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Abstract 

Unmanned Aerial Vehicle (UAV) detection for public safety protection is becoming a critical issue in non-fly zones. 
There are plenty of attempts of the UAV detection using single stream (day or night vision). In this paper, we 
propose a new hybrid deep learning model to detect the UAVs in day and night visions with a high detection 
precision and accurate bounding box localization. The proposed hybrid deep learning model is developed with 
cosine annealing and rethinking transformation to improve the detection precision and accelerate the training 
convergence. To validate the hybrid deep learning model, real-world experiments are conducted outdoor in 
daytime and nighttime, where a surveillance video camera on the ground is set up for capturing the UAV. In 
addition, the UAV-Catch open database is adopted for offline training of the proposed hybrid model, which 
enriches training datasets and improves the detection precision. The experimental results show that the proposed 
hybrid deep learning model achieves 65% in terms of the mean average detection precision given the input videos 
in day and night visions. 
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Abstract—Unmanned Aerial Vehicle (UAV) detection for public
safety protection is becoming a critical issue in non-fly zones.
There are plenty of attempts of the UAV detection using single
stream (day or night vision). In this paper, we propose a new
hybrid deep learning model to detect the UAVs in day and night
visions with a high detection precision and accurate bounding
box localization. The proposed hybrid deep learning model is
developed with cosine annealing and rethinking transformation to
improve the detection precision and accelerate the training con-
vergence. To validate the hybrid deep learning model, real-world
experiments are conducted outdoor in daytime and nighttime,
where a surveillance video camera on the ground is set up for
capturing the UAV. In addition, the UAV-Catch open database is
adopted for offline training of the proposed hybrid model, which
enriches training datasets and improves the detection precision.
The experimental results show that the proposed hybrid deep
learning model achieves 65% in terms of the mean average
detection precision given the input videos in day and night visions.

Index Terms—UAV Detection, IR Stream, RGB Stream, Con-
volutional Neural Networks, Rethinking Transformation, Cosine
Annealing

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are commonly used for

commercial purposes due to flexible deployment and versatil-

ity, such as public surveillance, cartography, search and rescue,

as shown in Figure 1. It is critical to automatically detect and

locate the UAVs in the non-fly zone to ensure aviation safety

or efficient air traffic control in non-fly zones. Specifically,

it is essential to distinguish a UAV from an object with a

similar shape, such as birds or aircraft. Most of deep learning

models, e.g., [34] [35] [41] [36] [38], are developed for the

UAV detection based on either RGB (the day vision camera)

or IR (the night vision one). However, the UAV detection

rate based on RGB is low when the camera has insufficient

light in the daytime, e.g., cloudy or stormy weather. The UAV

detection based on IR is affected when the UAV overlaps with

Identify applicable funding agency here. If none, delete this.

an object (e.g., buildings or trees) in the background. Due to

the effect of the light condition or similar shape of the UAV

and other objects, false detection of the UAV and results in a

low training accuracy of the deep learning with RGB or IR.

Developing a hybrid deep learning model for processing RGB

and IR videos is non-trivial since the RGB and IR video frames

are trained independently with day or night vision features.

As a result, the training for RGB and IR videos can not

be directly combined for the UAV detection in a dual vision

mode. Moreover, developing a hybrid model can suffer from

a high complexity due to feature vanishing problems on the

training of the RGB and IR videos.

The UAV needs to be located in the video and differentiated

from other objects. The position of the UAV can be located by

using bounding box localization (BBL) which determines the

height, width, and X and Y -coordinates in annotations form

[49]. Specifically, annotation is typically used to determine the

UAV position with annotating of the upper left corner and the

lower right corner of the UAV. Since the background color can

be similar to the color of the UAV, the annotation with BBL ex-

periences annotation errors, which results in classification and

regression losses in the deep learning of BBL. In particular,

the classification loss is due to the color difference between the

UAV and the background, while the regression loss defines the

difference between the actual bounding box and the predicted

one of the training. In addition, classification and regression

loss of the BBL training depends on the position of the UAV

in the video and the annotation error.

In this paper, we propose a new hybrid deep learning model

for the UAV detection with day and night dual visions. The

contributions of our proposed work are as follows:

• We propose a new hybrid deep learning model to improve

the detection accuracy of the UAV in the day and night

dual visions. The hybrid deep learning model adopts re-

thinking transformation to accelerate the training model’s

convergence and reduce the classification and regression



losses. Moreover, the proposed hybrid model develops

cosing annealing, which freezes stepwise the initial layers

of the deep learning model to reduce the training time.

• The proposed hybrid model is developed to enhance

the training of the BBL by using the information of

coordinates dimensions (height and width) to determine

the actual location of the UAV and reduce the annotation

errors of the UAV detection.

• To evaluate the proposed hybrid model in the real-

world, experiments are conducted to detect the UAV in

daytime and nighttime. The experimental results show

that the proposed hybrid deep learning model achieves

65% higher detection accuracy than the benchmark Ef-

ficientDet. In addition, the convergence of the hybrid

model is 10% faster than the EfficientDet.

The paper is organized as follows. Section II presents the re-

lated works. In Section III, we investigate the proposed hybrid

deep learning model and its implementation. We present the

experimental setup and performance evaluation in Section IV.

Finally, we conclude the paper in Section V.

II. RELATED WORKS

Several detection approaches with RGB or IR are studied

in the literature to detect objects, such as people or vehicles.

In [1] and [2], micro-Doppler signatures, thermal position

intensity histogram of the oriented gradient are adopted for

detecting one stream. In [3] and [4], aggregated channel fea-

tures and shape context descriptor-based pedestrian detection

are presented for the detection in day or night environment,

respectively. Guan et al. [5] combine extracted features of

two imaging sensors by using illumination and coefficients

correction of the day and night estimated illumination. Many

algorithms in the literature are used for the UAV detection,

infrared-based systems, such as background subtraction, ther-

mal visible video fusion, and robust multi-stage approaches

detect objects with cameras [6]–[8]. Lin et al. [9] used Hidden

Markov models to extract features and detect UAVs in noisy

environments. Moreover, Li et al. [10] used a histogram

of an oriented gradient to adjust parameters and geometric

characteristics and support vector machine for the object

detection in thermal images. Teutsch et al. [11], presented

a two-stage person recognition model that adopts maximally

stable extremal regions, and discrete cosine transform with

random naı̈ve bayes. Video-based object detection models are

developed to detect objects based on extracting discriminant

features such as distinctive invariant features [12], histograms

of oriented gradients [13], and SURF (scale- and rotation-

invariant detector and descriptor) [14].

Radar-based techniques are also developed in the literature

[15]–[18]. Jahanger and Baker developed a holographic radar

using Extended dwell Doppler characteristics to detect UAVs

and distinguish them from birds [15]–[17]. Drozdowicz et al.

[18], adopted an approach that uses multiple radars through the

directional transmission to monitor a restricted area and used a

geofence to detect UAVs. The mmWave radars detect UAVs at

lower altitudes by using the Doppler spectrum. The mmWave

radars detect moving UAVs concerning radars and prevent

flight collisions of UAVs [19]–[21]. However, mmWave radars

cannot differentiate the UAV from objects with a similar shape,

like birds. Thus, the UAV detection accuracy using mmWave

radars is low.

Convolutional Neural Networks (CNN) are developed for

the UAV detection [22]–[24]. Muhammad et al. study a

transfer learning method using the combination of VGG16 and

Faster-RCNN for the detection of UAVs [22]. Al-Emadi et al.

[23] applied CNN, RNN, and RCNN architectures on audio

recorded samples to exploit the unique acoustic fingerprints of

flying UAVs. Jihun et al. [24], present a method using Pan-Tilt-

Zoom (PTZ) with a combination of camera and Faster R-CNN

Inception Resnet algorithm for UAV detection with pan, tilt,

and zoom actions. Byunggil and Daegun [42] used Short-time

Fourier Transform and Wigner-Ville distribution to transform

micro-Doppler signatures from diverse UAVs to images. The

optimal hyperparameters for the CNN were determined using

a heuristic search. Several advanced trainable object detection

models have been proposed to compete with these problems.

Nevertheless, the above approaches cannot match the perfor-

mance and precision to detect UAVs in day and night vision

with different environmental changes and if the background

similarity exists. Recently, CNN methods used for object

detection, owing to large-scale datasets and advances in deep

learning technologies. The EfficientNet-B3 [28], is used for

the classification by using the technique of scaling up network

width, depth, and resolution. Recently, scalable EfficientDet

architecture for one-stage object detection was presented by

the Facebook research community [29]. It uses a weighted bi-

directional pyramid feature network with EfficientNet-B3 as

the backbone. We propose a hybrid deep learning model using

the EfficientDet for training with rethinking transformation,

cosine annealing, and focal loss to increase the model accuracy

and efficiency and avoid the high cost of computational power

for detecting UAVs in videos from dual streams. Most previous

works used a single stream for the detection of UAVs, as

can be seen in Table II. In contrast, we used a single model

(Hybrid) shown in the figure 2 for both day and night visions.

In the next section, we present the detailed methodology of

the proposed hybrid deep learning model.

III. THE HYBRID DEEP LEARNING MODEL

A. Dataset Preparation and Preprocessing

In this paper, we utilize open-source Anti-UAV catch video

datasets [43]. This dataset contains 160 HD dual streams (RGB

and IR videos), each with 100 validations and 60 training

videos. Each video has multiple UAV models with three differ-

ent sizes (large, medium, and tiny). Although the video frames

are labeled, the labeling undergoes high annotation errors due

to the poor UAV detection performance [44]. The video frames

contain different backgrounds: day-night, cloudy/clear, similar

objects (building, birds), scale variations, and occlusion. The

UAVs move at different speeds and abruptly stop at very high

speeds (100 mph). We used the 100 validation videos from

each stream for the training of our model. 90 of the videos



Fig. 1. Applications and framework of hybrid deep learning model for critical areas.

TABLE I
COMPARISON OF THE PRESENT WORK WITH RELATED WORKS ON UAV DETECTION

References Dataset Methods Vision

Rozantsev et al., 2017 [34] UAV/Aircraft Database CNN and Boosted trees methods Single Stream

Saqib et al., 2017 [35] UAV/Bird Database VGG and ZF Fine-tuning Single Stream

Dong et al., 2017 [41] Local Dataset Feature Classifier Single Stream

Peng et al., 2018 [36] Synthetic Database Faster-RCNN and ResNet-101 fine-tuning Single Stream

Nalamati et al , 2019 [38] Bird vs UAV Faster R-CNN with ResNet-101 Single Stream

Lee et al., 2019 [39] Web Data Deep CNN Single Stream

Hu et al., 2019 [40] Local Dataset Improved YOLO v3 Single Stream

Behera et al., 2020 [37] Local Dataset YOLOv3 Single Stream

Proposed Work UAV Catch Database Hybrid Dual Stream

are used for training, and 10 videos are for validation/testing

of the proposed model.

1) UAV Localization: The dataset annotation needs the

proper conversion by using the information of coordinates

dimensions. During the flight process, the location of the UAV

can be determined by the X-coordinates and Y -coordinates

with height (H) and width (W) of the UAV to reduce annota-

tion errors in the detection. Therefore, we detect four (xmax,

xmin and ymax, ymin) translation parameters, which detects

the UAV with the top-left corner and bottom-right corner. The

X-axis position of the UAV presents the width (xmax-xmin)

of the UAV, while Y -axis represents the height (ymax-ymin)

of the UAV. The UAV’s position varies by altering its rotation

by global coordinate (xmax, xmin and ymax, ymin pivoted)

and not fixed horizontally (non-pivoted), so the width and

height change according to the sum of the X-axis (xmax+xmin)

and Y -axis (ymax+ymin) respectively. In our work, the UAV

is correctly located in RGB video frames and thermal (IR)

video frames. To decide whether the operating procedure is in

RGB or IR, we used the brightness information provided by

the surveillance camera. The proposed UAV localization traces

the movement of the UAV multiple times for the localization.

Table II lists the features of the proposed UAV localization,

as compared with the localization techniques in the literature.

TABLE II
UAV DATASET STATISTICAL APPROACH OF THE RGB AND IR FRAMES.

Categories Training set Validation set Testing set Total
Number of Frames 162k 19k 19k 200k
Percentage (%) 81.0% 9.5% 9.5% 100%
Number of RGB frames 81k 9.5k 9.5k 100k
Number of IR frames 81k 9.5k 9.5k 100k



Fig. 2. The proposed architecture for the UAV detection using dual streams.

B. Backbone of the UAV detection

Pixels to features translation is developed with the proposed

hybrid deep learning model. For scaling detection of the UAV,

our hybrid model automatically adjusts the scaling of the

width, depth, and resolution of CNN consistently to provide

different sizes of the UAV. Moreover, the hybrid model ex-

tends EfficientNet-B3 to enable feature extractor for the UAV

detection to achieve high accuracy and inference speed.

C. Dual-stream video processing

Using a hybrid deep learning model to process dual-stream

videos is a challenging problem for UAV detection. Most

UAV detection techniques are based on single-stream video,

i.e., either RGB or IR. Moreover, dual-stream deep learning

structures are used in cross-modality to process both RGB

and IR inputs. The RGB features dominate the IR features

in terms of vanishing during training the model. Designing

a hybrid deep learning model based on the EfficientDet can

overcome dual streams vanishing features during training the

hybrid model of loss function approaches to zero. RGB and

IR dominate each other during training which creates features

vanishing either for RGB or IR.

The proposed hybrid model investigates Bi-Directional Fea-

ture Pyramid Network (BiFPN), which is an extension to Effi-

cientDet. Specifically, BiFPN combines the ideas from Feature

Pyramid Network, Path Aggregation Network, and NAS-FPN

in the form of multi-level feature fusion, which efficiently

helps the proposed hybrid deep learning model extract features

for both RGB and IR streaming. The proposed hybrid model

enables processing the input of dual streams, minimizing high

computational cost and reducing vanishing features during

training the hybrid model. The proposed hybrid model takes

advantage of the BiFPN to minimize the computational cost

by removing nodes with a single input edge and adding extra

borders from input to output.

Moreover, the hybrid model utilizes BiFPN to fuse high-

level features of RGB and IR efficiently. The BiFPN configures

additional weight to the input features, enabling the hybrid

model to learn the feature importance of each input.

D. Rethinking Transformation

The rethinking transformation shown in Figure 3 aims to

enhance the accuracy and efficiency of the proposed hybrid

model. Since the CNN architectures are prone to colour, rota-

tion, an axis-aligned bounding box transformation, we study

the rethinking transformation in color background transforma-

tion, i.e., contrast, flapping, equalizing, solarizing, and sharp-

ness, to apply the visual effect video frames. In the rethinking

transformation, the random probability for all parameters is

set to 0.5, except 0.1 for solarization with a threshold of

128. Solarization tonal the values of the video frames in

which darks areas appear bright and vice versa. The factor for

adjusting the colour is 0 ≤ x ≤ 2 to maintain the originality

and quality of the data. The rethinking transformation rotation

of the UAV performed 45-degree clockwise and anti-clockwise

can vary according to the rotation degree from the center

(width and height by 2) of the UAV. The new bounding box

dimensions of the video frames have been computed after

getting sine and cosine from the rethinking transformation

rotation matrix. The bounding box annotation of the rethinking

transformation is tackled by an array of Ox5, where O is an

object (i.e., the UAV) in the frame, and 5 gives the attributes.

The attributes include top-left corner coordinates, bottom-right

corner coordinates, and a class of UAVs. In addition, the

new boundary box of the rotation has been translated to the

integer scaling using the rethinking transformation to avoid



Fig. 3. Rethinking transformation of UAV with boundary box for precise bounding box localization.

the missing colour problems. The missing colour is due to

rotation in which new pixels are added to the boundary of the

video frames, and the new ones replace the original pixels. The

rethinking transformation determines the nearest neighbour

(integer scaling) is an up-scaling method of the coordinate

mapping to the nearest pixel value.

E. Cosine Annealing

The proposed hybrid deep learning model reduces the

training time using cosine annealing. Initial layers of the CNN

represent low-level features. These early layers take up most

of the allocation but have updates of very few parameters

and converge to straightforward configurations influences com-

pared to later layers (high-level features layers), where most

of the parameters are updated during training. The initial

layers do not require as much fine-tuning as influenced by

this consideration. Cosine annealing is developed with the

hybrid model to freeze the layers’ weights, which preserves

the pre-trained features for accelerating the learning. Cosine

annealing is used for freezing out stochastic depth [32], [33].

In particular, cosine annealing trains each layer for several

runs, gradually ”freezes out” layers using equation 1, and

excludes them from backward passes to accelerate the hybrid

model.

LearningRate(αi) = 0.5 ∗
α

ti
(1 + cos(

π ∗ t

ti
)) (1)

where α defines the learning rate with the initial learning rate

zero. ti is the number of iterations between a user-selected t0
and the total iteration during training. Iteration (t) depends on

the rule of linear scheduling to reduce the training time.

F. Focal Loss

The two-stage object detection is computationally expensive

to find the candidate object box [50]–[52]. First, the two-

stage object detectors use the Region Proposal Network to

predict candidate bounding boxes. In the second stage, features

are pooled from each candidate box for classification and

bounding box regression tasks using RoI (Region of Interest)

operations. One-stage object detectors (i.e., EfficientDet) can

detect the UAV without creating proposal drawing (region

proposals) [29]. However, the problems of instances on new

data mainly exist in the one-stage neural networks detectors.

The prediction of the deep learning model is far from the

correct prediction if not used the focal loss. Focal loss is

specially designed for the one-stage detection scenario. It can

tackle the significant imbalance between foregrounding and

background UAV´s for the proposed training hybrid model to

reduce the weight toward correct prediction. Cross-Entropy

is frequently adopted loss function due to high precision to

compare the approximate models.

Cross Entropy(p,t ) =











−αt log(p), if t = 1

−αt log(1− p), otherwise

When, t ∈ {±1}, p ∈ [0, 1]
(2)

In 2, the t is the target value as ground truth, and the

p is the probabilistic estimated model value for the UAV

detection. Where αt is the balanced parameters for positive

and negative examples, but it can not distinguish between easy

and hard examples. The modulated factor (1−pt)
γ of the focal

loss is necessary for the numerical stability by using down

weight methodology. The 2 is updated in the focal loss as:

beginequation

Focal Loss(p,t ) = −αt (1− pt)
γ log(pt) (3)

The focal loss down-weighted tuning process is dependent on

the γ, and it varies from 0 to 2 to adjust the rate of easy

examples. If γ is 0, then the focal loss equals the cross-entropy.

The UAV detection scenarios increase the γ up to 2 to obtain

the best training result.

IV. EXPERIMENTS AND RESULTS

The experiments of the UAV detection are performed on the

UAV dual-stream dataset of the Anti-UAV CVPR workshop.

The dataset is divided into 162k frames for training and 19k

frames for testing. Each frame is labeled with boundary boxes

for UAVs and correctly localized by the UAV localization



technique. GPU used a workstation equipped with a GeForce

RTX 2070 to train the model using Keras with the backend of

Tensorflow. We opted for EfficientDet compatible with training

on the GeForce RTX 2070 with a batch size of 8. Adam

optimizer is used for its fast and easy convergence to the

optimal point concisely compared to other optimizers. The

learning rate decay set to 0.001 with β1 of 0.9 and β2 equal to

0.999. The model trained for 100 epochs, which took 97 hours.

The focal loss kept the same as in the original EfficientDet

paper α=0.25 and γ=1.5 with an aspect ratio between 1/2 and

2.

A. Results

We checked our hybrid deep learning model on the ground

and with test videos to emphasize efficiency in various UAV

positions. First of all, let us evaluate the identification ac-

curacy of the proposed hybrid model with many traditional

assessment methods. The video used in the experimentation

is not used for testing or validation. We have also attempted

to test the hybrid model for all different backgrounds and

UAVs. During experimental results, different parameters are

used to evaluate the performance of the training hybrid model.

Focal loss is one of those parameters which is designed to

differentiate between foreground and background for the one-

stage UAV detection during training. We obtained 0.164 focal

loss for classification and 0.15 with rethinking transformation

and boundary box augmentation at the end of 100 epochs to

train the hybrid model. The regression loss is obtained by

using mean absolute error and the regression loss end up with

0.99 without augmentation and 0.97 with augmentation. Both

Classification and regression losses are given in Figure 4. The

diversity of the aerial scene creates variations in intra-class.

These variations affected the classification and regression loss

and degraded the scene classification performance. Batch loss

(BL) is studied to eliminate the large variations of intra-class

features with in-depth features in the batch and batch center

of the given UAV. The equation 4 represents the batch loss

which is given as;

BL =
1

2

N
∑

i=1

(xi −Bc)
2 (4)

Where Bc is a center of the corresponding batch and xi

denotes the deep learning features in the batch. We achieved

a classification batch loss of 0.163 with simple training and

0.04 with rethinking transformation. Moreover, the regression

batch loss is 0.99 and 0.5, respectively.

Mean average precision (mAP) is the essential evaluation

metric to measure hybrid model UAV´s detection performance.

The mAP is the mean of all corresponding average precision

for a given recall. It defines the model’s accuracy. A higher

mAP denotes a high precision for the detection of objects. The

mAP is defined as follows:

mAP =

∑Q

q=1
APq

Q
(5)

Fig. 4. Classification and regression Loss using dual stream with the
augmented fast convergence and non-augmented classification and regression
loss has been shown in this figure.

Fig. 5. In this figure the batch classification (BC) and regression (BR) losses
for both augmentation and non-augmentation using boundary box re-thinking
techniques is shown for the dual stream training.

As shown in Figure 5, we got a mean average precision of

0.658 by using dual streams (day and night vision) of the

combination of RGB and IR frames. We got 0.64 mAP with

training the Hybrid deep learning model with augmentation.

The augmented data training converged very fast as compared

to the non-augmented training data. The proposed hybrid deep

learning model is trained using ImageNet pre-trained weights.

We achieved the training and validation loss to 1.156 and

1.57 before rethinking transformation and 1.13 with 1.5 after

boundary box augmentation. Also, faster convergence is a key

point to train the model with rethinking transformation. The

training and validation loss is depicted in Figure 7, and the

validation base losses for the classification, regression with

and without batch-wise is given in Figure 8. We achieved

validation classification loss of 0.39 and 0.4 for validation data.

The validation regression loss is 1.17 and 1.11, respectively,

which is acceptable for detecting UAVs in videos with high



Fig. 6. Mean average precision (mAP) from the training for both streams
with and without rethinking transformation and bounding box augmentation.

precision.

Fig. 7. Training and validation loss of the hybrid deep learning model with
dual stream UAV detection using 100 epochs with and without rethinking
transformation.

We used three different videos from diverse backgrounds

to check the trained hybrid deep learning model on seen and

unseen data. The testing videos are from RGB, IR, and local

videos captured of the flying UAV. The trained hybrid model

performed very well with RGB videos of the UAV Catch

dataset. The detected samples of the RGB video are shown

in Figure 9. Each frame contains the detected UAV with the

correct label box, and precision is very high even with rotation

of different positions of the UAV. The UAVs detection in

night vision is a challenging problem, we tested the proposed

hybrid model for the night vision of the IR stream. Our hybrid

model performed best and accurately to identify the UAV and

differentiate between UAV and birds; Figure 10 shows the IR-

based UAV detection.

Furthermore, It is essential to test on the local data for the real-

time application. The proposed hybrid deep learning model is

Fig. 8. Validation classification (VC) and regression (VR) losses of proposed
model for both augmented data and non-augmented boundary box shown in
this figure.

used for locally collected flying UAV datasets and achieved

the best accuracy, which is shown in Figure 11.

In last, we are presenting the miss-classification of the defined

hybrid model. Our hybrid deep learning model still needs im-

provement in terms of precision. The hybrid model sometimes

misses the UAV when the background and UAV have the

same colour. UAV Catch dataset is used to test other objects

with similar or similar UAV shapes detected by the proposed

hybrid deep learning model. Similarly, It also misinterpreted

the new local dataset background objects. The problem can

be eliminated by adding similar data for the training because

machine learning needs the same distribution dataset for the

correct prediction. The samples of the misclassification are

available in Figure 12.

V. CONCLUSION

In this study, we presented a new hybrid deep learning

model for the UAV detection based on one stream structure

for day-night dual visions. The proposed hybrid model highly

improves the accuracy of the UAV detection with the RGB

and IR videos. Moreover, rethinking transformation, BBL,

and cosine annealing are developed with the proposed hybrid

model to enhance the learning convergence and reduce the

classification and regression losses. The experimental per-

formance and results show that the proposed hybrid deep

learning model achieved 65% higher detection accuracy than

the benchmark EfficientDet. In addition, the convergence of

the hybrid model is 10% faster than the EfficientDet.
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Fig. 9. UAV detection from RGB sample of day vision from test data.

Fig. 10. UAV detection from infrared (IR) videos of night vision samples from test data.

Fig. 11. UAV detection from real-time videos of on-campus samples from test data.

Fig. 12. Miss-classification samples of UAV from different testing videos of RGB, IR videos of both day-night vision of UAV Catch dataset, and on-Campus
testing.
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