

A"Compositional"Monitoring"Framework"for"
Hard"Real8Time"Systems"

"

Technical Report

CISTER-TR-140104

Version:

Date: 1/29/2014

André Pedro

David Pereira

Luis Miguel Pinho

Jorge Sousa Pinto

Technical Report CISTER-TR-140104 A Compositional Monitoring Framework for Hard Real-Time Systems

© CISTER Research Unit
www.cister.isep.ipp.pt

1"
!

A Compositional Monitoring Framework for Hard Real-Time Systems
André Pedro, David Pereira, Luis Miguel Pinho, Jorge Sousa Pinto

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: anmap@isep.ipp.pt, dmrpe@isep.ipp.pt, lmp@isep.ipp.pt,

http://www.cister.isep.ipp.pt

Abstract
Runtime Monitoring of hard real-time embedded systems is a promising technique for ensuring that a running
system respects timing constraints, possibly combined with faults originated by the software and/or hardware.
This is particularly important when we have real-time embedded systems made of several components that must
combine different levels of criticality, and different levels of correctness requirements. This paper introduces a
compositional monitoring framework coupled with guarantees that include time isolation and the response time of
a monitor for a predicted violation. The kind of monitors that we propose are automatically generated by
synthesizing logic formulas of a timed temporal logic, and their correctness is ensured by construction.

A Compositional Monitoring Framework for
Hard Real-Time Systems

André de Matos Pedro1, David Pereira, Lúıs Miguel Pinho, and Jorge Sousa
Pinto2

1 CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal
{anmap,dmrpe,lmp}@isep.ipp.pt

2 HASLab/INESC TEC & Universidade do Minho, Portugal
{jsp}@di.uminho.pt

Abstract. Runtime Monitoring of hard real-time embedded systems is
a promising technique for ensuring that a running system respects tim-
ing constraints, possibly combined with faults originated by the software
and/or hardware. This is particularly important when we have real-time
embedded systems made of several components that must combine di↵er-
ent levels of criticality, and di↵erent levels of correctness requirements.
This paper introduces a compositional monitoring framework coupled
with guarantees that include time isolation and the response time of a
monitor for a predicted violation. The kind of monitors that we propose
are automatically generated by synthesizing logic formulas of a timed
temporal logic, and their correctness is ensured by construction.

1 Introduction

Real-time systems (RTSs) range from simple, isolated components to large,
highly complex and inherently concurrent systems. They act upon a variety
of environments which are frequently very dynamic and hard to capture during
design time. Therefore, developing an RTS can easily become a very di�cult
task to complete. However, even in the presence of potentially complex require-
ments, the design and development processes for RTSs should limit themselves
to model-driven techniques and intensive testing and fault-injection, which are
known to allow the existence of human introduced errors that, at later stages
of the development cycle, can become highly expensive and very hard to tackle,
even with the number of static analysis tools available. A notable example is in
the area of scheduling analysis, where schedules for task sets are obtained by a
rigorously defined scheduling algorithm. In hard RTSs the scheduling guarantees
for task sets are obtained prior to the execution of the system. It is also often the
case that schedulability analysis has to be performed in a compositional frame-
work, such as the one presented in [9,22], in order to determine a valid schedule
for the system (e.g., when the system is made of a set components, each of which
with its own set of tasks and local scheduling policy).

On the more rigorous side of RTS development, formal methods have been
introduced progressively in the development cycle, most of which are based on

temporal logic. While standard temporal logics yield a natural and abstract
framework for the analysis of safety and liveness properties [21], these logics fail
to capture the specific timing properties of RTSs [13]. This limitation is tackled
by a set of timed temporal logics [1], and many of these logics have already
been used to develop model checking tools [5]. However, model checking has its
own pitfalls, namely when the size of the state space of the model that captures
the RTS under consideration is too large to be mechanically analyzed by a tool
implementing a model checking algorithm. Moreover, it might be the case that
the properties to be checked cannot be captured rigorously at the abstract level
of the model of the system.

In order to address the cases where static analyses of an RTS fail, researchers
have introduced the concept of runtime verification (RV). RV is a major com-
plement to static methods because it can be used to check errors for which it
is possible to conclude some property of interest based exclusively in knowledge
that can be gathered only at execution time. Contrary to ad hoc instrumen-
tation of runtime behavior, RV based approaches use formal specifications and
synthesize them into monitors, that is, pieces of code that take partial traces
of execution of the system and match them against the referred specifications
and make a verdict. Moreover, monitors can be used both to verify and enforce
the properties which are provided by components, even when the components
assume the form of a black-box, as long as each component is coupled with a
formal specification. A simple example of the power of RV is the case when the
response to a property violation detection consists in shutting down a complex
component and give control to a simpler, yet formally verified component. RV
has been progressively adopted by the industry of real-time operating systems
as described in [6].

In this paper we introduce a compositional monitoring framework (CMF)
that allows us to make assumptions about the time isolation between components
as well as the response times of the monitors. We apply this notion to components
with di↵erent criticality assurances, and whose specific requirements shall be
ensured statically and dynamically through schedulability analysis and runtime
monitoring, respectively. To guarantee these frameworks’ assumptions we use a
fragment of the metric temporal logic with durations (MTL-

R
) [14] to analyze

the schedulability of the CMF, and to statically check the maximum response
times of each of the generated monitors. To the best of our knowledge, this is
the first approach that combines MTL-

R
with the generation of monitors with

explicit durations, for RV of hard RTSs. The timing enforcers of the CMF are
synthesized from MTL-

R
formulas.

The paper is organized as follows: in Section 2 we describe work that is
related to the subject of this paper; in Section 3, we describe the model and
architecture of the CMF; in Section 4 we introduce a version of MTL-

R
, with

a restricted syntax and augmented axiomatic system to handle the properties
of our CMF; in Section 5 we describe the process that synthesizes MTL-

R
for-

mulae into monitors; in Section 6 a set of guarantees provided by the CMF is
introduced, including the response time bound guarantee of each monitor; in

Section 7 it is exemplified how to use monitors and a practical applicability
of the proposed schedulability analysis is given; finally, Section 8 draws some
conclusions and directions for further work.

2 Related Work

RV is being progressively introduced in RTS development in those corner cases
where static approaches are not strong enough to cope with. In the following we
review theories and tools that are related to the ideas we are proposing in this
paper, namely, monitor synthesis approaches based on timed temporal logics and
their tools, as well as alternative techniques for schedulability analysis, including
predictable monitoring.

2.1 Monitor Based Approaches

Auguston and Takhtenbrot [3] describe a model-driven approach which dynam-
ically enforces properties specified from statechart-based models via runtime
monitoring. Monitors are automatically generated from formulas that specify
the system’s behavior, in a proposed assertion language, and their expressiveness
always depends on the assertion language. Bauer et al. [4] propose an algorithm
to e�ciently generate monitors from TLTL formulae. Such monitors are able to
specify real-time constraints from which verdicts can be made at any point of the
execution. The three-valued notion of timed linear-time temporal logic (TLTL)

3

is specially suitable for runtime monitoring since a complete set of traces is
not available at runtime, and the monitors’ specifications are increasingly evalu-
ated. Nickovic et al. [16] describe a translation of MTL into deterministic timed
automata. The full MTL language is considered, and no bounds are imposed
in the future temporal connectives. The process first converts metric tempo-

ral logic (MTL) into non-deterministic timed automata, and then determinizes
them. Another close research e↵ort is the runtime enforcement of timed proper-
ties. In Pinisetty et al. [20], monitors are introduced to enforce properties with
explicit time. This approach is useful to delay events (or messages) that arrive
before the allowed time (e.g., when a bu↵er becomes full due to a premature
arrival of an event).

Tool support for the monitorization of RTSs is scarce. Temporal Rover [8]
is appropriate for monitoring of hard real-time systems due to the temporal
constraints being specified by the MTL. However, the monitoring software is
proprietary and many specifications are hidden from common users. Alves et

al. [2] present the results of a formal computer-aided validation and verifica-
tion of critical time-constrained requirements of the Brazilian Satellite Launcher
flight software based on Temporal Rover. Pike et al. [17] introduce the Copilot
tool which is able to monitor hard real-time systems. The tool is a compiler that
supports a pre-defined streaming language in which properties shall be specified.
The tool also generates a scheduler that guarantees the timing constraints of the
system, and outcomes a constant-execution time and constant-space C program.

However, no time specifications are allowed by the tool since they are statically
ensured by a scheduler that is automatically generated. The correctness of the
timed properties depends of this step. New features have later been added into
the tool for distributed systems. A case study of a Byzantine fault-tolerant air-
speed sensor system is described in [18]. More prominent experiments have been
carried out recently as described by the report [19], where two case-studies using
Copilot monitors are tested in a true avionic system. The authors also show the
capability of their approach to cover such realistic settings.

2.2 Schedulability Analysis and Predictable Monitoring

Fersman et al. [11,12] introduces an interesting research e↵ort that discards the
classic schedulability analysis for uni-processor systems. The authors use timed

automata extended with real-time tasks to specify the system behavior together
with the scheduler behavior. Regarding these, the schedulability test remains a
reachability analysis problem, which is normally solved by model checkers such
as UPPAAL [5]. Recently, Fersman et al. [10] have showed that the schedula-
bility for multi-processor systems is possible for non-preemptive and preemptive
schedulers with constant execution time.

Work that addresses a predictable monitoring framework of temporal prop-
erties is proposed by Zhu et al. [24]. The authors take inspiration from classical
schedulability analysis to find a response time bound for monitors using sporadic
servers. However, no composability or duration of real time tasks were considered
for runtime monitoring.

3 Proposed Framework

In this section we introduce our CMF, an abstract component-based framework
that includes runtime monitors, thus supporting external observations at run-
time. We begin by introducing the definitions of real-time task-sets and periodic
resource models; event sequences; and lastly the framework.

We will assume tasks sets � = {⌧
1

, ⌧

2

, ..., ⌧

n

}, such that n 2 N+ is the number
of tasks ⌧

i

= (p
i

, e

i

) where p

i

and e

i

are, respectively, the period and the worst-
case execution time of ⌧

i

. Each task ⌧
i

2 ⌧ is periodic. A periodic resource model

! = (⌧,⇡, ✓, rm), where ⌧ ✓ � , ⇡ is the replenishment period, ✓ is the server

budget, and rm is the rate monotonic (RM) scheduling algorithm. The set of
periodic resource models is denoted by ⌦. The outputs of a resource model !
are sequences of events. Considering a pair (!, ⌧

i

) with ! 2 ⌦ and ⌧
i

2 ⌧ , each
event can be of one of the following types: a release-event erelease(!, ⌧

i

); a start-

event estart(!, ⌧
i

); a sleep-event esleep(!, ⌧
i

); a resume-event eresume(!, ⌧
i

); or a
stop-event estop(!, ⌧

i

). In addition, we assume a parameterized event "(!
j

, ⌧

i

, id)
that denotes the critical events of a task, where id is the event identifier, and
erenewal(!) denotes the budget release of a resource model. We denote sets of
events by E .

Event sequences are a formalism that allows us to describe the scheduler
behavior, creating a generic event language that a system can produce. If a
system produces unexpected event words, we shall consider it a faulty system.
This abstraction also establishes an interface for temporal logic observations [14].
A sequence of events, also known as execution trace, is an infinite sequence

⇢ = (e
1

, t

1

)(e
2

, t

2

) · · ·

of time-stamped events (e
i

, t

i

) with e

i

2 E and t

i

2 R+. The sequence satisfies
monotonicity and progresses, i.e., t

i

 t

i+1

for all i 2 N+, and for all t 2 R+

there is some i > 0 such that t
i

> t, respectively.

3.1 CMF model and architecture

The CMF model is composed of a set of elements of one of the following types:

– (Component) A simple component C = (�,!,#,�) is a component, where !
is a resource model, # is a scheduler, and � is a set of properties to be verified
at runtime. The scheduler # behaves accordingly to a scheduling policy, such
as a fixed-priority scheduler. The variable � is a set of properties defined in
a program logic to monitor the behavior of the task set �.

– (Hypervisor) A supervisor component manages several components allowing
us to coordinate component executions with lower interference among them.
Let H = (⌦, ⌘

p

, ⌘

m

,�

h

) denote a hypervisor, where ⌦ is a set of periodic
resource models, ⌘

p

is a set of notational processors that may be assigned to
the required components, ⌘

m

is a set of notational memory blocks that each
component is able to use, and �

h

is a set of properties that the hypervisor
H shall employ.

The CMF architecture accommodates the previously defined components as
depicted in Fig. 1. The monitor for each component is synthesized automatically
by the set of monitor properties � assigned to each component. � is a logic for-
mula corresponding to a specification, which can be seen as an assume/guarantee
condition of a component. Our architecture manages the monitors by three levels
of criticality, and joins similar monitors in similar resource models: Mh, Mm,
and M

l, respectively. This management can be composed by n-levels. A monitor
resource model is viewed as a resource model of a component. However, each
component or hypervisor has a set of quasi omniscient monitors (resp. hyper-
visor monitor) that draws a verdict about the assumptions of the architecture
that may be violated.

4 Metric Temporal Logic with Durations

In this section we introduce a fragment of the formal logic MTL-
R

[14], whose
evaluation is carried out with respect to sequences of events produced by resource
models. MTL-

R
enables the automatic generation of monitors and, at the same

Hypervisor

Hypervisor

MonitorResource Server Model (Scheduler Level 1)

Component ↵

Level 2
Scheduler

Workload

Component �

Level 2
Scheduler

Workload

Notational Processors

....
...

M

m

mon 1
mon 2

mon n

1 2 3

4 5 6

1 2 3

4 5 6

...h1 h2 h3Notational Memory Blocks

S
p
ec
ifi
ca
ti
on

Model
Resource

...

M

l

mon 1
mon 2

mon n S
p
ec
ifi
ca
ti
on

Model
Resource

...

M

h

mon 1
mon 2

mon n S
p
ec
ifi
ca
ti
on

Model
Resource

Fig. 1: Component-based Monitoring Architecture (CMA)

time, it allows us to statically ensure properties about our architecture (resp.
the response time bound of monitors). Such monitors are able to observe and
check timed constraints, as well as the worst case execution time (WCET) of the
tasks of a given resource model. Nevertheless, computing the value of MTL-

R

formulae may not always be possible. In order to cope with this limitation, we
consider a fragment of MTL-

R
that uses only the , <, and = relations over

terms, and and we exclude occurrences of functions in terms. We also consider
a strong form of the existential quantifier operator, which we denote by 90.

Definition 1 (MTL-

R
). Let P be a set of propositions and V a set of logical

variables. Logical variables in V are mapped to R. The syntax of MTL-

R
is

defined inductively, as follows:

� ::= ↵ | x |
R

�

'

' ::= p | �

1

⇠�

2

| '

1

_'

2

| ¬' | '

1

U⇠�

'

2

| '

1

S⇠�

'

2

| 9x' | 90
x'

where � are terms,

R
�

' is the duration of the subformula ' in the interval [0, �],
x is a continuous variable in V, p 2 P is an atomic proposition, � 2 R�0

,

⇠2 {<,,=}, and ↵ 2 R.

We are now able to define the semantic of the MTL-
R
. The semantic of

MTL-
R
is separated in two parts: terms and formulas. The semantic of terms is

defined using the notation T J⌧K(�,#)t in Table 1. All terms represent numerical

values in R+

0

. The term
R
�

' is the integral over the Boolean function B

�(�,#)

(t)
(whose return value is 1 if (�,#, t) |= �, and 0 otherwise). Since B

�(�,#)

(t) be-
haves as a step function, it is always Riemann integrable. The same is not true
in the full MTL-

R
logic. The semantic of the MTL-

R
formula is defined induc-

tively in Table 1, where the satisfability of a formula � in a model (�,#) at time

Evaluation of the restricted MTL-
R

terms
T J↵K(�,#)t = ↵

T JxK(�,#)t = #(x)

T J
R

�

�K(�,#)t =

(R
t+T J�K(�,#)t

t

B

�(�,#)(t⇤) dt⇤ if T J�K(�,#)t � 0

0 otherwise

Evaluation of the restricted MTL-
R

formulas
(�,#, t) |= p i↵ �(p)(t) = true and t < |�|
(�,#, t) |= �1 ⇠ �2 i↵ T J�1K(�,#)t ⇠ T J�2K(�,#)t
(�,#, t) |= �1 _ �2 i↵ (�,#, t) |= �1 or (�,#, t) |= �2

(�,#, t) |= ¬� i↵ (�,#, t) 6|= �

(�,#, t) |= �1 U⇠�

�2 i↵ 9t0 2 R�0 such that
t t

0 ⇠ t+ � ^ (�,#, t0) |= �2, and
8t00 2 R�0, t t

00
< t

0
, (�,#, t00) |= �1

(�,#, t) |= �1 S⇠�

�2 i↵ 9t0 2 R�0 such that
t� � ⇠ t

0 t ^ (�,#, j) |= �2, and
8t00 2 R�0, t

0
< t

00 t, (�,#, t00) |= �1

(�,#, t) |= 9x' i↵ 9v 2 R st. (�,#v

x

, t) |= �

(�,#, t) |= 90
x' i↵ there exists a value v 2 ⌫ such that (�,#v

x

, t) |= �

Table 1: Semantic of the restricted MTL-
R

Operator Abbreviation Equivalent Formula
Eventually ⇤⇠�

� true U⇠�

�

Always ⇤⇠�

� ¬(⇤⇠�

¬�)
Next �

�

1

�2 �1 U⇠1 �2

Implies Next
�1

�
=) �2

¬�1 _�
�

1

�2

Table 2: Syntactic abbreviations for our MTL-
R

fragment

t is defined by (�,#, t) |= �. � and # are an observation function and a logic
environment defined as usual [14]. The set ⌫ contains the time stamps for the
di↵erential between the observed truth values given by the � function (allow-
ing us to formulate some axioms to turn our logic evaluation in a computable
function). We will use the abbreviations eventually (⇤) and always (⇤) as usual.

In the remaining of the paper we will frequently refer to the abbreviations
presented in Table 2 in order to ease the presentation of properties that describes
the monitor behavior. For illustrative purposes, we now introduce a practical
example of the expressive power of MTL-

R
’s language.

Example 1. To ensure that a monitor task responds in a bounded response time,
the formula

1

=) ⇤�

2

is su�cient. The proposition

1

describes a set
of events that may violate the system, the proposition

2

describes the task
invocation, and � is the maximum expected response time bound. Informally,
the formula means that if a fault event occurs, then the task executes within �
time units.

4.1 MTL-

R
Axiomatization

Having restricted the original MTL-
R

described in [14], we are able to fix new
axioms for durations. Most interesting is that such axioms will allow us to turn
our MTL-

R
fragment computable. As the meaning of the duration term

R
r

� is
defined as an integral, and the relation as a term operator, we have axioms
that capture properties of integrals over the operator. They are, as follows:

A1. 9x ↵
R
↵

� ⌘ ↵
R
↵

�;
A10. 9x

R
↵

� ↵ ⌘
R
↵

� ↵;
A2. 9x x

R
↵

� ⌘ min(x)
R
↵

�;
A20. 9x

R
↵

� x ⌘
R
↵

� max(x);
A3. 9x ↵

R
x

� ⌘ ↵
R
max x

�;

A30. 9x
R
x

� ↵ ⌘
R
min x

� ↵;

A4. 9x ↵
R R R

x

�

n

�

1

� ⌘ ↵
R R R

max x

�

n

�

1

�;

A40. 9x
R R R

x

�

n

�

1

� ↵ ⌘
R R R

min x

�

n

�

1

� ↵;

A5. 9x 9y
R
x

�

1

R
y

�

2

⌘
R
min(x)

�

1

R
max(y)

�

2

;
A6. 9x

R
x

�

1

R
x

�

2

⌘ 90p
R
p

�

1

R
p

�

2

.

Axioms A1 and A10 remove the existential operator in the evaluation of a con-
stant inequality over a constant interval. Axioms A2 and A20 substitute the
existential quantification with a minimum and maximum that a variable x can
take according to the constraints applied to x. If x is unbounded the minimum
is zero, and the maximum is infinity. Axioms A3 and A30 reduce the existential
operator over a duration into a minimum and maximum inequality. Axioms A4
and A40 deal with nested durations. For the remaining axioms we have variables
and duration primitives of MTL-

R
in both sides of the operator . Once we have

an infinite observation over a path composed by finite pieces we have a procedure
to compute the truth value of this type of formula. Axiom A5 establishes that
the order relation between two durations specified by di↵erent variables is the
same as if their minimum and maximum allowed values are considered. This can
be seen as a desynchronization of durations axiom. Axiom A6 means that the
existential quantification of duration terms over the operator can be reduced
by substituting the existential quantification in points along the path where ob-
servation of MTL-

R
formulas is made. This can be seen as a synchronization of

durations axiom.

Example 2. Consider an application of Axiom A6 with the two MTL- formulas

�

1

=
R |⇢|

(✏
�

^ ✏

↵

) 10 and �

2

=
R |⇢|

(✏
�

) 10. To easily understand their
use we will show two figures. Figure 2a depicts the sequence of events ⇢, their
respective activation times as well as the evaluation of three formulas ✏

�

U ✏

↵

,
�

1

, and �
2

over the duration of the sequence ⇢. Figure 2b depict an evaluation
of the formula 9x

R
x

(✏
�

)
R
x

(✏
�

^ ✏
↵

), where the undefined values are shown
in gray. Note that the duration of any MTL-

R
formula cannot be greater than

the duration of a true formula as depicted by the figure. In practice, we shall
conclude that the points to compare are the time stamps of events of each path ⇢
since these points form a set of monotonic increasing piecewise linear segments.

✏

↵

✏

�

✏

idle

⇢

✏

idle

✏

idle

✏

idle

✏

�

✏

�

✏

�

✏

↵

✏

↵

✏

↵

✏

�

U ✏

↵

false

false

�2

false

�1

(a) A diagram containing: a path ⇢; three event releases ✏
�

, ✏
↵

, and ✏

idle

; and the
respective truth value of the logic formulas ✏

�

U ✏

↵

, �1, and �2.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

#(x)

x

Undef.

� = true

� =
R

x(✏
�

^ ✏
↵

)

� =
R

x(✏
�

) and
R

x(✏
�

^ ✏
↵

)

(b) The graph depicts the formula
R

x(✏
�

) and
R

x(✏
�

^ ✏
↵

) which allows us to visually
check the formula 8x

R
x(✏

�

)
R

x(✏
�

^ ✏
↵

) in the finite interval [0, 64).

Fig. 2

In contrast, the universal quantification can be defined by negating an existen-
tially quantified formula in the usual way.

5 Evaluation of MTL-
R

formulas

In order to synthesize monitors for our CMF we have defined a fragment of
MTL-

R
that is able to describe durations for RTS, an algorithm to evaluate logic

and their WCET estimation, and the time complexity analysis of the algorithm.
We have implemented the semantics of our MTL-

R
fragment and implemented

it in OCaml language [23].

5.1 The evaluation algorithm

The semantics of MTL-
R

introduced in [14] may not be fully computable due
to the real numbered existential and universal quantifications. In addition, the

axioms established previously allow us to compute the non negative real number
existential and universal quantifications, and to enable the WCET estimation.
However, the validity of the argument is also shown by the evaluation function of
Algorithm 1 where the MTL-

R
semantics is codified exclusively using functions

applied to lists. This algorithm evaluates MTL-
R
formulas and produces Boolean

verdicts.
Some notations need to be introduced before the description of the algorithm,

obs is a function that corresponds to an observation, env is a logical environment,
and mt is a term function which evaluates terms such as ↵, x, and

R
↵

�. These
functions are defined according to the semantics of [14]. Note that these terms
are always computable, i.e., terms are non negative real valued numbers.

The functions �R , �
x

, and � are special functions that rewrite formulas
by applying the axioms described previously to compute new values. Next, we
present an example to clarify the role of these functions.

Example 3. Suppose that we have an existential quantification of x over the for-

mula ↵
R
�(�,#)tr

1

�. This formula will be rewritten to ↵
R
max(mt (�,#) t r

1

)

�

which means that the maximum allowed value is enough to know if there exists
an x su�ciently large to validate the inequality condition. The other functions
follow the same principle, but considering x

R
,
R
 x, and

R

R
.

5.2 The time complexity of our evaluation algorithm

In order to provide an analysis of the CMF, the WCET of monitors should be
supplied. We address a pessimistic bound for our evaluation function eval based
on time complexity, T (m,n) = n⇥m, where n is the length of the formula and
m the length of the trace to be consumed by the monitor. This means that in
the worst case we have n⇥m comparisons between list elements, and the WCET
can be computed by multiplying the constant cost that each list element takes.
Note that our algorithm is based on functions applied to lists, forall, exists,
and fold left, and a more accurate estimation of the WCET defining a recursive
cost function could easily be employed.

5.3 Runtime monitoring as the evaluation of an MTL-

R
formula

After establishing a computable logic, a monitor may be seen as a procedure to
evaluate a formula. Thus, we introduce the notion of monitor generated from an
MTL-

R
formula.

Definition 2. A monitor is a process that evaluates one specific bounded for-

mula in the MTL-

R
fragment.

Monitors belong to resources models (or components), and are represented by
tasks (one formula produces one task). Our algorithm is adequate to estimate
the WCET of a monitor even with a pessimistic bound, and also to be employed
in practice (as will be seen later). Note that WCET parameters of monitors are

in : An execution trace ⇢ of length |⇢|, and a logic formula �.
out: A Boolean evaluation of the logic formula � over the trace ⇢.

1 let eval ⇢ t � = let � = obs ⇢ in let # = env in models (�,#, t) �
2

3 let models (�,#, t) � = match � with

4 | p ! �.evaluate p t and �.interval t
5 | ¬ (�1) ! not (models (�,#, t) �1)
6 | _ (�1, �2) ! models (�, #, t) �1 or models (�, #, t) �2

7 | U
<�

(�1,�2) ! let (b,t’) = exists (fun a ! models (�,#, a) �2) (�.intrv t
(t +� � ✏)) in b and forall (fun t

00 ! models (�,#, t00) �1) (�.intrv t (t0 � ✏))
8 | U=�

(�1,�2) ! models (�,#, �) �2 and forall (fun t

00 ! models (�,#, t00)
�1) (�.intrv t (t0 � ✏))

9 | 9 (var,�1) ! exists (fun n ! let () = #.add var n in models (�,#, t) �1)
(�.intrv t (#.bound var))

10 | ⇠ (
R

r

1

�1,↵) ! mt (�,#) t (
R � (�,#) t r

1

�1) ⇠ mt (�,#) t ↵

11 | ⇠ (↵,
R

r

1

�1) ! mt (�,#) t ↵ ⇠ mt (�,#) t (
R � (�,#) t r

1

�1)

12 | ⇠ (
R

r

1

�1,x) ! mt (�,#) t (
R �

x

(�,#) t r
1

�1) ⇠ mt (�,#) t x

13 | ⇠ (x,
R

r

1

�1) ! mt (�,#) t x ⇠ mt (�,#) t (
R �

x

(�,#) t r
1

�1)

14 | ⇠ (
R

r

1

�1,
R

r

2

�2) ! mt (�,#) t (
R �R (�,#) t r

1

�1) ⇠ mt (�,#) t

(
R �R (�,#) t r

1

�1)
15

16 let mt (�,#) t r = match r with

17 | ↵! ↵

18 | x ! #(x)
19 |

R
r

�! if mt (�,#) t r � 0 and (�.intrv t (t+ mt(�,#) t r)) � 2 then

int t (t+ mt(�,#) t r) (one� (�,#) t1) else 0
20

21 let one� (�,#) t1 = if models (�,#, t1) � then 1 else 0
22

23 let int t

b

t

e

f = let v, = fold left (fun (a, t
l

), t ! (a+ f(t) · (t� t

l

), t)) (0, hd
�.intrv t

b

t

e

) (tl �.intrv t

b

t

e

) in v

Algorithm 1: MTL-
R
Evaluation Algorithm, with ⇠2 {<,,=}.

required in order to make a prior schedulability analysis which ensures a certain
responsiveness for the monitor components. Note also that this process is an
alternative to the synthesis approaches using automata theory [16].

Our approach is particularly suited to handle the reorganization of monitors
that belong to di↵erent resource models. Once the monitor synthesis process pro-
vides one task per logical formula, the performance is a↵ected. This is due to the
increasing number of tasks that may reduce substantially the systems’ utiliza-
tion (a known problem of the fixed-priorities schedulers). To relax this problem,
a clustering of monitor tasks based on the execution time, deadline, and response
time bound is a possible solution. After generating series of monitors the clus-
ters are classified within n-level components, i.e., each cluster is assigned to one
resource model independently of the system under monitoring. This guarantees
non-interference of time between monitors and the system’s schedulability.

6 Guaranteeing Real-Time Constraints using MTL-
R

for
CMF

Constraints for our CMF shall be statically ensured using our logic fragment as
basis [7]. WCET violations of one or more tasks may interfere with other non
monitoring tasks resulting in an undesirable environment. This can be tackled
by using higher priority tasks for monitor processes or by assigning monitors to
independent resource models. However, to guarantee non interference between
resource models, we shall ensure the correct behavior of such models by specify-
ing their allowed budgets and periods. Another formulas to establish a complete
formalization are required as described in [7].

Assuming a correct release of events, namely the erenewal(!), the budget
supply is specified by the formula �(!) equivalent to

⇤1

erenewal(!)

�
=)

�
⇤
=⇡

erenewal(!)
�
^
Z

⇡ _

⌧

i

2⌧

evs

+(!, ⌧
i

) ✓

!
,

where ! is one resource model; ⇡ and ✓ their renewal period and budget, respec-

tively; erenewal(!) is the budget renewal event, and evs

+(!
j

, ⌧

i

)
def

= estart(!
j

, ⌧

i

)_
eresume(!

j

, ⌧

i

)_ erenewal(!) _ estop(!
j

, ⌧

i

) _ "(!
j

, ⌧

i

, ·) _ erelease(!
j

, ⌧

i

). This
formula states that for each occurrence of the event erenewal(!) in the resource
model !, the duration of the other events until ⇡ time units does not overpasses
the budget ✓ per period ⇡. In this formula we assume the correct specifica-
tion of the periodic event releases (erenewal(!, ⌧

i

)), and the schedulability of the
workload according to a fixed priority policy. Note that this assumption can be
discarded using schedulability analysis based on task automata or following the
instruction provided in [7].

In addition, the predictability of our framework with respect to event se-
quences can be established by identifying the relevant or critical events, and
preserving the partial order of events arrival for monitor processes. We denote
the critical events by the subset E�

cr

✓ E , and the prefix-tree which preserves the
partial order of events for all possible executions by pt. Given these predictable
traces pt we are able to ensure the response time of the monitor mon id for each
trace ⇢ 2 pt by the formula

V
e2E�

cr

e =) ⇤�

estop(!,⌧

1

), (1)

where estop(!, ⌧
1

) is the triggered event that monitors generate at the end of
their complete execution, and E�

cr

is a set of the events used by formula �.

Example 4. Assuming two resource model RS-A(⇡ = 10, ✓ = 8) and RS-C(⇡ =
5, ✓ = 1) described in Figure 3 containing three tasks (ts1 with period of 14 and
WCET of 3; ts2 with period of 20 and WCET of 5; and ts3 with period of 27 and
WCET of 7), and one task (ts1 with period of 33 and WCET of 4), respectively.
We could see that to guarantee the maximum detection delay of the monitor
task ts1 in RS-C, the trace depicted in the Figure 3 need to be generated. This

RS-A

RS-C

ts1

✏
idle

P
ts1 P

ts1P
ts1 P

ts2P
ts3P

ts2

✏
idle

ts1

Pattern C

ts1 ts1ts2 ts3 ts3

estart(!
C

, ⌧1) eresume(!
C

, ⌧1)

ts2 ts3

estart(!
A

, ⌧1)

ts3 ts2 ts1

Pattern A

P
ts1

⇢

estart(!
A

, ⌧1) estart(!
A

, ⌧1)
estart(!

A

, ⌧2)
estart(!

A

, ⌧3)

eresume(!
A

, ⌧3)

estart(!
A

, ⌧2) estart(!
A

, ⌧3)

eresume(!
A

, ⌧3)

estop(!
A

, ⌧1)
estop(!

A

, ⌧2)
esleep(!

A

, ⌧3)

estop(!
A

, ⌧3)

esleep(!
C

, ⌧1)

estop(!
A

, ⌧1)

estop(!
A

, ⌧2)

esleep(!
A

, ⌧3)

estop(!
A

, ⌧1)

estop(!
A

, ⌧3)

✏
idle

✏
idle

ts1

beginning of trace

Monitor miss the deadline (option one)

Maximum detection delay

ts1

P
ts1

Monitor executes (option two)

10 units

Fig. 3: Example of patterns and the global trace generated by the composition
of resource models defined in the Example 4

trace assumes the critical instant theorem [15] (to find the worst execution trace)
as well as the hyper-period of the resource model (to define the length of the
trace). Replacing the event estop(!, ⌧

1

) with estop(RS � C, ts1) in Equation 1
we are able to obtain the maximum detection delay of our trace, which is when
� is equal to 34 time units. We also known that the deadline of 27 time units for
monitor period is not enough for the established resource models settings, RS-A
and RS-C, respectively. However, if we increase the period of the monitor task
to a value greater than 39 time units we obtain a schedulable taskset.

7 Performance Evaluation of our MTL-
R

Approach

To estimate the performance of our evaluation algorithm we define some clas-
sical properties in MTL-

R
and monitor them using our evaluation algorithm,

such as: true Ut

� (eventually); � ! ⇤t

 (bounded-invariance); � ! ⇤t

(bounded-response); ⇤t

R
t

� � (limited-duration); and � !
R
t

 �

(bounded-duration). Results of the performance analysis are depicted in Ta-
ble 3. The values are presented in milliseconds. Average values are computed
over multiple runs provided by a stochastic model. The length of the input trace
is denoted by |⇢|. The entry t

average

is the execution time that a set of monitors
takes, on average, to the evaluation algorithm. The throughput shows how many
events can be processed by the monitor as the trace increases, i.e., |⇢|

t

monitor

.
The experiments were performed on an Intel Core i3-3110M at 2.40GHz CPU,

and 8 GB RAM running on Fedora 18 X64. Note that all the monitors are time

Monitors
|⇢|

throughput
10 100 1000 10000

true Ut

� 0.051 1.717 171.376 26366.48 196.1, 0.379
�! ⇤t

 0.065 1.834 172.683 26159.36 153.8, 0.382
�! ⇤t

 0.055 1.765 174.594 26944.16 181.8, 0.371

⇤t

R
t

� � 0.309 65.950 76682.652 > 10m indef

�!
R

t

 � 0.011 0.195 14.033 1993.12 909.1, 5.01

t

average

0.098 14.192 15443.068 indef no value

Table 3: Performance analysis of enforcement monitors

bounded in t, indicating that only one trace that has this duration should assign
a truth value for the formula (a verdict). Our algorithm executes in polynomial
time as the experiments also show.

8 Conclusion and Further Work

In this paper we have introduced a novel approach to runtime monitoring. Com-
pared with currently available methods our approach extends runtime moni-
toring for component-based approaches; introduces the monitor synthesis for
duration formulas; establishes guarantees such as time interference of monitors,
predictability, and avoidance of catastrophic scenarios due to WCET violations
for our compositional framework; and supplies a platform for design of hard real-
time embedded system where knowledge provided at execution time is required.
In terms of current and future research goals, we are presently working on for-
mally establishing the correctness of the algorithm as well as several properties
of our MTL-

R
fragment. Our current empirical results (omitted due to lack of

space) strongly suggest that our fragment is well suited in terms of expressiveness
for schedulability analysis of uni-processor and multi-processor systems. Our no-
tational memory and processors definition are targeted for future developments
which include the support for merging and splitting of resource models.

Acknowledgments. This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Technology) and by ERDF
(European Regional Development Fund) through COMPETE (Operational Pro-
gramme ’Thematic Factors of Competitiveness’), within projects Ref.
FCOMP-01-0124-FEDER-022701 (CISTER), FCOMP-01-0124-FEDER-015006
(VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC). The authors wish
to acknowledge the anonymous reviewers for their detailed and helpful comments
to the manuscript.

References

1. R. Alur and T. A. Henzinger. Logics and Models of Real Time: A Survey. In
Real-Time: Theory in Practice, REX Workshop, pages 74–106, 1992.

2. M. C. B. Alves, D. Drusinsky, J. B. Michael, and M. Shing. Formal validation
and verification of space flight software using statechart-assertions and runtime
execution monitoring. SOSE’11, pages 155 –160, 2011.

3. M. Auguston and M. Trakhtenbrot. Synthesis of Monitors for Real-Time Analysis
of Reactive Systems. In Pillars of Computer Science, volume 4800 of Lecture Notes

in Computer Science, pages 72–86. 2008.
4. A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL.

ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, 2011.
5. G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and

M. Hendriks. UPPAAL 4.0. QEST ’06, pages 125–126, 2006.
6. S. Cotard, S. Faucou, J. Bechennec, A. Queudet, and Y. Trinquet. A Data Flow

Monitoring Service Based on Runtime Verification for AUTOSAR. HPCC ’12,
pages 1508–1515, 2012.

7. André de Matos Pedro, David Pereira, Lúıs Miguel Pinho, and Jorge Sousa Pinto.
Logic-based Schedulability Analysis for Compositional Hard Real-Time Embed-
ded Systems. In Proceedings of the 6th International Workshop on Compositional

Theory and Technology for Real-Time Embedded Systems, CRTS ’13, 2013.
8. D. Drusinsky. The Temporal Rover and the ATG Rover. SPIN Workshop, pages

323–330, 2000.
9. A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal. A Compositional Scheduling

Framework for Digital Avionics Systems. RTCSA ’09, pages 371–380, 2009.
10. E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedulability,

decidability and undecidability. Inf. Comput., 205(8):1149–1172, 2007.
11. E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis of

fixed-priority systems using timed automata. Theor. Comput. Sci., 354(2):301–317,
2006.

12. E. Fersman, P. Pettersson, and W. Yi. Timed Automata with Asynchronous Pro-
cesses: Schedulability and Decidability. TACAS ’02, pages 67–82, 2002.

13. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255–299, 1990.
14. Y. Lakhneche and J. Hooman. Metric temporal logic with durations. Theor.

Comput. Sci., 138(1):169–199, 1995.
15. C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.
16. D. Ničković and N. Piterman. From MTL to deterministic timed automata. FOR-

MATS’10, pages 152–167, 2010.
17. L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: a hard real-time runtime

monitor. RV’10, pages 345–359, 2010.
18. L. Pike, S. Niller, and N. Wegmann. Runtime verification for ultra-critical systems.

RV’11, pages 310–324, 2012.
19. L. Pike, N. Wegmann, S. Niller, and A. Goodloe. Copilot: Monitoring Embedded

Systems. Innovations in Systems and Software Engineering, pages 1–21, 2013.
20. S. Pinisetty, Y. Falcone, T. Jéron, H. Marchand, A. Rollet, and O. Nguena Timo.

Runtime enforcement of timed properties. RV’13, pages 229–244. 2013.
21. A. Pnueli. The temporal logic of programs. SFCS ’77, pages 46–57, 1977.
22. I. Shin and I. Lee. Compositional real-time scheduling framework with periodic

model. ACM Trans. Embed. Comput. Syst., 7(3):30:1–30:39, 2008.
23. The OCaml Development Team. Ocaml programming language, 2013.
24. H. Zhu, M. B. Dwyer, and S. Goddard. Predictable Runtime Monitoring. ECRTS

’09, pages 173 –183, 2009.

