

A Synchronous Transition Protocol with
Periodicity for Global Scheduling of
Multimode Real-Time Systems on
Multiprocessors

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-091101

Version: 0

Date: 11-01-2009

Vincent Nelis, Björn Andersson and Joel Goossens

Technical Report HURRAY-TR-091101 A Synchronous Transition Protocol with Periodicity for Global Scheduling of

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A Synchronous Transition Protocol with Periodicity for Global Scheduling of
Multimode Real-Time Systems on Multiprocessors
Vincent Nelis, Björn Andersson and Joel Goossens

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
We consider the global scheduling problem of multimode real-time systems upon identical multiprocessor platforms.
During the execution of a multimode system, the system can change from one mode to another such that the current task
set is replaced with a new task set. Thereby, ensuring that deadlines are met requires not only that a schedulability test is
performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and
(ii) a schedulability test for each transition is performed. In this paper, we extend the synchronous transition protocol
SM-MSO in order to take into account mode-independent tasks [1], i.e., tasks of which the execution pattern must not
be jeopardized by the mode changes.

A Synchronous Transition Protocol with Periodicity for Global Scheduling of
Multimode Real-Time Systems on Multiprocessors

Vincent Nelis1

Computer Science Department
Université Libre de Bruxelles (U.L.B.)

Brussels, Belgium
vnelis@ulb.ac.be

Björn Andersson
CISTER Research unit

Polytechnic Institute of Porto
Porto, Portugal

bandersson@dei.isep.ipp.pt

Joël Goossens
Computer Science Department

Université Libre de Bruxelles (U.L.B.)
Brussels, Belgium

joel.goossens@ulb.ac.be

Abstract—We consider the global scheduling problem of
multimode real-time systems upon identical multiprocessor
platforms. During the execution of a multimode system, the sys-
tem can change from one mode to another such that the current
task set is replaced with a new task set. Thereby, ensuring that
deadlines are met requires not only that a schedulability test
is performed on tasks in each mode but also that (i) a protocol
for transitioning from one mode to another is specified and (ii)
a schedulability test for each transition is performed. In this
paper, we extend the synchronous transition protocol SM-MSO
in order to take into account mode-independent tasks [1], i.e.,
tasks of which the execution pattern must not be jeopardized
by the mode changes.

Keywords-multimode scheduling; multiprocessor scheduling;
real-time scheduling;

I. INTRODUCTION

Hard real-time systems require both functionally correct
executions and results that are produced on time. Currently,
numerous techniques exist that enable engineers to design
real-time systems while guaranteeing that all their temporal
requirements are met. These techniques generally model
each functionality of the system by a recurrent task, charac-
terized by a computing requirement, a temporal deadline and
an activation rate. Commonly, real-time systems are modeled
as a set of such tasks. However, some applications exhibit
multiple behaviors issued from several operating modes
(e.g., an initialization mode, an emergency mode, a fault
recovery mode, etc.), where each mode is characterized by
its own set of functionalities, i.e., its set of tasks. During the
execution of such multimode real-time systems, switching
from the current mode (called the old-mode) to another one
(the new-mode hereafter) requires to substitute the current
executing task set with the set of tasks of the new-mode. This
substitution introduces a transient stage, where the tasks of
the old- and new-mode may be scheduled simultaneously,
thereby leading to an overload which can compromise the
system schedulability.

1Supported by the Belgian National Science Foundation (F.N.R.S.) under
a F.R.I.A. grant.

The scheduling problem during a transition between two
modes has multiple aspects, depending on the behavior and
requirements of the old- and new-mode tasks when a mode
change is initiated (see e.g., [2], [3] for details about the
different task requirements during mode transitions). For
instance, an old-mode task may be immediately aborted,
or it may require to complete the execution of its current
instance (in order to preserve data consistency for instance).
On the other hand, a new-mode task sometimes requires
to be activated as soon as possible, or it may also have to
delay its first activation until all the tasks of the old-mode
are completed. Moreover, there may be some tasks (called
mode-independent tasks) present in both the old- and
new-mode, such that their periodic (or sporadic) execution
pattern must not be jeopardized by the mode change in
progress (such tasks are typically daemon functionalities).
In the literature (see [4] for instance), a transition protocol
is said to be synchronous if it does not schedule old- and
new-mode tasks simultaneously, otherwise it is said to be
asynchronous. Furthermore, a synchronous/asynchronous
protocol is said to be with periodicity if it is able to deal
with mode-independent tasks, otherwise it is said to be
without periodicity.

Related work. Numerous scheduling protocols have
already been proposed in the uniprocessor case to ensure
the transition between modes (see [4] for a survey of
the literature about this uniprocessor problem). Targeting
multiprocessor environments, previous work [1] proposed
two protocols without periodicity: a synchronous protocol
called SM-MSO and an asynchronous one called AM-MSO.
To the best of our knowledge, these two protocols are the
only ones to be proposed for the multimode scheduling
problem upon multiprocessor platforms.

This research. In this paper, we extend the protocols SM-
MSO proposed in [1] to make it “with periodicity”. We take
into account the mode-independent tasks and we rewrite
the validity test of SM-MSO in order to ensure that all
the requirements are met during every mode transition.

However this research is a first step since we only consider
synchronous protocols. Notice that in this document, we
assume that every operating mode of the system is scheduled
by a global, preemptive, work-conserving and fixed job-level
priority scheduling algorithm.

II. MODEL OF COMPUTATION

A. System and platform specifications

We consider multiprocessor platforms composed of
a known and fixed number m of identical processors
{P1, P2, . . . , Pm} upon which a multimode real-time system
is executed. “Identical” means that all the processors have
the same profile (in term of consumption, computational
capabilities, etc.) and are interchangeable.

We define a multimode real-time system τ as a set of x
operating modes noted M1,M2, . . . ,Mx where each mode
contains its own set of functionalities to execute. At any
time during its execution, the system runs in only one of
its modes, i.e., it executes only the set of tasks associated
with the selected mode, or the system switches from one
mode to another one. A mode Mk contains a set τk of nk
functionalities denoted

{
τk1 , τ

k
2 , . . . , τ

k
nk

}
. Every functional-

ity τki is modeled as a sporadic constrained-deadline task
characterized by three parameters (Cki , D

k
i , T

k
i) – a worst-

case execution time Cki , a minimum inter-arrival separation
T ki and a relative deadline Dk

i ≤ T ki – with the interpretation
that, during the execution of the mode Mk, the task τki
generates successive jobs τki,j (with j = 1, . . . ,∞) arriving
at times aki,j such that aki,j ≥ aki,j−1 + T ki (with aki,1 ≥ 0),
each such job has an execution requirement of at most Cki ,
and must be completed at (or before) its absolute deadline
denoted dki,j

def= aki,j + dki . In our study, all the tasks are
assumed to be independent, i.e., there is no communication,
no precedence constraint and no shared resource (except the
processors) between them.

At any time t during the system execution, a job τki,j
is said to be active iff aki,j ≤ t and it is not completed
yet. Hereafter, active(τk, t) denotes the subsets of active
tasks of τk at time t. A task must be enabled to generate
jobs, and the system is said to run in mode Mk only if
every task of τk is enabled and all the tasks of the other
modes are disabled. Thereby, disabling a task τki prevents
future job arrivals from τki . In the following, we denote by
enabled(τk, t) and disabled(τk, t) the subsets of enabled
and disabled tasks of τk at time t, respectively.

During any mode change from mode M i to mode M j ,
we denote by τmit

i,j the set of mode-independent tasks that
belong to both modes Mi and Mj (i.e., τmit

i,j = τ i
⋂
τ j).

These tasks are assumed to be sporadic and constrained-
deadline. Each such task sporadically generates jobs during
the entire mode transition and its sporadic execution pattern
must not be influenced by the mode change in progress.

B. Scheduler specifications

We consider in this study that the scheduler is global,
preemptive, work-conserving and it assigns fixed job-level
priority according to the usual interpretations (see [1] for
formal definitions). Notice that Global Deadline Monotonic
and Global Earliest Deadline First [5] are some examples
of such scheduling algorithms. We assume that every mode
Mk of the system uses its own scheduling algorithm noted
Sk and the tasks set τk of every mode Mk can be scheduled
by Sk on m processors without missing any deadline. This
assumption allows us to only focus on the schedulability of
the system during the mode transitions, and not during the
executions of the modes.

C. Mode transition specifications

While the system is running in a mode M i (i.e., the old-
mode), a mode change can be initiated by any task of τ i

or by the system itself, whenever it detects a change in the
environment or in its internal state. This is performed by
invoking a MCR(j) (i.e., a Mode Change Request), where
M j is the destination mode (i.e., the new-mode). We denote
by tMCR(j) the invoking time of a MCR(j) and we assume
that a MCR may only be invoked in the steady state of the
system, and not during the transition between two modes.

Suppose that the system is running in mode M i and
a MCR(j) is invoked (with j 6= i). At time tMCR(j),
the system entrusts the scheduling decisions to a transition
protocol. This protocol immediately disables all the old-
mode tasks that are not mode-independent (i.e., the tasks
of τ i \ τmit

i,j), hence preventing new job arrivals from these
tasks. At time tMCR(j) the active jobs of these disabled tasks,
henceforth called the rem-jobs (for remaining jobs), may
have two distinct behaviors: either they can be aborted or
they must complete their execution. In previous work [1]
we showed that aborting rem-jobs immediately do not jeop-
ardize the system schedulability, that scheduling problem
is straightforward. In this research we consider the more
interesting case where all rem-jobs must complete their
execution.

By assumption, we know that the set τ j of new-mode
tasks can be scheduled upon the m processors without
missing any deadline. However, the rem-jobs may cause
an overload if the tasks of τ j are immediately enabled
upon the mode change request MCR(j). As a result,
transition protocols usually have to delay the enablement
of these new-mode tasks until it is safe to do that. We
denote by Djk(M i) the relative enablement deadline of the
task τ jk during the transition from the mode M i to the
mode M j , with the following interpretation: the transition
protocol must ensure that τ jk is enabled not after time
tMCR(j) + Djk(M i). The goal of a transition protocol is
therefore to (i) complete every rem-job, (ii) schedule every
mode-independent tasks and (iii) enable every task of the
new-mode M j , while meeting all the job and enablement

deadlines. When all the rem-jobs are completed and all the
tasks of τ j are enabled, the system entrusts the scheduling
decisions to the scheduler Sj of the new-mode M j and the
transition phase ends.

III. THE PROTOCOL SM-MSO

In this section, we present how the synchronous protocol
SM-MSO proposed in [1] can be extended while considering
mode-independent tasks. Notice that we do not consider
asynchronous protocols in this document. The main idea
of this extension is the following: upon a MCR(j), every
non-mode-independent task of the old-mode (say M i) is
disabled and both the rem-jobs and the mode-independent
tasks continue to be scheduled by Si upon the m processors.
When all the rem-jobs are completed, all the non-mode-
independent new-mode tasks (i.e., the tasks of τ j \ τmit

i,j)
are simultaneously enabled. From this instant, both the new-
mode tasks and the mode-independent tasks are scheduled
by Sj upon the m processors. Figure 1 depicts an example
with a 2-processors platform. Both modes M i and M j

contain 3 tasks and 1 mode-independent tasks (τmit
i,j = {τ1}),

where the light gray, dark gray and black boxes are the old-
mode, new-mode, and mode-independent tasks, respectively.
Algorithm 1 gives the pseudo-code of this protocol.

-
time

P1

P2

Mode Mi in progress︷ ︸︸ ︷
τ1,1 τi4,1

τi2,1 τi3,1

τ1,2 τi4,2

τi2,2 τi3,2

MCR(j)

@
@I

tasks τi2,τ
i
3 and τi4

are disabled

τ1,3 τ
j
2,1

τ
j
4,1

τ
j
3,1

@
@I

�
��

arrival of every
job of τi

transition delay︷ ︸︸ ︷ Mode Mj in progress︷ ︸︸ ︷

@@I no more rem-job
⇒ SM-MSO enables

all the tasks of τj\τmit
i,j

(end of the transition phase)

Figure 1. Illustration of a mode transition handled by SM-MSO.

Algorithm 1: SM-MSO (revisited)
Input: tMCR(j): current time; M i: the old mode; Mj : the

new-mode
begin

Disable all the tasks τk ∈ τ i \ τmit
i,j ;

Schedule all the jobs of τ i according to Si ;

At job completion time t :
if active(τ i \ τmit

i,j , t) = φ then
enable all the tasks of τ j \ τmit

i,j ;
enter mode Mj ;

end

It is well-known that proposing a new scheduling
algorithm requires to also provide an associated
schedulability test, i.e., a condition based on the tasks
and platform characteristics which indicates a priori

whether the given system will meet every job deadline. In
a similar way, proposing a new mode transition protocol
requires to also provide an associated validity test, i.e., a
condition based on the tasks and platform characteristics
that indicates a priori whether the given system will meet
every job and enablement deadline during every transition
between every pair of operating modes of the system. In
the following, we focus on designing a validity test for the
protocol SM-MSO. First, Lemma 1 establishes an upper
bound on the completion time of any rem-job during any
mode transition, while considering the interference due
to the execution of the mode-independent tasks. Then in
Corollary 1, we determine the largest makespan, where the
makespan is defined as follows.

Definition 1 (makespan): Let J = {J1, J2, . . . , Jn} be
a set of n jobs with processing times c1, c2, . . . , cn that
are ready for execution at time 0. Let τmit be a set of
sporadic constrained-deadline tasks that are scheduled
during the schedule of J . Suppose that τmit and the n
jobs of J are scheduled upon m identical processors
by a global, preemptive, work-conserving and fixed-job
priority scheduler. We define the makespan as the earliest
time in the schedule at which all the jobs of J are completed.

By using a similar proof as Lemma 2 of [1], we can
easily show that every rem-job and every job generated
by any mode-independent tasks always meets its absolute
deadline di,j while using SM-MSO during the transition
phases. Thereby, for a given multimode real-time system,
the protocol SM-MSO will comply with every expected
requirement if all the enablement deadlines Djk(M i) are
also met during every mode transition, i.e., if the makespan
is not larger than the minimal enablement deadline of the
non-mode-independent new-mode tasks. This upper bound
on the makespan thus allows us to design a sufficient
validity test that indicates, a priori, if all the enablement
deadlines will be met during all possible mode changes.
Notice that we do not assume specific scheduling algorithms
in this document. Every result proposed here hold for any
global, preemptive, work-conserving and fixed-job priority
scheduler.

Definition 2 (processed work): At any time t in any
schedule, the processed work wk(t) denotes the amount of
work executed on processor Pk in the time interval [0, t].

Lemma 1: Let J = {J1, J2, . . . , Jn} be a set of n jobs
with processing times c1, c2, . . . , cn that are ready for exe-
cution at time 0. Let τmit be a set of sporadic constrained-
deadline tasks that are scheduled during the schedule of
J . Suppose that τmit and the n jobs of J are scheduled
upon m identical processors by a global, preemptive, work-
conserving and fixed-job priority scheduler. Then, an upper

bound R̂i on the time at which job Ji ∈ J completes is given
by the first fixed point of the following iterative process:

R̂
(0)
i ← 1

m

n∑
j=1
j 6=i

cj + ci

R̂
(k+1)
i ← 1

m

 n∑
j=1
j 6=i

cj +
∑

τj∈τmit

W (τj , R̂
(k)
i)

+ ci (1)

where W (τj , t) denotes an upper bound on the amount of
work that can be generated by the task τj in the time interval
[0, t]. Notice that in [6], the authors showed that

W (τj , t) = Nj(t)Cj + min(Cj , t+Dj − Cj −Nj(t)Tj)

where Nj(t)
def=
⌊
t+Dj−Cj

Tj

⌋
Proof: Suppose that the job Ji completes at time Ri

on processor Pk. Since the scheduler is work-conserving,
the processed work wk(Ri) on Pk is Ri and the processed
work wj(Ri) on the other processors Pj (with j 6= k) is at
least Ri − ci. Formally we have{

wj(Ri) = Ri if j = k

wj(Ri) ≥ Ri − ci ∀j = 1, . . . ,m and j 6= k

By summing these m expressions, we get
m∑
j=1

wj(Ri) ≥ mRi − (m− 1)ci (2)

where
∑m
j=1 wj(Ri) denotes the amount of work executed

on the m processors from time 0 to time Ri. On the other
hand, we know that this cumulative processed work cannot
be larger than the amount of requested work in the system,
i.e.,

m∑
j=1

wj(Ri) ≤
n∑
j=1

cj +
∑

τj∈τmit

W (τj , Ri) (3)

By using Inequalities 2 and 3, we get

mRi − (m− 1)ci ≤
n∑
j=1

cj +
∑

τj∈τmit

W (τj , Ri)

Rewriting this yields

Ri ≤
1
m

 n∑
j=1
j 6=i

cj +
∑

τj∈τmit

W (τj , Ri)

+ ci

As a result, Ri is upper bounded by R̂i defined as in
Expression 1.

Corollary 1: Assuming the same notations as in
Lemma 1, an upper bound on the makespan is given by

m̂s(J, τmit,m) def=
n

max
i=1
{R̂i} (4)

The proof is a direct consequence of Lemma 1. As a result,
a sufficient validity condition may be formalized as follows.

Validity test 1: For any multimode real-time system τ ,
SM-MSO meets every job and enablement deadline during
every transition between every pair of operating modes of τ
if, ∀M i,M j with M i 6= M j ,

m̂s(J, τmit
i,j ,m) ≤ min

τj
k
∈τj\τmit

i,j

{Djk(M
i)}

where J is the set of jobs composed of one job issued from
each task of τ i \ τmit

i,j .

IV. CONCLUSION AND FUTURE WORK

In this paper, we extended the synchronous protocol SM-
MSO proposed in [1] in order to take into account the
mode-independent tasks during the execution of sporadic
multimode real-time systems on multiprocessor platforms.
Moreover, we established a validity test which allows the
system designer to predict whether the given system can
meet all the expected requirements during every mode tran-
sition. In our future work, we aim to design an asynchronous
protocol with the consideration of mode-independent tasks.

REFERENCES

[1] V. Nelis, J. Goossens, and B. Andersson, “Two protocols for
scheduling multi-mode real-time systems upon identical mul-
tiprocessor platforms,” in Proceedings of the 21st Euromicro
Conference on Real-Time Systems, Dublin, Ireland, July 2009,
pp. 151–160.

[2] G. J. Fohler, “Flexibility in statically scheduled hard real-
time systems,” Ph.D. dissertation, Technische Universität Wien,
1994.

[3] F. Jahanian, R. Lee, and A. Mok, “Semantics of modechart in
real time logic,” in Proceedings of the 21st Hawaii Interna-
tional Conference on Systems Sciences, 1988, pp. 479–489.

[4] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems,
vol. 26, no. 2, pp. 161–197, March 2004.

[5] T. Baker, “Multiprocessor EDF and deadline monotonic
schedulability analysis,” in Proceedings of the 24th IEEE
International Real-Time Systems Symposium, December 2003,
pp. 120–129.

[6] M. Bertogna and M. Cirinei, “Response-time analysis for
globally scheduled symmetric multiprocessor,” in Proceedings
of the 28th IEEE International Real-Time Systems Symposium,
December 2007, pp. 149–160.

