	64GB
Operating system	Linux (Ubuntu 16.04 TLS)	Linux (Ubuntu 16.04 TLS)

EXPERIMENTAL METRICS

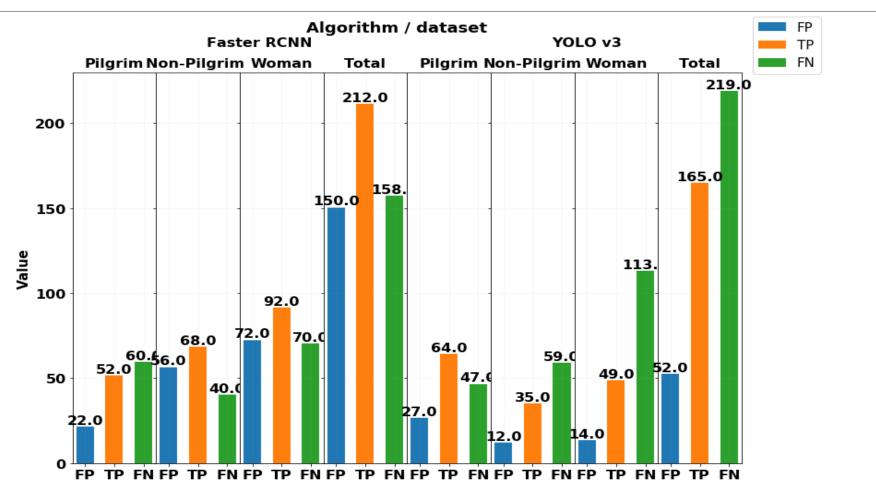
For the evaluation used six metrics:

- True Positive (TP)
- False Positive (FP)
- False Negative (FN)
- Precision = TP/(TP + FP)
- ightharpoonup Recall = TP/(TP + FN)
- > F1score = (2 * Precision * Recall)/(Precision + Recall)
- Quality = TP/(TP + FP + FN)
- > mloU: mean of the Intersection over Union.
- **≻mAP**: mean Average Precision
- > FPS: frame per second.

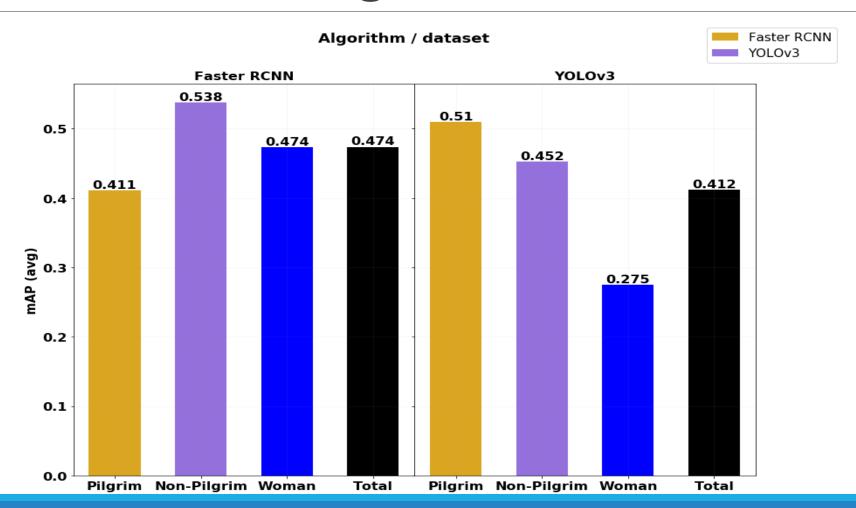
Comparison between Faster R-CNN and YOLO v3

Algorithm	YOLOv3 (320x320)px	YOLOv3 (416x416)px	YOLOv3 (608x608)px	Faster R-CNN (Inception v2)	Faster R-CNN (ResNet 50)
FP	40	66	51	164	137
TP	159	171	165	228	195
FN	225	213	219	156	189
Precision	0.8058	0.7288	0.7735	0.6091	0.6022
Recall	0.4349	0.4577	0.4557	0.5929	0.5042
Quality	0.3905	0.3849	0.3923	0.4172	0.3744
F1score	0.5541	0.5546	0.5546	0.5887	0.5446
mAP	0.3999	0.4152	0.4214	0.5162	0.4317
mloU	0.6352	0.5988	0.6192	0.5710	0.5850
FPS	91.28	65.31	43.84	3.35	3.8

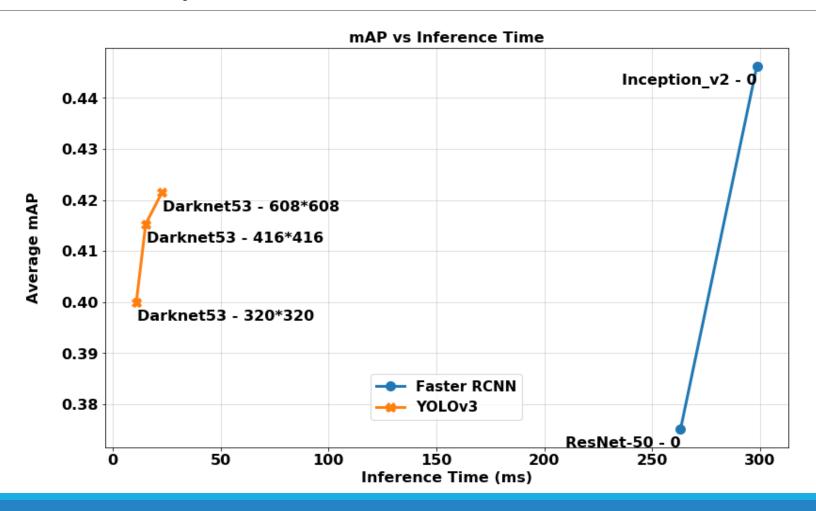
TP, FP and FN



mAP: mean Average Precision



FPS: frame per second.



CONCLUSION

- * We developed convolutional neural network models for pilgrim detection for Al-Hajj based on YOLOv3 and Faster RCNN.
- * We have built a dataset containing three classes of pilgrims, non-pilgrims and women.
- Experimental results show that Faster RCNN with Inception v2 feature extractor provides the best mean average precision over all classes with 51%, comparable to state-of-the-art object detection algorithms.

Perspective

- > We will extend the dataset to have several tens of thousands of instances to improve the overall accuracy and precision,
- > We will consider more classes.
- > We aim at developing a search application for lost people during Hajj and Umrah.

Demo

Link of demo: https://www.youtube.com/watch?v=L-nmYBY2pvE

Thanks for your attention